Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81980
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林達德(Ta-Te Lin)
dc.contributor.authorJing-Heng Linen
dc.contributor.author林敬恆zh_TW
dc.date.accessioned2022-11-25T05:33:31Z-
dc.date.available2024-09-01
dc.date.copyright2021-11-12
dc.date.issued2021
dc.date.submitted2021-09-08
dc.identifier.citation黃怡瑄。2019。應用深度學習方法發展高通量溫室番茄果實表型分析系統。碩士論文。台北:臺灣大學生物產業機電工程學研究所。 Ahonen, T., Virrankoski, R., Elmusrati, M., 2008. Greenhouse monitoring with wireless sensor network. In 2008 IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications, pp. 403-408. Andrew.gibiansky.com. 2020. [online] Available at: https://andrew.gibiansky.com/downloads/pdf/Quadcopter%20Dynamics,%20Simulation,%20and%20Control.pdf, Accessed 9, October 2020. ArduPilot Dev Team, 2021a. ArduPilot Code Overview, Available at: https://ardupilot.org/dev/docs/apmcopter-codeoverview.html, Accessed December 01, 2021. Aznar-Sánchez, J. A., Velasco-Muñoz, J. F., López-Felices, B., Román-Sánchez, I. M. (2020). An analysis of global research trends on greenhouse technology: towards a sustainable agriculture. International journal of environmental research and public health, 17(2), pp. 664. Belforte, G., Deboli, R., Gay, P., Piccarolo, P. and Ricauda Aimonino, D., 2006. Robot Design and Testing for Greenhouse Applications. Biosystems Engineering, 95(3), pp.309-321. Bryson, M. and Sukkarieh, S., 2007. Building a Robust Implementation of Bearing-only Inertial SLAM for a UAV. Journal of Field Robotics, 24(1-2), pp.113-143. Canakci, M. and Akinci, I., 2006. Energy use pattern analyses of greenhouse vegetable production. Energy, 31(8-9), 1243-1256. Chao, H., Cao, Y. and Chen, Y., 2010. Autopilots for small unmanned aerial vehicles: A survey. International Journal of Control, Automation and Systems, 8(1), pp.36-44. Chovancová, A., Fico, T., Chovanec, Ľ., Hubinsk, P., 2014. Mathematical modelling and parameter identification of quadrotor (a survey). Procedia Engineering, 96, pp. 172-181. Chao, H., Gu, Y., Napolitano, M., 2013. A survey of optical flow techniques for uav navigation applications. In 2013 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 710-716. IEEE. Chanier, F., Checchin, P., Blanc, C., Trassoudaine, L., 2008. Map fusion based on a multi-map SLAM framework. In 2008 IEEE international conference on multisensor fusion and integration for intelligent systems, pp. 533-538. IEEE. De Croon, G., De Wagter, C., 2018. Challenges of Autonomous Flight in Indoor Environments. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1003-1009. Dowling, L., Poblete, T., Hook, I., Tang, H., Tan, Y., Glenn, W., Unnithan, R. R. , 2018. Accurate indoor mapping using an autonomous unmanned aerial vehicle (UAV). arXiv preprint arXiv:1808.01940. Dong, W., Isler, V., 2018. Tree morphology for phenotyping from semantics-based mapping in orchard environments. arXiv preprint arXiv:1804.05905. Das, J., Cross, G., Qu, C., Makineni, A., Tokekar, P., Mulgaonkar, Y., Kumar, V., 2015. Devices, systems, and methods for automated monitoring enabling precision agriculture. In 2015 IEEE International Conference on Automation Science and Engineering (CASE), pp. 462-469. Dieleman, J., Marcelis, L., Elings, A., Dueck, T. and Meinen, E., 2006. Energy saving in greenhouses: Optimal use of climate conditions and crop management. Acta Horticulturae, (718), pp.203-210. Ebeid, E., Skriver, M., Terkildsen, K., Jensen, K. and Schultz, U., 2018. A survey of Open-Source UAV flight controllers and flight simulators. Microprocessors and Microsystems, 61, pp.11-20. FAO, F. (2017). The future of food and agriculture–Trends and challenges. Annual Report, 296. Falconi, R. and Melchiorri, C., 2012. Dynamic Model and Control of an Over-actuated Quadrotor UAV. IFAC Proceedings Volumes, 45(22), pp.192-197. Fiorani, F. and Schurr, U., 2013. Future Scenarios for Plant Phenotyping. Annual Review of Plant Biology, 64(1), pp.267-291. Fox, D. (2003). Adapting the sample size in particle filters through KLD-sampling. Int. J. Rob. Res., 22(12), 985-1003. Falanga, D., Kim, S. and Scaramuzza, D., 2019. How Fast Is Too Fast? The Role of Perception Latency in High-Speed Sense and Avoid. IEEE Robotics and Automation Letters, 4(2), pp.1884-1891. Gui, F. and Liu, X., 2011. Design for Multi-Parameter Wireless Sensor Network Monitoring System Based on Zigbee. Key Engineering Materials, 464, pp.90-94. Großkinsky, D. K., Svensgaard, J., Christensen, S., Roitsch, T., 2015. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. Journal of experimental botany, 66(18),pp 5429-5440. Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N. and Schreiber, F., 2011. HTPheno: An image analysis pipeline for high-throughput plant phenotyping. BMC Bioinformatics, 12(1), p.148. Hess, W., Kohler, D., Rapp, H., Andor, D., 2016. Real-time loop closure in 2D LIDAR SLAM. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1271-1278. Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M., 2013. An open source and open hardware embedded metric optical flow cmos camera for indoor and outdoor applications. In 2013 IEEE International Conference on Robotics and Automation, pp. 1736-1741. Huletski, A., Kartashov, D., Krinkin, K., 2017. Vinyslam: an indoor slam method for low-cost platforms based on the transferable belief model. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6770-6776. IEEE. Islam, M., Okasha, M. and Idres, M., 2017. Dynamics and control of quadcopter using linear model predictive control approach. IOP Conference Series: Materials Science and Engineering, 270, p.012007. Khosiawan, Y. and Nielsen, I., 2016. A system of UAV application in indoor environment. Production Manufacturing Research, 4(1), pp.2-22. Konatowski, S., Kaniewski, P., Matuszewski, J., 2016. Comparison of Estimation Accuracy of EKF, UKF and PF Filters, Annual of Navigation, 23(1), 69-87. Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., Klingauf, U., von Stryk, O., 2013. Hector open source modules for autonomous mapping and navigation with rescue robots. In Robot Soccer World Cup, pp. 624-631. Liu, J., Sun, Q., Fan, Z., Jia, Y., 2018. TOF lidar development in autonomous vehicle. In 2018 IEEE 3rd Optoelectronics Global Conference (OGC), pp. 185-190. Li, K., Wang, C., Huang, S., Liang, G., Wu, X., Liao, Y., 2016. Self-positioning for UAV indoor navigation based on 3D laser scanner, UWB and INS. 2016 IEEE International Conference on Information and Automation (ICIA), pp. 498-503. Mur-Artal, R., Tardós, J. D., 2017. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics, 33(5), pp 1255-1262. Opromolla, R., Fasano, G., Rufino, G., Grassi, M., Savvaris, A., 2016. LIDAR-inertial integration for UAV localization and mapping in complex environments. In 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 649-656. Pieruschka, R., Schurr, U., 2019. Plant phenotyping: past, present, and future. Plant Phenomics, 2019. Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767. Rose, J., Paulus, S. and Kuhlmann, H., 2015. Accuracy Analysis of a Multi-View Stereo Approach for Phenotyping of Tomato Plants at the Organ Level. Sensors, 15(5), pp.9651-9665. Roldán, J., Garcia-Aunon, P., Garzón, M., de León, J., del Cerro, J. and Barrientos, A., 2016. Heterogeneous Multi-Robot System for Mapping Environmental Variables of Greenhouses. Sensors, 16(7), p.1018. Segura, M., Auat Cheein, F., Toibero, J., Mut, V. and Carelli, R., 2011. Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation. Sensors, 11(2), pp.2035-2055. Smith, R., Self, M., Cheeseman, P., 1990. Estimating uncertain spatial relationships in robotics. In Autonomous robot vehicles, pp. 167-193. Springer, New York, NY. Song, Y., Guan, M., Tay, W. P., Law, C. L., Wen, C., 2019. UWB/LiDAR Fusion for cooperative range-only SLAM. 2019 IEEE International Conference on Robotics and Automation (ICRA), pp. 6568-6574. Shakhatreh, H., Sawalmeh, A., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N., Khreishah, A. and Guizani, M., 2019. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access, 7, pp.48572-48634. Sullivan, J., 2006. Evolution or revolution? the rise of UAVs. IEEE Technology and Society Magazine, 25(3), pp.43-49. Tangarife, H. I., Díaz, A. E. (2017, October). Robotic applications in the automation of agricultural production under greenhouse: A review. In 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC) (pp. 1-6). Tiemann, J., Ramsey, A., Wietfeld, C., 2018. Enhanced UAV indoor navigation through SLAM-augmented UWB localization. 2018 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1-6. Tiemann, J., Schweikowski, F., Wietfeld, C., 2015, October. Design of an UWB indoor-positioning system for UAV navigation in GNSS-denied environments. 2015 IEEE International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1-7. Terejanu, G. A., 2008. Extended kalman filter tutorial. University at Buffalo. Vakilian, K. A., Massah, J. A. F. A. R., 2012. Design, development and performance evaluation of a robot to early detection of nitrogen deficiency in greenhouse cucumber (Cucumis sativus) with machine vision. Int. J. Agric. Res. Rev, 2, 448-454. Yagfarov, R., Ivanou, M., Afanasyev, I., 2018. Map comparison of lidar-based 2d slam algorithms using precise ground truth. In 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1979-1983. Zhao, Y., Gong, L., Liu, C., Huang, Y., 2016. Dual-arm robot design and testing for harvesting tomato in greenhouse. IFAC-PapersOnLine, 49(16),pp 161-165. Zhou, Y., Guo, X., Zhou, M., and Wang, L., 2007. A Design of Greenhouse Monitoring Control System Based on ZigBee Wireless Sensor Network. 2007 International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai. pp. 2563-2567.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81980-
dc.description.abstract"數據導向的育種技術和溫室環境控制方法可以提高作物的生產效率。在植物表型分析中,監測系統對優化作物生長和產量起著關鍵作用。無人飛行機(Unmanned Aerial Vehicle, UAV)與定點傳感器不同,由於其機動性,可以作為溫室中精確數據採集的整體解決方案。本研究開發了一種可以在GPS訊號無法有效利用之溫室環境,具備自主導航能力之番茄表型數據採集無人機。該四旋翼無人機安裝有嵌入式電腦、深度相機、測距儀、光流感測器、二維光達與深度相機。深度相機用於表型數據收集,用來提取距離資訊以估計番茄大小並在偵測階段忽略超出範圍的番茄。無人機使用開源的Pixhawk 4飛行控制器並包含低雜訊機載慣性測量單元。導航方法利用嵌入式電腦接收光達掃描距離點,以ROS (Robot Operating System)作為軟體控制系統,同步運行Cartographer SLAM即時建圖定位節點、自適應蒙特卡羅定位( Adaptive Monte Carlo Localization, AMCL)節點與路規劃節點。室內飛行透過SLAM即時定位與光流補償控制達到穩定飛行之目標,水平飄移量之均方根誤差為9.6 cm。利用測距儀與氣壓計融合以預估無人機飛行姿態,達到定高目的,固定高度控制之均方根誤差為2.6 cm。此系統使用YOLOv3物件辨識模型從影片中檢測出番茄,對靜止圖像進行測試時,命中率為91%。並採用SFM (Structure From Motion)水果辨識演算法進行水果計數;手持式裝置獲取番茄影片的最佳平均辨識相對誤差小於15%,而無人機約為17%。果實表型分析將可以為水果產量評估提供定量指標,以優化農作物產量,所提出的方法不僅可用於溫室監測和表型分析,還可用於其他應用,如農場管理和無人倉庫自動化。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:31Z (GMT). No. of bitstreams: 1
U0001-0809202101223600.pdf: 9227422 bytes, checksum: 9646116ecdb3289578a7f452b8f95b55 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 研究目的 4 第二章 文獻探討 5 2.1 無人機與智慧溫室農業 5 2.2無人機控制與飛行 7 2.2.1 飛行控制系統 9 2.2.2 四旋翼無人機 10 2.3 無人機巡航 11 2.3.1 定位與被動式路徑規劃 12 2.3.2 主動與混和式巡航 14 2.4即時定位與地圖構建 15 2.5高通量果實表型分析 18 第三章 研究方法 19 3.1系統架構 19 3.1.1巡航運作架構 20 3.1.2硬體架構 22 3.1.2軟體架構與飛行控制系統 29 3.2無人機飛行控制 33 3.3無人機室內自穩飛行 34 3.4無人機室內巡航 37 3.4.1 SLAM即時定位與建圖 38 3.4.2即時定位與飛行控制 40 3.4.3地圖定位與路徑規劃 41 3.4.4巡航模擬 44 3.5高通量表型數據蒐集 46 3.5.1影像蒐集 46 3.5.2影像蒐集有效性實驗 47 3.6高通量表型分析 48 第四章 結果與討論 50 4.1飛行系統建立 50 4.1.1飛行系統運作負載 50 4.1.2飛行穩定性測試 53 4.2室內飛行 58 4.1.4定高懸停飛行 58 4.1.5光流自穩飛行 60 4.3室內巡航 63 4.1.1感測器性能測試 63 4.2.1 SLAM即時建圖 65 4.2.1定位結果 72 4.4番茄影像收集與高通量表型分析 74 4.5場域驗證 79 4.4.1 溫室場域建圖與定位驗證 79 4.4.2 番茄表型特徵分析驗證 85 4.4.3 巡航演算法驗證 87 4.4.3 室內飛行驗證 91 第五章 結論與建議 95 參考文獻 97
dc.language.isozh-TW
dc.subject感測器融合zh_TW
dc.subject導航zh_TW
dc.subject表型分析zh_TW
dc.subject自動化zh_TW
dc.subjectSLAMzh_TW
dc.subject無人機zh_TW
dc.subjectLocalization and Mappingen
dc.subjectNavigationen
dc.subjectUnmanned Aerial Vehicleen
dc.subjectPhenotypingen
dc.subjectSensor Fusionen
dc.subjectAutomationen
dc.title溫室巡航無人機應用於高通量番茄果實表型分析研究zh_TW
dc.titleGreenhouse UAV Navigation System Applies to High Throughput Phenotyping for Tomato Fruitsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭彥甫(Hsin-Tsai Liu),楊江益(Chih-Yang Tseng)
dc.subject.keyword自動化,無人機,導航,感測器融合,SLAM,表型分析,zh_TW
dc.subject.keywordAutomation,Sensor Fusion,Phenotyping,Localization and Mapping,Unmanned Aerial Vehicle,Navigation,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202103051
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
dc.date.embargo-lift2024-09-01-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-0809202101223600.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
9.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved