Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81999
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃奎隆(Kwei-Long Huang)
dc.contributor.authorChih-Hsiang Nienen
dc.contributor.author粘至翔zh_TW
dc.date.accessioned2022-11-25T05:33:50Z-
dc.date.available2025-08-01
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-08-19
dc.identifier.citation1. Ohra, Y., Koyama, T., Shimada, S. (1997). Online-learning type of traveling time prediction model in expressway. Proceedings of Conference on Intelligent Transportation Systems, 350-355. 2. Chien, S. I. J., Ding, Y., Wei, C. (2002). Dynamic bus arrival time prediction with artificial neural networks. Journal of transportation engineering, 128(5), 429-438. 3. Rice, J., Van Zwet, E. (2004). A simple and effective method for predicting travel times on freeways. IEEE Transactions on Intelligent Transportation Systems, 5(3), 200-207. 4. Wu, C.H. Ho, J.M., Lee, D.T. (2004). Travel-time prediction with support vector regression. IEEE Transactions on Intelligent Transportation Systems, 5(4), 276-281. 5. Vanajakshi, L., Rilett, L. (2007). Support Vector Machine Technique for the Short Term Prediction of Travel Time. 2007 IEEE Intelligent Vehicles Symposium, 600-605. 6. Servos, N., Liu, X., Teucke, M., Freitag, M. (2020). Travel Time Prediction in a Multimodal Freight Transport Relation Using Machine Learning Algorithms. Logistics, 4(1), 1. 7. Ma, Y., Chowdhury, M., Sadek, A., Jeihani, M. (2012). Integrated Traffic and Communication Performance Evaluation of an Intelligent Vehicle Infrastructure Integration (VII) System for Online Travel-Time Prediction. IEEE Transactions on Intelligent Transportation Systems, 13(3),1369-1382. 8. Reddy, K. K., Kumar, B. A., Vanajakshi, L. (2016). Bus travel time prediction under high variability conditions. Current Science, 700-711. 9. Yang, M., Chen, C., Wang, L., Yan, X., Zhou, L. (2016). Bus Arrival Time Prediction using Support Vector Machine with Genetic Algorithm. Neural Network World, 26, 205-217. 10. Duan, Y., Yisheng, L.V., Wang, F. (2016). Travel time prediction with LSTM neural network. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), 1053-1058. 11. Gal, A., Mandelbaum, A., Schnitzler, F., Senderovich, A., Weidlich, M. (2017). Traveling time prediction in scheduled transportation with journey segments. Information Systems, 64, 266-280. 12. As, M., Mine, T. (2018). Dynamic Bus Travel Time Prediction Using an ANN-based Model. In Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication (IMCOM '18). Article 20, 1–8. 13. He, P., Jiang, G., Lam, S., Tang, D. (2019). Travel-Time Prediction of Bus Journey with Multiple Bus Trips. in IEEE Transactions on Intelligent Transportation Systems, 20(11), 4192-4205. 14. Xumei, C., Huibo, G., Wang, J. (2012). BRT vehicle travel time prediction based on SVM and Kalman filter. Journal of Transportation Systems Engineering and Information Technology, 12(4), 29-34. 15. Safavian, S.R. Landgrebe, D. (1991). A survey of decision tree classifier methodology. in IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660-674. 16. Freund, Y., Mason, L. (1999). The alternating decision tree learning algorithm. In Int. Conf. on Machine Learning, 124-133. 17. Zhang, Y., Haghani, A. (2015). A gradient boosting method to improve travel time prediction. Transportation Research Part C: Emerging Technologies, 58, 308-324. 18. Song, Y. Y., Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai Archives of Psychiatry, 27(2), 130. 19. Kankanamge, K.D., Witharanage, Y.R., Withanage, C.S., Hansini, M., Lakmal, D., Thayasivam, U. (2019). Taxi trip travel time prediction with isolated XGBoost regression. In 2019 Moratuwa Engineering Research Conference (MERCon) 54-59. 20. Meidan, Y., Lerner, B., Rabinowitz, G., Hassoun, M. (2011). Cycle-time key factor identification and prediction in semiconductor manufacturing using machine learning and data mining. IEEE Transactions on Semiconductor Manufacturing, 24(2), 237-248. 21. Alenezi, A., Moses, S. A., Trafalis, T. B. (2008). Real-time prediction of order flowtimes using support vector regression. Computers Operations Research, 35(11), 3489-3503. 22. Gyulai, D., Pfeiffer, A., Nick, G., Gallina, V., Sihn, W., Monostori, L. (2018). Lead time prediction in a flow-shop environment with analytical and machine learning approaches. IFAC-PapersOnLine, 51(11), 1029-1034. 23. Lingitz, L., Gallina, V., Ansari, F., Gyulai, D., Pfeiffer, A., Sihn, W., Monostori, L. (2018). Lead time prediction using machine learning algorithms: A case study by a semiconductor manufacturer. Procedia Cirp, 72, 1051-1056. 24. Liao, D. Y., Wang, C. N. (2004). Neural-network-based delivery time estimates for prioritized 300-mm automatic material handling operations. IEEE Transactions on Semiconductor Manufacturing, 17(3), 324-332. 25. Leshem, G., Ritov, Y. (2007). Traffic flow prediction using adaboost algorithm with random forests as a weak learner. In Proceedings of World Academy of Science, Engineering and Technology, 19,193-198. 26. Fan, S. K. S., Su, C. J., Nien, H. T., Tsai, P. F., Cheng, C. Y. (2018). Using machine learning and big data approaches to predict travel time based on historical and real-time data from Taiwan electronic toll collection. Soft Computing, 22(17), 5707-5718. 27. Breiman, L., Friedman, J., Stone, C. J., Olshen, R. A. (1984). Classification and regression trees. CRC press. 28. Cheng, J., Li, G., Chen, X. (2018). Research on travel time prediction model of freeway based on gradient boosting decision tree. IEEE Access, 7, 7466-7480. 29. Li, X., Bai, R. (2016). Freight vehicle travel time prediction using gradient boosting regression tree. In 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), 1010-1015. 30. Natekin, A., Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7, 21. 31. Chien, S. I. J., Kuchipudi, C. M. (2003). Dynamic travel time prediction with real-time and historic data. Journal of Transportation Engineering, 129(6), 608-616. 32. Lin, H. E., Zito, R., Taylor, M. (2005). A review of travel-time prediction in transport and logistics. In Proceedings of the Eastern Asia Society for Transportation Studies, 5, 1433-1448.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81999-
dc.description.abstract隨著全球疫情持續延燒,大大改變了人們原本的生活方式,也侷限了人們的社交行為,遠距學習與線上會議已是社會的常態,同時也加劇了企業、校園以及家庭對於3C產品的需求。面板和半導體產業因為疫情的關係,生產業務反而逆向急速成長。雖然國內面板廠和半導體廠的高科技生產設備以及技術都已日漸成熟,邁向高度自動化、電腦整合化,然因典型的生產流程大多將物料搬運設備視為服務或支援系統,普遍採用需求發生時才派遣的即時派工策略,當生產作業驟增時會發生搬運系統塞車、延誤、指令大量累積等,以致搬運效率明顯不佳。當工廠的生產作業爆量增加,在產能全開且吃緊下常發現依循既定法則執行的自動物料搬運系統,無法進行有效物料搬運,成為訂單驟增下的生產瓶頸。具有智慧能迎合需求變動敏捷派遣的物料搬運系統,已為高科技業生產系統邁入智慧製造不可避免的挑戰。 本研究案將著重在給定生產排程下TFT-LCD面板搬運的議題,主要研究範圍為自動倉儲設置與無人搬運車連結的搬運系統,藉由機器學習方法來對總運輸時間做出預測,從已知的歷史資料加以分析,利用整理各個需搬運物件在各站點的等候時間,以及等候搬運之物件數量,以及各物件在各個站點之間所需要的傳送時間,同時也考慮各個物件搬運的優先權重等,並且根據工廠實際狀況模擬可能發生之問題,得出資料中之規律,並利用此規律來對未來的資料進行預測。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:50Z (GMT). No. of bitstreams: 1
U0001-1808202114570100.pdf: 3384450 bytes, checksum: 16c8ebdf25c2a8dcf7e6a18c14e92d7b (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents中文摘要 i Abstract ii 目錄 iii 圖目錄 iv 表目錄 vi 第一章 緒論 1 1.1 物料控制系統 1 1.2 研究背景與動機 2 1.3 研究目的與架構 2 第二章 文獻探討 5 2.1 旅行時間問題 5 2.2 機器學習 9 2.3 決策樹演算法 13 第三章 問題描述以及研究方法 18 3.1 問題描述 18 3.2 研究方法 20 第四章 案例分析與結果 24 4.1 特徵參數定義 24 4.2 自動倉儲設備 25 4.3 自動引導搬運車 39 第五章 運輸設備合併之實驗結果 46 5.1 資料合併說明 46 5.2 自動倉儲設備A與自動引導搬運車資料合併之預測結果 47 5.3 自動倉儲設備A與自動倉儲設備B資料合併之預測結果 50 5.4 三台運輸設備資料合併之預測結果 53 第六章 結論 58 6.1 研究總結 58 6.2 未來方向 59 參考文獻 61
dc.language.isozh-TW
dc.subject自動倉儲設置zh_TW
dc.subject資料分析zh_TW
dc.subject時間預測zh_TW
dc.subject無人搬運車zh_TW
dc.subject機器學習zh_TW
dc.subjectdata analysisen
dc.subjectautomatic stockeren
dc.subjectautomation guided vehicleen
dc.subjectmachine learningen
dc.subjecttime predictionen
dc.title機器學習於無人搬運車與自動倉儲設置間之搬運時間預測zh_TW
dc.titleMachine Learning for Transportation Time Prediction between AGV and Automatic Stockeren
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊烽正(Hsin-Tsai Liu),丁慶榮(Chih-Yang Tseng)
dc.subject.keyword機器學習,自動倉儲設置,無人搬運車,資料分析,時間預測,zh_TW
dc.subject.keywordautomatic stocker,automation guided vehicle,machine learning,time prediction,data analysis,en
dc.relation.page64
dc.identifier.doi10.6342/NTU202102468
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-08-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
dc.date.embargo-lift2025-08-01-
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202114570100.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved