Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81991
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏秀(Po-Hsiu Kuo)
dc.contributor.authorMing-Huan Zengen
dc.contributor.author曾洺澴zh_TW
dc.date.accessioned2022-11-25T05:33:42Z-
dc.date.available2026-08-31
dc.date.copyright2021-10-01
dc.date.issued2021
dc.date.submitted2021-08-31
dc.identifier.citation1. Halliwell, B., Antioxidants in human health and disease. Annu Rev Nutr, 1996. 16: p. 33-50. 2. Li, R., et al., Defining ROS in Biology and Medicine. React Oxyg Species (Apex), 2016. 1(1): p. 9-21. 3. Leone, A., et al., Oxidative Stress Gene Expression Profile Correlates with Cancer Patient Poor Prognosis: Identification of Crucial Pathways Might Select Novel Therapeutic Approaches. Oxidative Medicine and Cellular Longevity, 2017. 2017: p. 2597581. 4. Zhao, R.Z., et al., Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med, 2019. 44(1): p. 3-15. 5. Turrens, J.F., Mitochondrial formation of reactive oxygen species. The Journal of physiology, 2003. 552(2): p. 335-344. 6. Gào, X. and Schöttker, B., Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget, 2017. 8(31): p. 51888-51906. 7. Lobo, V., et al., Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 2010. 4(8): p. 118-126. 8. Birben, E., et al., Oxidative stress and antioxidant defense. The World Allergy Organization journal, 2012. 5(1): p. 9-19. 9. Ali, S.S., et al., Understanding oxidants and antioxidants: Classical team with new players. Journal of Food Biochemistry, 2020. 44(3): p. e13145. 10. López-Alarcón, C. and Denicola, A., Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Analytica Chimica Acta, 2013. 763: p. 1-10. 11. Gutteridge, J.M. and Halliwell, B., Invited review free radicals in disease processes: a compilation of cause and consequence. Free radical research communications, 1993. 19(3): p. 141-158. 12. Allan Butterfield, D., et al., Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiology of Aging, 2002. 23(5): p. 655-664. 13. Floyd, R.A. and Carney, J.M., Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Annals of Neurology, 1992. 32(S1): p. S22-S27. 14. American Psychological Association, What Is Depression? [Internet] [cited 2021 Jun 6]; Available from: https://www.psychiatry.org/patients-families/depression/what-is-depression. 15. American Psychological Association, What Is Bipolar Disorder? [cited 2021 Jun 6]; Available from: https://www.psychiatry.org/patients-families/bipolar-disorders/what-are-bipolar-disorders. 16. Yapici Eser, H., et al., Prevalence and Associated Features of Anxiety Disorder Comorbidity in Bipolar Disorder: A Meta-Analysis and Meta-Regression Study. Frontiers in Psychiatry, 2018. 9(229). 17. Kessler, R.C., et al., The Epidemiology of Major Depressive DisorderResults From the National Comorbidity Survey Replication (NCS-R). JAMA, 2003. 289(23): p. 3095-3105. 18. Parker, G.F., DSM-5 and Psychotic and Mood Disorders. Journal of the American Academy of Psychiatry and the Law Online, 2014. 42(2): p. 182-190. 19. Tsuno, N., et al., Sleep and depression. J Clin Psychiatry, 2005. 66(10): p. 1254-69. 20. Allison G. Harvey , P.D., Sleep and Circadian Rhythms in Bipolar Disorder: Seeking Synchrony, Harmony, and Regulation. American Journal of Psychiatry, 2008. 165(7): p. 820-829. 21. Su, M.-H., et al., Risk profiles of personality traits for suicidality among mood disorder patients and community controls. Acta Psychiatrica Scandinavica, 2018. 137(1): p. 30-38. 22. Mandelli, L., et al., The role of specific early trauma in adult depression: A meta-analysis of published literature. Childhood trauma and adult depression. European Psychiatry, 2015. 30(6): p. 665-680. 23. Kotov, R., et al., Linking 'big' personality traits to anxiety, depressive, and substance use disorders: a meta-analysis. Psychol Bull, 2010. 136(5): p. 768-821. 24. Stanga, V., et al., Well-being in patients with schizophrenia, mood and personality disorders attending psychiatric services in the community. A controlled study. Comprehensive Psychiatry, 2019. 91: p. 1-5. 25. Tanus-Santos, J.E., et al., Effects of endothelial nitric oxide synthase gene polymorphisms on platelet function, nitric oxide release, and interactions with estradiol. Pharmacogenetics and Genomics, 2002. 12(5). 26. Joshi, M.S., et al., Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear. The FASEB Journal, 2007. 21(11): p. 2655-2663. 27. Hamanishi, T., et al., Functional Variants in the Glutathione Peroxidase-1 (GPx-1) Gene Are Associated With Increased Intima-Media Thickness of Carotid Arteries and Risk of Macrovascular Diseases in Japanese Type 2 Diabetic Patients. Diabetes, 2004. 53(9): p. 2455-2460. 28. Gelain, D.P., et al., A systematic review of human antioxidant genes. Front Biosci (Landmark Ed), 2009. 14: p. 4457-63. 29. Black, C.N., et al., Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology, 2015. 51: p. 164-175. 30. Brown, N.C., et al., An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Research, 2014. 218(1): p. 61-68. 31. Gałecki, P., et al., Association between inducible and neuronal nitric oxide synthase polymorphisms and recurrent depressive disorder. Journal of Affective Disorders, 2011. 129(1): p. 175-182. 32. Sarginson, J.E., et al., Neuronal nitric oxide synthase (NOS1) polymorphisms interact with financial hardship to affect depression risk. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2014. 39(12): p. 2857-2866. 33. Reif, A., et al., A NOS-III haplotype that includes functional polymorphisms is associated with bipolar disorder. International Journal of Neuropsychopharmacology, 2006. 9(1): p. 13-20. 34. Buttenschön, H.N., et al., No association between a neuronal nitric oxide synthase (NOS1) gene polymorphism on chromosome 12q24 and bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2004. 124B(1): p. 73-75. 35. Ikenouchi-Sugita, A., et al., Three polymorphisms of the eNOS gene and plasma levels of metabolites of nitric oxide in depressed Japanese patients: a preliminary report. Hum Psychopharmacol, 2011. 26(7): p. 531-4. 36. Thomas, B.N., et al., Extensive ethnogenomic diversity of endothelial nitric oxide synthase (eNOS) polymorphisms. Gene Regul Syst Bio, 2013. 7: p. 1-10. 37. Feairheller, D.L., et al., Racial differences in oxidative stress and inflammation: in vitro and in vivo. Clin Transl Sci, 2011. 4(1): p. 32-7. 38. Wigner, P., et al., Variation of genes involved in oxidative and nitrosative stresses in depression. European Psychiatry, 2018. 48(1): p. 38-48. 39. Cumurcu, B.E., et al., Analysis of manganese superoxide dismutase (MnSOD: Ala-9Val) and glutathione peroxidase (GSH-Px: Pro 197 Leu) gene polymorphisms in mood disorders. Bosnian journal of basic medical sciences, 2013. 13(2): p. 109-113. 40. Fullerton, J.M., et al., Assessing oxidative pathway genes as risk factors for bipolar disorder. Bipolar disorders, 2010. 12(5): p. 550-556. 41. Pae, C.-U., et al., Manganese superoxide dismutase (MnSOD: Ala–9Val) gene polymorphism and mood disorders: A preliminary study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2006. 30(7): p. 1326-1329. 42. Lammertyn, L., et al., Ethnic-specific relationships between haemostatic and oxidative stress markers in black and white South Africans: The SABPA study. Clinical and Experimental Hypertension, 2015. 37(6): p. 511-517. 43. Bycroft, C., et al., Genome-wide genetic data on ~500,000 UK Biobank participants. bioRxiv, 2017: p. 166298. 44. Cole, J.B., et al., Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. Nature Communications, 2020. 11(1): p. 1467. 45. Manea, L., et al., Optimal cut-off score for diagnosing depression with the Patient Health Questionnaire (PHQ-9): a meta-analysis. Cmaj, 2012. 184(3): p. E191-6. 46. Kessler, R.C., et al., The World Health Organization Composite International Diagnostic Interview short-form (CIDI-SF). International Journal of Methods in Psychiatric Research, 1998. 7(4): p. 171-185. 47. Smith, D.J., et al., Prevalence and Characteristics of Probable Major Depression and Bipolar Disorder within UK Biobank: Cross-Sectional Study of 172,751 Participants. PLOS ONE, 2013. 8(11): p. e75362. 48. Kroenke, K., et al., The Patient Health Questionnaire Somatic, Anxiety, and Depressive Symptom Scales: a systematic review. Gen Hosp Psychiatry, 2010. 32(4): p. 345-59. 49. Glaesmer, H., et al., [The childhood trauma screener (CTS) - development and validation of cut-off-scores for classificatory diagnostics]. Psychiatr Prax, 2013. 40(4): p. 220-6. 50. World Health, O., WHOQOL-SRPB field-test instrument : WHOQOL spirituality, religiousness and personal beliefs (SRPB) field-test instrument : the WHOQOL-100 questions plus 32 SRPB questions. 2002, World Health Organization: Geneva. 51. Tcheandjieu, C., et al., A phenome-wide association study of 26 mendelian genes reveals phenotypic expressivity of common and rare variants within the general population. PLOS Genetics, 2020. 16(11): p. e1008802. 52. Gaunt, T.R., et al., Systematic identification of genetic influences on methylation across the human life course. Genome Biology, 2016. 17(1): p. 61. 53. Ward, L.D. and Kellis, M., HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Research, 2011. 40(D1): p. D930-D934. 54. Ward, L.D. and Kellis, M., HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res, 2016. 44(D1): p. D877-81. 55. Mclaren, W., et al., The Ensembl Variant Effect Predictor. Genome Biology, 2016. 17(1): p. 122. 56. Graham, N., et al., Impact of major depression on cardiovascular outcomes for individuals with hypertension: prospective survival analysis in UK Biobank. BMJ Open, 2019. 9(9): p. e024433. 57. Ramakrishnan, R., et al., Accelerometer measured physical activity and the incidence of cardiovascular disease: Evidence from the UK Biobank cohort study. PLOS Medicine, 2021. 18(1): p. e1003487. 58. Ramírez, J., et al., Cardiovascular Predictive Value and Genetic Basis of Ventricular Repolarization Dynamics. Circulation: Arrhythmia and Electrophysiology, 2019. 12(10): p. e007549. 59. González-Castro, T.B., et al., Association between polymorphisms of NOS1, NOS2 and NOS3 genes and suicide behavior: a systematic review and meta-analysis. Metabolic Brain Disease, 2019. 34(4): p. 967-977. 60. Dervic, K., et al., Protective Factors Against Suicidal Behavior in Depressed Adults Reporting Childhood Abuse. The Journal of Nervous and Mental Disease, 2006. 194(12). 61. Prast, H. and Philippu, A., Nitric oxide as modulator of neuronal function. Progress in Neurobiology, 2001. 64(1): p. 51-68. 62. Kiss, J.P., et al., Inhibitory effect of nitric oxide on dopamine transporters: interneuronal communication without receptors. Neurochemistry International, 2004. 45(4): p. 485-489. 63. Schiavone, S., et al., NADPH oxidase elevations in pyramidal neurons drive psychosocial stress-induced neuropathology. Translational Psychiatry, 2012. 2(5): p. e111-e111. 64. Schiavone, S., et al., Involvement of NOX2 in the Development of Behavioral and Pathologic Alterations in Isolated Rats. Biological Psychiatry, 2009. 66(4): p. 384-392. 65. Kalinchuk, A.V., et al., Inducible and neuronal nitric oxide synthases (NOS) have complementary roles in recovery sleep induction. European Journal of Neuroscience, 2006. 24(5): p. 1443-1456. 66. Vaccaro, A., et al., Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell, 2020. 181(6): p. 1307-1328.e15. 67. Desrumaux, C., et al., Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice. Faseb j, 2005. 19(2): p. 296-7. 68. Dringen, R., Metabolism and functions of glutathione in brain. Progress in Neurobiology, 2000. 62(6): p. 649-671. 69. Maes, M., et al., Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis / chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuro Endocrinol Lett, 2011. 32(2): p. 133-40. 70. Gawryluk, J.W., et al., Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. International Journal of Neuropsychopharmacology, 2011. 14(1): p. 123-130. 71. Mason, R.P., et al., Glutathione peroxidase activity is neuroprotective in models of Huntington's disease. Nature Genetics, 2013. 45(10): p. 1249-1254. 72. Nagel, M., et al., Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nature Genetics, 2018. 50(7): p. 920-927. 73. Savage, J.E., et al., Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 2018. 50(7): p. 912-919. 74. Evangelou, E., et al., Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics, 2018. 50(10): p. 1412-1425. 75. Nagel, M., et al., Item-level analyses reveal genetic heterogeneity in neuroticism. Nature Communications, 2018. 9(1): p. 905. 76. Wu, Y., et al., Multi-trait analysis for genome-wide association study of five psychiatric disorders. Translational Psychiatry, 2020. 10(1): p. 209. 77. Cai, N., et al., Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nature Genetics, 2020. 52(4): p. 437-447. 78. Hill, W.D., et al., Genetic contributions to two special factors of neuroticism are associated with affluence, higher intelligence, better health, and longer life. Molecular Psychiatry, 2020. 25(11): p. 3034-3052. 79. Senoner, T. and Dichtl, W., Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target? Nutrients, 2019. 11(9): p. 2090. 80. Hayes, J.D., et al., Oxidative Stress in Cancer. Cancer Cell, 2020. 38(2): p. 167-197. 81. Bagchi, K. and Puri, S., Free radicals and antioxidants in health and disease: a review. EMHJ-Eastern Mediterranean Health Journal, 4 (2), 350-360, 1998, 1998. 82. Noctor, G. and Foyer, C.H., ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. Annual Review of Plant Physiology and Plant Molecular Biology, 1998. 49(1): p. 249-279. 83. Mishra, V., et al., Probiotics as Potential Antioxidants: A Systematic Review. Journal of Agricultural and Food Chemistry, 2015. 63(14): p. 3615-3626. 84. Martarelli, D., et al., Effect of a Probiotic Intake on Oxidant and Antioxidant Parameters in Plasma of Athletes During Intense Exercise Training. Current Microbiology, 2011. 62(6): p. 1689-1696.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81991-
dc.description.abstract"氧化壓力為體內活性氧物質和抗氧化劑之間無法達成平衡時所產生的現象,此現象與多種不良健康狀況有關,包含癌症、神經退化性疾病、心血管疾病等。過去研究表明,在情緒疾患的患者中觀察到大腦存在氧化壓力的現象,因此氧化壓力在情緒疾患的病理機制中越來越受到關注,而情緒疾患患者通常伴隨著情緒變化、焦慮、睡眠困擾、自殺行為等症狀,由於情緒疾患的多種臨床症狀,診斷存在高度異質性。除了臨床症狀之外,社會心理特質也會增加情緒疾患的風險。然而並非所有過去的研究都顯示氧化壓力基因多型性與情緒疾患之間存在顯著關聯,且鮮少有研究檢查它們對與情緒疾患相關的異質性表現的影響。因此本研究目的為探討氧化壓力基因和情緒相關表徵與社會心理特質的相關性,以更好了解哪些特定表徵可能參與氧化壓力路徑,另外我們也評估氧化壓力基因對歐洲和亞洲人群的影響是否有差異。 本研究使用英國人體生物資料庫,總共納入425,214位受試者來自歐洲族群,平均年齡56.81歲(標準差=7.97),其中53.90%為女性。表型由5個類別組成,總共包含183個表徵,當中,情緒類別包含82個表徵,焦慮類別有37個表徵,睡眠類別7個表徵,自殺類別19個表徵,以及社會心理類別38個表徵。在基因數據中,總共有10,882個單核苷酸變異(SNP)予以保留在往後的分析,這些SNP位在40個氧化壓力基因。我們使用累加遺傳模型執行羅吉斯和線性回歸模型,模型皆校正性別、年齡、第一至第十主成分,以確定哪些表徵與氧化壓力基因相關。此外我們檢驗表型相關性以檢查和氧化壓力基因顯著相關的表徵之間是否存在高度相關。另一方面,我們使用英國人體生物資料庫中的亞洲人群 (N=6,675) 來評估相關性結果是否在不同族群中存在差異。使用R 版本4.0.2和PLINK 1.9進行統計分析。 我們確定了40個與氧化壓力相關的基因,且將其分為兩類。我們的結果顯示8個基因(GPX1, GPX5, PRDX1, CCS, SOD1, NOX4, NOXA1, NOS1)對於情緒相關表徵與社會心理特質具有顯著的影響。GPX1、GPX5、NOS1和NOXA1基因當中包含9個SNPs (rs11710434, rs111761769, rs6774721, rs1389529156, rs146918648, rs139410431, rs139582054, rs1875140, rs112535944)可能存在多效性。我們發現在183個表徵中有18個在Bonferroni校正後顯示出與氧化壓力基因顯著相關,而這些顯著的關聯都沒有在亞洲人群中複製。另一方面,我們觀察到與氧化壓力基因相關的表徵之間存在中低度相關。 我們找到的SNP中發現了潛在的調控功能,當中有六個是潛在的甲基化數量性狀基因座(mQTL),可能會影響血液中的DNA甲基化,而其中五個也是可能的表現數量性狀基因座(eQTL),與人腦或其他組織中的表現量相關。本研究提供了4個氧化壓力基因(包含9個SNP)對歐洲人群的情緒、焦慮、睡眠和社會心理特質的多效性的結果,此外我們發現氧化壓力基因對情緒疾患相關特徵的影響可能存在種族差異。我們的研究提供了情緒疾患的症狀表現異質性可能存在著共同氧化壓力路徑的新見解,未來值得進一步研究調查情緒疾患中和氧化壓力相關的生物學路徑。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:42Z (GMT). No. of bitstreams: 1
U0001-3108202121080500.pdf: 6973252 bytes, checksum: f49deabed8c854568c2376b86d235d3b (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vii LIST OF FIGURES ix LIST OF TABLES x Chapter 1 Introduction 1 1.1 Oxidative stress 1 1.1.1 ROS generation 1 1.1.2 Antioxidants 2 1.1.3 The impact of oxidative stress 2 1.2 Mood disorders 3 1.2.1 Heterogeneous presentation in mood disorders 3 1.2.2 Psychosocial factors were associated with mood disorders 4 1.3 Genetic effects on oxidative stress 4 1.4 The associations between oxidative stress and mood disorders 5 1.4.1 Candidate gene studies of ROS generation 5 1.4.2 Candidate gene studies of antioxidants 6 1.5 Aims 7 Chapter 2 Materials and Methods 9 2.1 Study participants 9 2.2 Genotyping, imputation and quality control process 9 2.3 Classification of phenotypes 10 2.3.1 Mood domain 11 2.3.2 Anxiety domain 12 2.3.3 Sleep domain 12 2.3.4 Suicide domain 13 2.3.5 Psychosocial and well-being domain 13 2.4 Gene selection and definitions 14 2.4.1 Oxidative stress genes selection 14 2.4.2 Negative Controls 14 2.4.3 The definition of genomic locations 15 2.5 Gene-based association analysis 15 2.6 Phenotypic correlation analysis 15 2.7 Gene-based association analysis in Asian population 16 2.8 Functional annotation 16 2.9 Sensitivity analysis 17 Chapter 3 Results 18 3.1 Demographics of European and Asian samples 18 3.2 Summary characteristics of five domains 18 3.3 The pleiotropic effects of four oxidative stress genes 19 3.4 The pleiotropic effects of nine SNPs 20 3.5 Potential eQTLs and mQTLs 21 Chapter 4 Discussion 22 4.1 The effects of oxidative stress genes on heterogeneous presentation of mood disorders 22 4.2 Identification of four genes with pleiotropic effects 23 4.3 Identification of nine SNPs with pleiotropic effects on mood related traits and psychosocial factors 25 4.4 The associations between two exon variants and mood related traits 26 4.5 Consideration of the effects of potential comorbidities on oxidative stress 27 4.6 The genetic effects of oxidative stress genes presented in Europeans 28 4.7 Strengths and limitations 29 4.8 Conclusions 30 Supplements 70 Reference 111"
dc.language.isoen
dc.subject異質性症狀表現zh_TW
dc.subject情緒疾患zh_TW
dc.subject活性氧物質zh_TW
dc.subject基因多效性zh_TW
dc.subject抗氧化劑zh_TW
dc.subject氧化壓力zh_TW
dc.subjectheterogeneous symptoms presentationsen
dc.subjectantioxidantsen
dc.subjectOxidative stressen
dc.subjectpleiotropic effectsen
dc.subjectmood disordersen
dc.subjectROSen
dc.title探討氧化壓力基因對情緒相關表徵和社會心理特質之多效性zh_TW
dc.titleInvestigating the pleiotropic effects of oxidative stress genes on mood related traits and psychosocial variablesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭朱杏(Hsin-Tsai Liu),盧子彬(Chih-Yang Tseng),陳柏熹
dc.subject.keyword氧化壓力,基因多效性,情緒疾患,異質性症狀表現,活性氧物質,抗氧化劑,zh_TW
dc.subject.keywordOxidative stress,pleiotropic effects,mood disorders,heterogeneous symptoms presentations,ROS,antioxidants,en
dc.relation.page117
dc.identifier.doi10.6342/NTU202102916
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-01
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
dc.date.embargo-lift2026-08-31-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-3108202121080500.pdf
  未授權公開取用
6.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved