請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82002完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳昭瑩(Chao-Ying Chen) | |
| dc.contributor.author | Po-Yang Huang | en |
| dc.contributor.author | 黃博洋 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:33:53Z | - |
| dc.date.available | 2023-08-18 | |
| dc.date.copyright | 2021-11-11 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-20 | |
| dc.identifier.citation | 1. 施侑廷。2018。百合防禦相關蛋白LsGRP1誘導植物抗灰黴病之應用。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。 2. 施苡亘。2014。LsGRP1C對十字花科炭疽病之抑病功能及抑菌機制探討。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。 3. 陳廷瑋。2020。植物賀爾蒙訊息傳遞路徑在葵百合LsGRP1介導植物防禦灰黴病之角色。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。 4. 陸曉親。2021。外源性抗菌胜肽LsGRP1C抗草莓炭疽病之機制研究。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。 5. 葉乃樺。2018。利用LsGRP1轉基因阿拉伯芥探討其餘植物免疫之角色。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。 6. 劉芳瑋。2016。抗菌蛋白LsGRP1之N端區段對百合灰黴病菌之孢子萌芽促進作用。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。 7. 潘映潔。2015。LsGRP1c誘導百合灰黴病菌之計畫性細胞死亡現象。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。 8. 賴奕如。2019。百合防禦蛋白LsGRP1抗灰黴病之關鍵區段探討。國立臺灣大學植物病理與微生物學系碩士論文。臺北。臺灣。 9. Ádám, A. L., Nagy, Z. Á., Kátay, G., Mergenthaler, E., and Viczián, O. 2018. Signals of systemic immunity in plants: progress and open questions. International Journal of Molecular Sciences 19: 1146. 10. Aranega-Bou, P., de la O Leyva, M., Finiti, I., García-Agustín, P., and González-Bosch, C. 2014. Priming of plant resistance by natural compounds. Hexanoic acid as a model. Frontiers in Plant Science 5: 488. 11. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., and Sheen, J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977-983. 12. Balmer, D., Planchamp, C., and Mauch-Mani, B. 2013. On the move: induced resistance in monocots. Journal of Experimental Botany 64: 1249-1261. 13. Bektas, Y., and Eulgem, T. 2015. Synthetic plant defense elicitors. Frontiers in Plant Science 5: 804. 14. Bernsdorff, F., Döring, A. C., Gruner, K., Schuck, S., Bräutigam, A., and Zeier, J. 2016. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and-independent pathways. The Plant Cell 28: 102-129. 15. Bigeard, J., Colcombet, J., and Hirt, H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant 8: 521-539. 16. Cecchini, N. M., Jung, H. W., Engle, N. L., Tschaplinski, T. J., and Greenberg, J. T. 2015. ALD1 regulates basal immune components and early inducible defense responses in Arabidopsis. Molecular Plant-Microbe Interactions 28: 455-466. 17. Champigny, M. J., Isaacs, M., Carella, P., Faubert, J., Fobert, P. R., and Cameron, R. K. 2013. Long distance movement of DIR1 and investigation of the role of DIR1-like during systemic acquired resistance in Arabidopsis. Frontiers in Plant Science 4: 230. 18. Chanda, B., Xia, Y., Mandal, M. K., Yu K., Sekine, K. T., Gao, Q. M., Selote, D., Hu, Y., Stromberg, A., Navarre, D., Kachroo, A., and Kachroo, P. 2011. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nature Genetics 43: 421-427. 19. Chen, Y. C., Holmes, E. C., Rajniak, J., Kim, J. G., Tang, S., Fischer, C. R., Mudgett M. B., and Sattely, E. S. 2018. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proceedings of the National Academy of Sciences, USA 115: E4920-4929. 20. Clarke, S. M., Cristescu, S. M., Miersch, O., Harren, F. J., Wasternack, C., and Mur, L. A. 2009. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist 182: 175-187. 21. Coppola, M., Corrado, G., Coppola, V., Cascone, P., Martinelli, R., Digilio, M. C., Pennacchio F., and Rao, R. 2015. Prosystemin overexpression in tomato enhances resistance to different biotic stresses by activating genes of multiple signaling pathways. Plant Molecular Biology Reporter 33: 1270-1285. 22. Coppola, M., Lelio, I. D., Romanelli, A., Gualtieri, L., Molisso, D., Ruocco, M., Avitabile C., Natale R., Cascone P., Guerrieri E., Pennacchio., F., and Rao, R. 2019. Tomato plants treated with systemin peptide show enhanced levels of direct and indirect defense associated with increased expression of defense-related genes. Plants 8: 395. 23. de la Noval, B., Pérez, E., Martínez, B., León, O., Martínez-Gallardo, N., and Délano-Frier, J. 2007. Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza 17: 449-460. 24. Dey, S., Wenig, M., Langen, G., Sharma S., Kugler, K. G., Knappe, C., Hause, B., Bichlmeier M., Babaeizad, V., Imani, J., Janzik, I., Stempfl, T., Hückelhoven, R., Kogel, K., Mayer, K. X., and Vlot A. C. 2014. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid. Plant Physiology 166: 2133-2151. 25. Ding, P., Rekhter, D., Ding, Y., Feussner, K., Busta, L., Haroth, S., Xu S., Li X., Jetter R., Feussner I., and Zhang, Y. 2016. Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance. The Plant Cell 28: 2603-2615. 26. Durner, J., Shah, J., and Klessig, D. F. 1997. Salicylic acid and disease resistance in plants. Trends in Plant Science 2: 266-274. 27. Durrant, W. E., and Dong, X. 2004. Systemic acquired resistance. Annual Review of Phytopathology 42: 185-209. 28. Faize, L., and Faize, M. 2018. Functional analogues of salicylic acid and their use in crop protection. Agronomy 8: 5. 29. Gao, Q. M., Zhu, S., Kachroo, P., and Kachroo, A. 2015. Signal regulators of systemic acquired resistance. Frontiers in Plant Science 6: 228. 30. Gottig, N., Vranych, C. V., Sgro, G. G., Piazza, A., and Ottado, J. 2018. HrpE, the major component of the Xanthomonas type three protein secretion pilus, elicits plant immunity responses. Scientific Reports 8: 1-13. 31. Gramegna, G., Modesti, V., Savatin, D. V., Sicilia, F., Cervone, F., and De Lorenzo, G. 2016. GRP-3 and KAPP, encoding interactors of WAK1, negatively affect defense responses induced by oligogalacturonides and local response to wounding. Journal of Experimental Botany 67: 1715-1729. 32. Grant, M., and Lamb, C. 2006. Systemic immunity. Current Opinion in Plant Biology 9: 414-420. 33. Groux, R., Hilfiker, O., Gouhier-Darimont, C., Peñaflor, M. F. G. V., Erb, M., and Reymond, P. 2014. Role of methyl salicylate on oviposition deterrence in Arabidopsis thaliana. Journal of chemical ecology 40: 754-759. 34. Guerra, T., Schilling, S., Hake, K., Gorzolka, K., Sylvester, F. P., Conrads, B., Westermann, B., and Romeis, T. 2020. Calcium‐dependent protein kinase 5 links calcium signaling with N‐hydroxy‐L‐pipecolic acid‐and SARD 1‐dependent immune memory in systemic acquired resistance. New Phytologist 225: 310-325. 35. Han, G. Z. 2019. Origin and evolution of the plant immune system. New Phytologist, 222: 70-83. 36. Hartmann, M., Zeier, T., Bernsdorff, F., Reichel-Deland, V., Kim, D., Hohmann, M., Scholten N., Schuck S., Bräutigam A., Hölzel T., Ganter C., and Zeier, J. 2018. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173: 456-469. 37. Huang, C. Y., Araujo, K., Sánchez, J. N., Kund, G., Trumble, J., Roper, C., Godfrey K. E., and Jin, H. 2021. A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing. Proceedings of the National Academy of Sciences, USA 118 : e2019628118. 38. Huffaker, A., Pearce, G., and Ryan, C. A. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proceedings of the National Academy of Sciences, USA 103: 10098-10103. 39. Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329. 40. Jung, H.W., Tschaplinski, T. J., Wang, L., Glazebrook, J., and Greenberg, J. T. 2009. Priming in systemic plant immunity. Science 324: 89-91. 41. Kachroo, A., and Robin, G. P. 2013. Systemic signaling during plant defense. Current Opinion in Plant Biology 16:527-533. 42. Karabay, N. U., Turkusay, H., Aki, C., Turkan, I., Schading, R. L., Onsekiz, C., and Tosun, N. 2002. The Effect of HarpinEa as Plant Activator in Control of Bacterial and Fungal Diseases of Tomato. In VIII International Symposium on the Processing Tomato 613: 251-254. 43. Kim, M. J., Baek, K., and Park, C. M. 2009. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis. Plant Cell Reports 28: 1159-1167. 44. Klessig, D. F., Choi, H. W., and Dempsey, D. M. A. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Molecular Plant-Microbe Interactions 31: 871-888. 45. Kumar, D., and Klessig, D. F. 2003. High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences, USA 100: 16101-16106. 46. Lenk, M., Wenig, M., Mengel, F., Häußler, F., and Vlot, A. C. 2018. Arabidopsis thaliana immunity-related compounds modulate disease susceptibility in barley. Agronomy 8: 142. 47. Lim, G. H., Singhal, R., Kachroo, A., and Kachroo, P. 2017. Fatty acid- and lipid-mediated signaling in plant defense. Annual Review of Phytopathology 55: 505-536. 48. Lin, C. H., and Chen, C. Y. 2014. Characterization of the dual subcellular localization of Lilium LsGRP1, a plant class II glycine-rich protein. Phytopathology 104: 1012-1020. 49. Lin, C. H., Chang, M. W., and Chen, C. Y. 2014. A potent antimicrobial peptide derived from the protein LsGRP1 of Lilium. Phytopathology 104: 340-346. 50. Lin, C. H., Pan, Y. C., Liu, F. W., and Chen, C. Y. 2017. Prokaryotic expression and action mechanism of antimicrobial LsGRP1C recombinant protein containing a fusion partner of small ubiquitin-like modifier. Applied Microbiology and Biotechnology 101: 8129-8138. 51. Lin, C. H., Pan, Y. C., Ye, N. H., Shih, Y. T., Liu, F. W., and Chen, C. Y. 2020. LsGRP1, a class II glycine‐rich protein of Lilium, confers plant resistance via mediating innate immune activation and inducing fungal programmed cell death. Molecular Plant Pathology 21:1149-1166. 52. Liu P. P., von Dahl C. C., and Klessig D. F. 2011. The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiology 157: 2216-2226. 53. Liu, P. P., Yang, Y., Pichersky, E., and Klessig, D. F. 2010. Altering expression of Benzoic Acid/ Salicylic Acid Carboxyl Methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in Arabidopsis. Molecular Plant- Microbe Interactions 23: 82-90. 54. Liu, Z., Wu, Y., Yang, F., Zhang, Y., Chen, S., Xie, Q., Tian X., and Zhou, J. M. 2013. BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proceedings of the National Academy of Sciences, USA 110: 6205-6210. 55. Lu, Y. Y., and Chen, C. Y. 2005. Molecular analysis of lily leaves in response to salicylic acid effective towards protection against Botrytis elliptica. Plant Science 169: 1-9. 56. Lu, Y. Y., Liu, Y. H., and Chen, C. Y. 2007. Stomatal closure, callose deposition, and increase of LsGRP1-corresponding transcript in probenazole-induced resistance against Botrytis elliptica in lily. Plant Science 172: 913-919. 57. Mangeon, A., Junqueira, R. M., and Sachetto-Martins, G. 2010. Functional diversity of the plant glycine-rich proteins superfamily. Plant Signaling and Behavior 5: 99-104. 58. Manosalva P. M., Park S. W., Forouhar F., Tong L., Fry W. E., and Klessig D. F. 2010. Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Molecular Plant-Microbe Interactions 23: 1151-1163. 59. Mishina, T. E., and Zeier, J. 2007. Pathogen‐associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. The Plant Journal 50: 500-513. 60. Muthamilarasan, M., and Prasad, M. 2013. Plant innate immunity: an updated insight into defense mechanism. Journal of biosciences 38: 433-449. 61. Návarová, H., Bernsdorff, F., Döring, A. C., and Zeier, J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. The Plant Cell 24: 5123-5141. 62. Nie, P., Chen, C., Yin, Q., Jiang, C., Guo, J., Zhao, H., and Niu, D. 2019. Function of miR825 and miR825* as negative regulators in Bacillus cereus AR156-elicited systemic resistance to Botrytis cinerea in Arabidopsis thaliana. International Journal of Molecular Sciences 20: 5032. 63. Noman, A., Aqeel, M., and Lou, Y. 2019. PRRs and NB-LRRs: from signal perception to activation of plant innate immunity. International Journal of Molecular Sciences 20: 1882. 64. Park, A. R., Cho, S. K., Yun, U. J., Jin, M. Y., and Lee, S. H., Sachetto-Martins, G., and Park, O. K. 2001. Interaction of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich protein, AtGRP-3. Journal of Biological Chemistry 276: 26688-26693. 65. Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S., and Klessig, D. F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 113-116. 66. Pastor-Fernández, J., Gamir, J., Pastor, V., Sanchez-Bel, P., Sanmartín, N., Cerezo, M., and Flors, V. 2020. Arabidopsis plants sense non-self peptides to promote resistance against Plectosphaerella cucumerina. Frontiers in Plant Science 11: 529. 67. Peng, Y., van Wersch, R., and Zhang, Y. 2018. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Molecular Plant-Microbe Interactions 31: 403-409. 68. Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology14: 340-358. 69. Shah, J., and Zeier, J. 2013. Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science 4: 30. 70. Sreeja, S. J. 2014. Synthetic plant activators for crop disease management-a review. International Journal of Thesis Projects and Dissertations 2: 19-28 71. Sun, T. J., Lu, Y., Narusaka, M., Shi, C., Yang, Y. B., Wu, J. X., Zeng, H. Y., Narusaka, Y., and Yao, N. 2015. A novel pyrimidin-like plant activator stimulates plant disease resistance and promotes growth. PloS one 10: e0123227. 72. Tripathi, D., Raikhy, G., and Kumar, D. 2019. Chemical elicitors of systemic acquired resistance-Salicylic acid and its functional analogs. Current Plant Biology17: 48-59. 73. Ueki, S., and Citovsky, V. 2002. The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nature Cell Biology 4: 478-486. 74. Vallad, G. E., and Goodman, R. M.2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science 44: 1920-1934. 75. Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H., and Ryals J. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. The Plant Cell 6: 959-965 76. Vlot, A. C., Sales, J. H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenig, M., and Nayem, S. 2021. Systemic propagation of immunity in plants. New Phytologist 229: 1234-1250. 77. Wang, C., El-Shetehy, M., Shine, M. B., Yu, K., Navarre, D., Wendehenne, D., Kachroo, A., and Kachroo, P. 2014. Free radicals mediate systemic acquired resistance. Cell Reports 7: 348-355. 78. Wang, C., Liu, R., Lim, G. H., de Lorenzo, L., Yu, K., Zhang, K., Hunt, A. G., Kachroo, A., and Kachroo, P. 2018. Pipecolic acid confers systemic immunity by regulating free radicals. Science Advances 4: eaar4509. 79. Wenig, M., Ghirardo, A., Sales, J. H., Pabst, E. S., Breitenbach, H. H., Antritter, F., Weber, B., Lange, B., Lenk, M., Cameron,R. K., Schnitzler, J., and Vlot, A. C. 2019. Systemic acquired resistance networks amplify airborne defense cues. Nature communications 10: 1-14. 80. Wildermuth, M. C., Dewdney, J., Wu, G., and Ausubel, F. M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562-565. 81. Yamaguchi, Y., Huffaker, A., Bryan, A. C., Tax, F. E., and Ryan, C. A. 2010. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. The Plant Cell 22: 508-522. 82. Yu, K., Soares, J. M., Mandal, M. K., Wang, C., Chanda, B., Gifford, A. N., Fowler, J. S., Navarre, D., Kachroo, A., and Kachroo, P. 2013. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Reports 3: 1266-1278. 83. Zhang, H., Zhang, H., and Lin, J. 2020. Systemin‐mediated long‐distance systemic defense responses. New Phytologist 226: 1573-1582. 84. Zhang, W., Zhao, F., Jiang, L., Chen, C., Wu, L., and Liu, Z. 2018. Different pathogen defense strategies in Arabidopsis: more than pathogen recognition. Cells 7: 252. 85. Zhu, Z., and Zhang, X. 2016. Effect of harpin on control of postharvest decay and resistant responses of tomato fruit. Postharvest Biology and Technology 112: 241-246. 86. Zipfel, C. 2009. Early molecular events in PAMP-triggered immunity. Current Opinion in Plant Biology 12: 414-420. 87. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D., Felix, G., and Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764-767. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/82002 | - |
| dc.description.abstract | "植物會因應病原菌侵擾而活化先天性免疫,受到侵擾的組織會累積水楊酸(salicylic acid, SA)並長距離傳訊,啟動系統性誘導抗病反應(systemic acquired resistance, SAR)。LsGRP1為介導葵百合抗百合灰黴病的關鍵防禦蛋白,內源性表現及外源性施用LsGRP1皆可有效抑制處理葉及系統葉百合灰黴病的病徵,指出LsGRP1除了誘導原位抗性也具有誘導植物系統性抗病的能力,然其機制仍有待釐清。前人研究發現阿拉伯芥葉片表現LsGRP1可提升病原菌入侵後所誘導的防禦反應,而本研究進一步觀察外源性大腸桿菌生產之融合蛋白SUMO-LsGRP1△SS的作用,發現其可促使阿拉伯芥葉片提升由flg22激活的免疫反應;在系統葉上可減少Pseudomonas syringae pv. tomato (Pst) DC3000的增殖菌量及增加flg22誘發的癒傷葡聚醣沉積。經試驗得知SUMO-LsGRP1△SS之部分區段刪除突變的誘導系統性抗病強度皆較SUMO-LsGRP1△SS者為低。藉由阿拉伯芥誘導系統性抗病的水楊酸依賴型傳訊路徑(SA-dependent signaling pathway)之sid2 (SA induction deficient 2)、bsmt1 (benzoic acid/SA carboxyl methyltransferase 1)突變株及2-哌啶甲酸依賴型傳訊路徑(pipecolic acid-dependent signaling pathway) 之ald1 (AGD2-like defense response protein 1)、sard4 (SAR-deficient 4)突變株分析比較SUMO-LsGRP1△SS誘導系統葉抗Pst DC3000的強度,得知這兩型傳訊路徑皆參與LsGRP1誘導系統性抗病之發生,且SUMO-LsGRP1△SS可提升水楊酸依賴型傳訊路徑之SID2及BSMT1基因及2-哌啶甲酸依賴型傳訊路徑之ALD1及SARD4基因的表現量,確認LsGRP1在阿拉伯芥處理葉激活這兩型系統性抗病傳訊路徑。綜合言之,LsGRP1可以誘導處理葉及系統葉產生抗病反應,且經由水楊酸及2-哌啶甲酸依賴型傳訊路徑啟動系統性抗病的表現,此等研究為LsGRP1之植物保護應用發展建立了重要的學理基礎。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:33:53Z (GMT). No. of bitstreams: 1 U0001-1708202113333200.pdf: 2485843 bytes, checksum: 15156209a882da4e0eb980ae2b3ad026 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "中文摘要 I 英文摘要 II 壹、前言 1 貳、前人研究 3 一、植物先天性免疫與系統性誘導抗病(Plant innate immunity and systemic acquired resistance) 3 植物系統性誘導抗病 3 二、植物激活物 (Plant activator) 4 三、百合防禦蛋白LsGRP1 5 四、植物第二型富含甘胺酸蛋白 (Plant glycine-rich proteins, GRPs) 5 五、植物源蛋白質或胜肽誘導植物抗性 6 六、LsGRP1與系統性誘導抗病 7 七、植物系統性抗病傳訊路徑(SAR signaling pathways) 7 水楊酸依賴型傳訊路徑(SA-dependent signaling pathway) 7 2-哌啶甲酸依賴型傳訊路徑(Pip-dependent signaling pathway) 8 參、材料與方法 10 一、植物栽培 10 二、病原菌培養與接種 10 1. 番茄細菌性斑點病接種 10 2. 草莓葉枯病菌接種 10 三、農桿菌浸潤法 (Agroinfiltration) 11 四、細菌病原分子模式flg22之製備 11 五、SUMO-LsGRP1△SS與其不同區段刪除突變之製備 12 1. 大腸桿菌表現LsGRP1衍生性蛋白之菌株 12 2. 融合蛋白表現及純化 12 六、十二烷基硫酸鈉聚丙烯醯胺膠體電泳偵測蛋白大小 13 1. 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 13 2. 西方墨點法 14 七、以農桿菌原位葉短暫表現LsGRP1於阿拉伯芥誘導系統性抗病 14 八、注射SUMO-LsGRP1△SS於阿拉伯芥葉片誘導系統性抗病 15 九、阿拉伯芥葉片癒傷葡聚醣之植物組織染色法 15 1. 處理葉 15 2. 系統葉 16 十、SUMO-LsGRP1△SS不同區段刪除突變對誘導阿拉伯芥系統性抗病之影響 16 十一、以突變株探討LsGRP1誘導系統性抗病與傳訊路徑關聯性 16 十二、偵測阿拉伯芥基因之相對表現量 17 1. 阿拉伯芥PTI相關基因及SAR傳訊路徑相關基因之表現量偵測 17 2. 阿拉伯芥RNA萃取 17 3. 反轉錄-即時聚合酶連鎖反應 17 十三、評估澆灌含SUMO-LsGRP1ΔSS之大腸桿菌溶解產物施用溶液於田間防治草莓葉枯病之效果 18 1. 製備含SUMO-LsGRP1ΔSS之大腸桿菌溶解產物施用溶液 18 2. 澆灌SUMO-LsGRP1ΔSS之大腸桿菌溶解產物施用溶液防治草莓葉枯病之田間試驗 18 肆、結 果 20 一、外源處理SUMO-LsGRP1△SS可以促進阿拉伯芥的免疫活化 20 二、以農桿菌浸潤法內源性短暫表現LsGRP1可以系統性強化阿拉伯芥抗病性與flg22誘導的癒傷葡聚醣沉積 20 三、浸潤完整的SUMO-LsGRP1△SS才能有效誘發植物系統性抗病 21 四、水楊酸依賴型傳訊路徑基因突變會破壞浸潤SUMO-LsGRP1△SS誘導之系統性抗病 22 五、2-哌啶甲酸依賴型傳訊路徑基因突變會破壞浸潤SUMO-LsGRP1△SS誘導之系統性抗病 23 六、浸潤SUMO-LsGRP1△SS於阿拉伯芥可以活化水楊酸依賴型傳訊路徑SID2及BSMT1基因表現 23 七、浸潤SUMO-LsGRP1△SS於阿拉伯芥可以活化2-哌啶甲酸依賴型傳訊路徑ALD1及SARD4基因表現 24 八、澆灌SUMO-LsGRP1ΔSS的大腸桿菌粗萃液防治田間草莓病害之效果 25 伍、討 論 26 陸、參考文獻 31 柒、圖表集 42 表一、反轉錄-即時聚合酶連鎖反應引子對 43 圖一、以SUMO-LsGRP1△SS處理阿拉伯芥葉片明顯增加由flg22誘導的癒傷葡聚醣沉積 44 圖二、以SUMO-LsGRP1△SS處理阿拉伯芥葉片明顯增加flg22誘導之PTI標誌基因FRK1表現 46 圖三、於阿拉伯芥葉片內源性表現LsGRP1可減少系統葉Pst DC3000的增殖菌量 47 圖四、於阿拉伯芥葉片內源性表現LsGRP1可增加系統葉由flg22誘導之癒傷葡聚醣沉積 48 圖五、以西方墨點分析大腸桿菌系統表現之SUMO-LsGRP1△SS及其不同區段刪除突變 50 圖六、以SUMO-LsGRP1△SS處理阿拉伯芥葉片可減少系統葉之Pst DC3000增殖菌量 51 圖七、以SUMO-LsGRP1△SS處理阿拉伯芥葉片可增加系統葉上flg22誘導之癒傷葡聚醣沉積 52 圖八、比較SUMO-LsGRP1△SS及其不同區段刪除突變於阿拉伯芥誘導系統性抗病的程度 54 圖九、在阿拉伯芥水楊酸依賴型傳訊路徑之突變株上,以SUMO-LsGRP1△SS處理無法減少系統葉Pst DC3000的增殖菌量 55 圖十、在阿拉伯芥2-哌啶甲酸依賴型傳訊路徑之突變株上,以SUMO-LsGRP1△SS處理無法減少系統葉Pst DC3000的增殖菌量 57 圖十一、以SUMO-LsGRP1△SS處理可誘導阿拉伯芥水楊酸依賴型傳訊路徑之SID2與BSMT1基因表現 59 圖十二、以SUMO-LsGRP1△SS處理可誘導阿拉伯芥2-哌啶甲酸依賴型傳訊路徑之ALD1與SARD4基因表現 61 圖十三、SUMO-LsGRP1ΔSS蛋白粗萃液抑制草莓葉枯病之田間試驗 64" | |
| dc.language.iso | zh-TW | |
| dc.subject | 2-哌啶甲酸依賴型傳訊路徑 | zh_TW |
| dc.subject | LsGRP1 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 系統性抗病 | zh_TW |
| dc.subject | 水楊酸依賴型傳訊路徑 | zh_TW |
| dc.subject | pipecolic acid-dependent signaling pathway | en |
| dc.subject | systemic acquired resistance | en |
| dc.subject | salicylic acid-dependent signaling pathway | en |
| dc.subject | LsGRP1 | en |
| dc.subject | Arabidopsis thaliana | en |
| dc.title | LsGRP1誘導阿拉伯芥系統性抗病之傳訊路徑探討 | zh_TW |
| dc.title | Investigation of the signaling pathways for LsGRP1-induced systemic disease resistance in Arabidopsis thaliana | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 沈偉強(Hsin-Tsai Liu),鄭秋萍(Chih-Yang Tseng),林乃君 | |
| dc.subject.keyword | LsGRP1,阿拉伯芥,系統性抗病,水楊酸依賴型傳訊路徑,2-哌啶甲酸依賴型傳訊路徑, | zh_TW |
| dc.subject.keyword | LsGRP1,Arabidopsis thaliana,systemic acquired resistance,salicylic acid-dependent signaling pathway,pipecolic acid-dependent signaling pathway, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU202102427 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-23 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-08-18 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202113333200.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
