請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81995完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張子璿(Tzu-Hsuan Chang) | |
| dc.contributor.author | Yu-Fu Wang | en |
| dc.contributor.author | 王昱富 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:33:46Z | - |
| dc.date.available | 2024-08-31 | |
| dc.date.copyright | 2021-11-10 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-23 | |
| dc.identifier.citation | 1 Tran, H., Pham, T., Margetis, J., Zhou, Y., Dou, W., Grant, P.C., Grant, J.M., Al-Kabi, S., Sun, G., Soref, R.A., Tolle, J., Zhang, Y.-H., Du, W., Li, B., Mortazavi, M., and Yu, S.-Q.: ‘Si-Based GeSn Photodetectors toward Mid-Infrared Imaging Applications’, ACS Photonics, 2019, 6, (11), pp. 2807-2815 2 Gupta, S., Magyari-Köpe, B., Nishi, Y., and Saraswat, K.C.: ‘Achieving direct band gap in germanium through integration of Sn alloying and external strain’, Journal of Applied Physics, 2013, 113, (7), pp. 073707 3 Michel, J., Liu, J., and Kimerling, L.C.: ‘High-performance Ge-on-Si photodetectors’, Nature Photonics, 2010, 4, (8), pp. 527-534 4 Liu, J., Cannon, D.D., Wada, K., Ishikawa, Y., Jongthammanurak, S., Danielson, D.T., Michel, J., and Kimerling, L.C.: ‘Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications’, Applied Physics Letters, 2005, 87, (1), pp. 011110 5 Wirths, S., Tiedemann, A., Ikonic, Z., Harrison, P., Holländer, B., Stoica, T., Mussler, G., Myronov, M., Hartmann, J., and Grützmacher, D.: ‘Band engineering and growth of tensile strained Ge/(Si) GeSn heterostructures for tunnel field effect transistors’, Applied physics letters, 2013, 102, (19), pp. 192103 6 Ghetmiri, S.A., Du, W., Margetis, J., Mosleh, A., Cousar, L., Conley, B.R., Domulevicz, L., Nazzal, A., Sun, G., and Soref, R.A.: ‘Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence’, Applied Physics Letters, 2014, 105, (15), pp. 151109 7 Lan, H.S., Chang, S.T., and Liu, C.W.: ‘Semiconductor, topological semimetal, indirect semimetal, and topological Dirac semimetal phases of Ge1-xSnx alloys’, Physical Review B, 2017, 95, (20), pp. 201201 8 Zaima, S., Nakatsuka, O., Taoka, N., Kurosawa, M., Takeuchi, W., and Sakashita, M.: ‘Growth and applications of GeSn-related group-IV semiconductor materials’, Science and Technology of Advanced Materials, 2015, 16, (4), pp. 043502 9 Aubin, J., Hartmann, J., Gassenq, A., Rouviere, J., Robin, E., Delaye, V., Cooper, D., Mollard, N., Reboud, V., and Calvo, V.: ‘Growth and structural properties of step-graded, high Sn content GeSn layers on Ge’, Semiconductor Science and Technology, 2017, 32, (9), pp. 094006 10 Millar, R.W., Dumas, D.C.S., Gallacher, K.F., Jahandar, P., MacGregor, C., Myronov, M., and Paul, D.J.: ‘Mid-infrared light emission>3um wavelength from tensile strained GeSn microdisks’, Opt. Express, 2017, 25, (21), pp. 25374-25385 11 Ring, E., and Ammer, K.: ‘Infrared thermal imaging in medicine’, Physiological measurement, 2012, 33, (3), pp. R33 12 Waxman, A.M., Gove, A.N., Fay, D.A., Racamato, J.P., Carrick, J.E., Seibert, M.C., and Savoye, E.D.: ‘Color Night Vision: Opponent Processing in the Fusion of Visible and IR Imagery’, Neural Networks, 1997, 10, (1), pp. 1-6 13 Kaufhold, S., Hein, M., Dohrmann, R., and Ufer, K.: ‘Quantification of the mineralogical composition of clays using FTIR spectroscopy’, Vibrational Spectroscopy, 2012, 59, pp. 29-39 14 Movasaghi, Z., Rehman, S., and ur Rehman, D.I.: ‘Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues’, Applied Spectroscopy Reviews, 2008, 43, (2), pp. 134-179 15 Gupta, S., Chen, R., Magyari-Kope, B., Lin, H., Bin, Y., Nainani, A., Nishi, Y., Harris, J.S., and Saraswat, K.C.: ‘GeSn technology: Extending the Ge electronics roadmap’, in Editor (Ed.)^(Eds.): ‘Book GeSn technology: Extending the Ge electronics roadmap’ (2011, edn.), pp. 16.16.11-16.16.14 16 Moutanabbir, O., Assali, S., Gong, X., O'Reilly, E., Broderick, C., Marzban, B., Witzens, J., Du, W., Yu, S.-Q., and Chelnokov, A.: ‘Monolithic infrared silicon photonics: the rise of (Si) GeSn semiconductors’, Applied Physics Letters, 2021, 118, (11), pp. 110502 17 Mathews, J., Roucka, R., Xie, J., Yu, S.-Q., Menéndez, J., and Kouvetakis, J.: ‘Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications’, Applied physics letters, 2009, 95, (13), pp. 133506 18 Wirths, S., Geiger, R., von den Driesch, N., Mussler, G., Stoica, T., Mantl, S., Ikonic, Z., Luysberg, M., Chiussi, S., Hartmann, J.M., Sigg, H., Faist, J., Buca, D., and Grützmacher, D.: ‘Lasing in direct-bandgap GeSn alloy grown on Si’, Nature Photonics, 2015, 9, (2), pp. 88-92 19 Stange, D., von den Driesch, N., Zabel, T., Armand-Pilon, F., Rainko, D., Marzban, B., Zaumseil, P., Hartmann, J.-M., Ikonic, Z., Capellini, G., Mantl, S., Sigg, H., Witzens, J., Grützmacher, D., and Buca, D.: ‘GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers’, ACS Photonics, 2018, 5, (11), pp. 4628-4636 20 Scott, S.A., and Lagally, M.G.: ‘Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys’, Journal of Physics D: Applied Physics, 2007, 40, (4), pp. R75-R92 21 Mosleh, A., Benamara, M., Ghetmiri, S.A., Conley, B.R., Alher, M.A., Du, W., Sun, G., Soref, R., Margetis, J., and Tolle, J.: ‘Investigation on the formation and propagation of defects in GeSn thin films’, ECS Transactions, 2014, 64, (6), pp. 895 22 Yang, H., Zhao, D., Chuwongin, S., Seo, J.-H., Yang, W., Shuai, Y., Berggren, J., Hammar, M., Ma, Z., and Zhou, W.: ‘Transfer-printed stacked nanomembrane lasers on silicon’, Nature Photonics, 2012, 6, (9), pp. 615-620 23 Roberts, M.M., Klein, L.J., Savage, D.E., Slinker, K.A., Friesen, M., Celler, G., Eriksson, M.A., and Lagally, M.G.: ‘Elastically relaxed free-standing strained-silicon nanomembranes’, Nature Materials, 2006, 5, (5), pp. 388-393 24 Sánchez-Pérez, J.R., Boztug, C., Chen, F., Sudradjat, F.F., Paskiewicz, D.M., Jacobson, R.B., Lagally, M.G., and Paiella, R.: ‘Direct-bandgap light-emitting germanium in tensilely strained nanomembranes’, Proceedings of the National Academy of Sciences, 2011, 108, (47), pp. 18893 25 Park, S.I., Ahn, J.H., Feng, X., Wang, S., Huang, Y., and Rogers, J.A.: ‘Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates’, Advanced Functional Materials, 2008, 18, (18), pp. 2673-2684 26 Xia, Z., Song, H., Kim, M., Zhou, M., Chang, T.-H., Liu, D., Yin, X., Xiong, K., Mi, H., and Wang, X.: ‘Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities’, Science advances, 2017, 3, (7), pp. e1602783 27 Choi, W.M., Song, J., Khang, D.-Y., Jiang, H., Huang, Y.Y., and Rogers, J.A.: ‘Biaxially stretchable “wavy” silicon nanomembranes’, Nano Letters, 2007, 7, (6), pp. 1655-1663 28 Kim, M., Mi, H., Cho, M., Seo, J.-H., Zhou, W., Gong, S., and Ma, Z.: ‘Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film’, Applied Physics Letters, 2015, 106, (21), pp. 212107 29 Ying, M., Bonifas, A.P., Lu, N., Su, Y., Li, R., Cheng, H., Ameen, A., Huang, Y., and Rogers, J.A.: ‘Silicon nanomembranes for fingertip electronics’, Nanotechnology, 2012, 23, (34), pp. 344004 30 Zhang, Y., Yan, Z., Nan, K., Xiao, D., Liu, Y., Luan, H., Fu, H., Wang, X., Yang, Q., and Wang, J.: ‘A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes’, Proceedings of the National Academy of Sciences, 2015, 112, (38), pp. 11757-11764 31 Swaminathan, V., and Macrander., A.T.: ‘Materials Aspects of Gaas and Inp Based Structures’ (Prentice Hall, 1991. 1991) 32 Kittel, C., McEuen, P., and McEuen, P.: ‘Introduction to solid state physics’ (Wiley New York, 1996. 1996) 33 Adachi, S.: ‘Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors’ (John Wiley Sons, 2009. 2009) 34 D’costa, V.R., Cook, C.S., Birdwell, A., Littler, C.L., Canonico, M., Zollner, S., Kouvetakis, J., and Menéndez, J.: ‘Optical critical points of thin-film Ge 1− y Sn y alloys: a comparative Ge 1− y Sn y∕ Ge 1− x Si x study’, Physical Review B, 2006, 73, (12), pp. 125207 35 Jenkins, D.W., and Dow, J.D.: ‘Electronic properties of metastable Ge x Sn 1− x alloys’, Physical Review B, 1987, 36, (15), pp. 7994 36 Mäder, K., Baldereschi, A., and Von Känel, H.: ‘Band structure and instability of Ge1− xSnx alloys’, Solid state communications, 1989, 69, (12), pp. 1123-1126 37 Ravi, R., Prakash, P., Saurabh, K.P., Sanjay, K., and Jitendra, K.M.: ‘Investigation of GeSn/SiGeSn nanostructured layer for sensors in mid-infrared application’, in Editor (Ed.)^(Eds.): ‘Book Investigation of GeSn/SiGeSn nanostructured layer for sensors in mid-infrared application’ (2020, edn.), pp. 38 Pankove, J.I.: ‘Optical processes in semiconductors’ (Courier Corporation, 1975. 1975) 39 D'Costa, V.R., Wang, W., Zhou, Q., Chan, T.K., Osipowicz, T., Tok, E.S., and Yeo, Y.-C.: ‘Compositional dependence of optical critical point parameters in pseudomorphic GeSn alloys’, Journal of Applied Physics, 2014, 116, (5), pp. 053520 40 Zanatta, A.R.: ‘Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination’, Scientific Reports, 2019, 9, (1), pp. 11225 41 Tran, H., Du, W., Ghetmiri, S.A., Mosleh, A., Sun, G., Soref, R.A., Margetis, J., Tolle, J., Li, B., and Naseem, H.A.: ‘Systematic study of Ge1− xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics’, Journal of Applied Physics, 2016, 119, (10), pp. 103106 42 Gassenq, A., Milord, L., Aubin, J., Pauc, N., Guilloy, K., Rothman, J., Rouchon, D., Chelnokov, A., Hartmann, J., and Reboud, V.: ‘Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content’, Applied Physics Letters, 2017, 110, (11), pp. 112101 43 ‘Principles of X-ray Diffraction’: ‘Thin Film Analysis by X‐Ray Scattering’ (2005), pp. 1-40 44 Stanchu, H., Kuchuk, A.V., Mazur, Y.I., Margetis, J., Tolle, J., Richter, J., Yu, S.-Q., and Salamo, G.J.: ‘X-ray diffraction study of strain relaxation, spontaneous compositional gradient, and dislocation density in GeSn/Ge/Si (100) heterostructures’, Semiconductor Science and Technology, 2020, 35, (7), pp. 075009 45 Birkholz, M.: ‘Thin film analysis by X-Ray scattering’ (WILEY-VCH Verlag GmbH Co. KGaA, 2005. 2005) 46 Speriosu, V., and Vreeland Jr, T.: ‘X‐ray rocking curve analysis of superlattices’, Journal of applied physics, 1984, 56, (6), pp. 1591-1600 47 Wie, C., Tombrello, T.t., and Vreeland Jr, T.: ‘Dynamical x‐ray diffraction from nonuniform crystalline films: Application to x‐ray rocking curve analysis’, Journal of applied physics, 1986, 59, (11), pp. 3743-3746 48 Wie, C.: ‘Rocking curve peak shift in thin semiconductor layers’, Journal of applied physics, 1989, 66, (2), pp. 985-988 49 d'Aragona, F.S.: ‘Dislocation etch for (100) planes in silicon’, Journal of the Electrochemical Society, 1972, 119, (7), pp. 948 50 Holy, V., Kubena, J., Abramof, E., Pesek, A., and Koppensteiner, E.: ‘High resolution x-ray reciprocal space mapping’, J. Phys. D, Appl. Phys, 26 51 Beeler, R., Roucka, R., Chizmeshya, A., Kouvetakis, J., and Menéndez, J.: ‘Nonlinear structure-composition relationships in the Ge1-ySny/Si(100) (y<0.15) system’, Physical Review B, 2011, 84, pp. 035204 52 Moulder, J.F.: ‘Handbook of X-ray photoelectron spectroscopy’, Physical electronics, 1995, pp. 230-232 53 Campo, A., Cardinaud, C., and Turban, G.: ‘Comparison of etching processes of silicon and germanium in SF6–O2 radio‐frequency plasma’, Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1995, 13, (2), pp. 235-241 54 Gupta, S., Chen, R., Huang, Y.-C., Kim, Y., Sanchez, E., Harris, J.S., and Saraswat, K.C.: ‘Highly Selective Dry Etching of Germanium over Germanium–Tin (Ge1–x Sn x): A Novel Route for Ge1–x Sn x Nanostructure Fabrication’, Nano letters, 2013, 13, (8), pp. 3783-3790 55 Van Roosbroeck, W., and Shockley, W.: ‘Photon-radiative recombination of electrons and holes in germanium’, Physical Review, 1954, 94, (6), pp. 1558 56 Menéndez, J., Poweleit, C.D., and Tilton, S.E.: ‘Temperature-dependent photoluminescence in Ge: Experiment and theory’, Physical Review B, 2020, 101, (19), pp. 195204 57 Würfel, P., Finkbeiner, S., and Daub, E.: ‘Generalized Planck's radiation law for luminescence via indirect transitions’, Applied Physics A, 1995, 60, (1), pp. 67-70 58 Lin, H., Chen, R., Huo, Y., Kamins, T.I., and Harris, J.S.: ‘Raman study of strained Ge1− xSnx alloys’, Applied Physics Letters, 2011, 98, (26), pp. 261917 59 Lee, S., Kim, K., Dhakal, K.P., Kim, H., Yun, W.S., Lee, J., Cheong, H., and Ahn, J.-H.: ‘Thickness-dependent phonon renormalization and enhanced Raman scattering in ultrathin silicon nanomembranes’, Nano letters, 2017, 17, (12), pp. 7744-7750 60 Guo, Q., Zhang, M., Xue, Z., Zhang, J., Wang, G., Chen, D., Mu, Z., Huang, G., Mei, Y., and Di, Z.: ‘Uniaxial and tensile strained germanium nanomembranes in rolled-up geometry by polarized Raman scattering spectroscopy’, AIP Advances, 2015, 5, (3), pp. 037115 61 Han, Y., Li, Y., Song, Y., Chi, C., Zhang, Z., Liu, J., Zhu, Z., and Wang, S.: ‘A comparative study of selective dry and wet etching of germanium–tin (Ge1− xSnx) on germanium’, Semiconductor Science and Technology, 2018, 33, (8), pp. 085011 62 Parker Jr, J., Feldman, D., and Ashkin, M.: ‘Raman scattering by silicon and germanium’, Physical Review, 1967, 155, (3), pp. 712 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81995 | - |
| dc.description.abstract | 全四族鍺錫合金被視為有潛力發展成與現有CMOS技術整合的新興材料。隨著磊晶技術發展,使用高品質鍺錫薄膜使研究中遠紅外光相關材料及應用得到一大進展。與現有使用在紅外光譜的三五族材料相比,直接生長在矽晶圓之鍺錫技術與現有成熟的矽製程整合並發展成價格上更有競爭優勢但元件表現不俗的產品。鍺錫的一大特性是直接能隙的轉換可隨薄膜中的錫比例及所受應力改變,能大幅提升四族元件在光學應用的市佔率,在理論及實驗部分都已廣為探討其相關性。隨手可及之紅外光產品應用在日常電子元件中將會因此改變人們的生活。 本篇提出一種將磊晶在矽基板上的鍺錫薄膜轉移至新基板上的方法,以選擇性蝕刻的方法去除原有的矽及鍺層,留下高品質的鍺錫薄膜。在此篇中我們探討了鍺錫薄膜相關的特性改變,並透過X光繞射、光激螢光頻譜及原子力顯微鏡的量測方法做驗證。在實驗及量測過程中,我們觀察到在光激螢光頻譜中頂峰位置從2.87 μm移至3.58μm,為了瞭解應力的來源,我們透過不同測量方式分析鍺錫薄膜受到應力與其他相關材料特性。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:33:46Z (GMT). No. of bitstreams: 1 U0001-2308202114482700.pdf: 7094038 bytes, checksum: 00e3d9785afbff96401303b437c8ab7f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Acknowledgements i Abstract iii List of Figures vii List of Tables xi Chapter 1. Introduction 1 Chapter Overview 1 1.1 All Group IV material: GeSn 1 1.2 Growth of GeSn on Si Substrate 2 1.3 GeSn optoelectronics 5 1.4 Nanomembrane and its applications 8 Chapter 2. Basic concept of strained GeSn membrane analysis 11 Chapter overview 11 2.1 GeSn crystal structure 11 2.1.1 Crystal structure and lattice parameter 11 2.1.2 1st Brillouin zone of GeSn lattice 13 2.1.3 Virtual crystal approximation 14 2.2 Strain and stress in cubic crystal 16 2.2.1 Strain matrix 16 2.2.2 Young’s modulus and Poisson ratio 17 2.3 Optical properties 18 2.3.1 Refractive index 18 2.3.2 Dielectric constant 20 2.3.3 Absorption coefficient 21 2.3.4 Raman scattering 24 Chapter Overview 25 3.1 X-ray diffraction 25 3.1.1 Introduction to High resolution x-ray diffraction 25 3.1.2 Types of XRD scans 26 3.1.3 Reciprocal space mapping of GeSn Lattice 28 3.1.4 Strain and Sn Fraction Analysis of Epitaxial GeSn Thin Film through XRD Measurement 30 3.2 X-ray photoelectron spectroscopy (XPS) 32 3.2.1 Introduction to XPS 32 3.2.2 Interpretation of the XPS spectrum 33 3.2.3 Surface chemical reaction analysis of GeSn/Ge selective etching mechanism using X-ray Photoelectron Spectroscopy (XPS) 34 3.3 Photoluminescence of Ge 39 3.4 Raman spectroscopy 40 Chapter 4. Experiment design and evolution in the early stage 42 Chapter Overview 42 4.1 Nanomembrane undercut by selective wet etch of Ge with H2O2 solution (Stage 1) 42 4.2 Nanomembrane released by selective etch of Si with TMAH solution (Stage 2) 44 4.3 Nanomembrane undercut by alternatively using H2O2 and TMAH selective wet etch (Stage 3) 46 4.4 Adhesive assisted transfer with SF6/O2 selective dry etch (Stage 4 and 5) 49 Chapter 5. Characterization of transferred GeSn Nanomembrane 54 Chapter overview 54 5.1 Large area GeSn nanomembrane transfer (Stage 5) 54 5.2 Strain analysis of relaxed GeSn nanomembrane by X-Ray diffraction (XRD) 57 5.3 Strain analysis of relaxed GeSn nanomembrane by Raman Spectrum 60 5.4 Optical bandgap and strain analysis in photoluminescence (PL) spectrum 62 5.5 Summarization of in-plane strain analysis by different methods 64 5.6 Surface roughness characterization 65 5.7 Conclusion 66 5.8 Future work 66 Reference 68 | |
| dc.language.iso | en | |
| dc.subject | 能隙控制 | zh_TW |
| dc.subject | 鍺錫合金 | zh_TW |
| dc.subject | 奈米薄膜 | zh_TW |
| dc.subject | 應力控制 | zh_TW |
| dc.subject | GeSn | en |
| dc.subject | bandgap engineering | en |
| dc.subject | strain engineering | en |
| dc.subject | nanomembrane | en |
| dc.title | 大面積鍺錫合金薄膜轉移與能隙控制 | zh_TW |
| dc.title | Bandgap engineering on large area flip transferred GeSn nanomembrane | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林致廷(Hsin-Tsai Liu),吳肇欣(Chih-Yang Tseng), 張俊傑 | |
| dc.subject.keyword | 鍺錫合金,奈米薄膜,應力控制,能隙控制, | zh_TW |
| dc.subject.keyword | GeSn,nanomembrane,strain engineering,bandgap engineering, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU202102623 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-08-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-31 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2308202114482700.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
