Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81972
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許正一 (Zeng-Yei Hseu)
dc.contributor.authorShi Wing Chenen
dc.contributor.author曾思穎zh_TW
dc.date.accessioned2022-11-25T05:33:24Z-
dc.date.available2021-11-02
dc.date.copyright2021-11-02
dc.date.issued2021
dc.date.submitted2021-09-27
dc.identifier.citation行政院環保署環檢所 (2003) 土壤中重金属檢測方法王水消化法。中華民國九十二年七月一日。環署檢字第0920047102號公告。 郭城孟 (1999) 臺灣維管束植物簡誌 第一卷266。 行政院農委會。 洪一華(2017) 以植生復育技術整治受汞污染土壤之可行性研究。 國立中山大學海洋環境及工程學系研究所碩士論文。 Abou-Shanab, R. A., J. S. Angle, T. A. Delorme, R. L. Chaney, P. Van Berkum, H. Moawad (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol., 158: 219-224. Agency for Toxic Substances and Disease Registry (ATSDR) (2007) Toxicological Profile for Arsenic (Update). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Alford, É. R., E. A. H. Pilon-Smits, and M. W. Paschke (2010) Metallophytes—a view from the rhizosphere. Plant Soil, 337: 33-50. AL-Khafaji, A.A., M. A. Tabatabai (1979) Effect of trace elements on arylsulfatase activity in soils. Soil Sci., 127:129-133. Aoyama, M. and T. Nagumo (1997) Comparison of the effects of Cu, Pb and As on plant residue decomposition, microbial biomass and soil respiration. Soil Sci. Plant Nutr., 43: 613-622. Baker, A.J.M. (1981) Accumulators and excluders- strategies in the response of plants to heavy metals. J. Plant Nutr., 3: 643-654. Bandick, A. K. and R. P. Dick (1999) Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31:1471-1479. Bao, T., Sun, T., Sun, L. (2011) Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyperaccumulator Solanum nigrum L. and non-hyperaccumulator Solanum lycopersicum L. J. Biotechnol., 10(75):17180-17185. Bardgett, R.D., T.W. Speir, D.J. Ross, G.W. Yeates, H.A. Kettles (1994) Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biol. Fertil. Soils, 18 (1): 71-79. Baszynski, T., A. Tukendorf, M. Ruszkowska, E. Skórzynska, W. Maksymiec (1988) Characteristics of the photosynthetic apparatus of copper non-tolerant spinach exposed to excess copper. J. Plant Physiol., 132:708-713. Bertin, C., Yang X., L.A. Weston (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil, 256, 67-83. Bhattacharyya, P., S. Tripathy, K. Kim, S. Kim (2007) Arsenic fractions and enzyme activities in arsenic-contaminated soils by groundwater irrigation in West Bengal. Ecotox Environ Safe,71:149-156. Boddey, R.M., S. Urquiaga, B.J. Alves, V. Reis (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil, 252(1):139-149. Bolan, N.S., A. Kunhikrishnan, J. Gibb (2013) Rhizoreduction of arsenate and chromate in Australian native grass, shrub and tree vegetation. Plant Soil, 367(1-2): 615-625. Bossio, D. A., K. M. Scow, N. Gunapala and K. J. Graham. (1998). Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology, 36: 1-12. Bowen, H.J.M. (1979) Environmental chemistry of the elements. Academy Press, New York Bray, R.H., and L.T. Kurtz. (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci., 59:39-45 . Bremner, J.M. (1996) Nitrogen-Total. In D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part 3. ASA and SSSA, Madison, WI, USA. Bremner, J.M. and Mulvaney R.L. (1978) Urease activity in soil. In: Burns RG (ed) Soil enzymes. pp 149–196. Academic Press, London. Bulgarelli, D., K. Schlaeppi, S. Spaepen, E. V. L. van Themaat, and P. Schulze-Lefert (2013) Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol., 64:807-838. Cai L, GH Liu, Rensing C, GJ Wang (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol., 9: 4. Cakmak, I., H. Marschner (1990) Decrease in nitrate uptake and increase in proton release in zinc deficient cotton, sunflower and buckwheat plants. Plant Soil, 129:261-268. Chabot, R., H. Antoun, M.P. Cescas (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil, 184(2):311-321. Chen, S., and Shao Z. (2009) Isolation and diversity analysis of arsenite-resistant bacteria in communities enriched from deep-sea sediment of Southwest Indian Ocean Ridge. Extremophiles,13 (1): 39-48. Chen, Y.P., P.D. Rekha, A.B. Arun, F.T.Shen, W.A. Lai, C.C. Young (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol.,34(1):33–41. Chen, Z.S. (2000) Relationship between heavy metal concentrations in soils of Taiwan and uptake by crops. FFTC, 1–15. Chipeng, K.F., C. Hermans, G. Colinet, M.P. Faucon, L.M. Ngongo, P. Meerts, N. Verbruggen (2010) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. and Plancke. Plant and Soil, 328: 235-244. Claveria, R., C. Santos, K. Teodoro, M. Rellosa, N. Vallera (2010) The identification of metallophytes in the Fe and Cu enriched environments of Brookes Point, Palawan and Mankayan, Benguet and their implications to phytoremediation. Sci Diliman, 21(2): 1-12. Clemens, S. (2006) Toxic metal accumulation, response to exposure and mechanisms of tolerance in plants. Biochimie, 88:1707–1719. Dalal, R.C. (1975) Urease activity in some Trinidad soils. Soil Biol Biochem., 7: 5-8. Das, S., J.S. Jean, S. Kar, S. Chakraborty (2013) Effect of arsenic contamination on bacterial and fungal biomass and enzyme activities in tropical arsenic-contaminated soils. Biol. Fertil. Soils, 49(6): 757-765. Das, M., S.K. Maiti (2007) Metal accumulation in A. baccifera growing naturally on abandoned copper tailings pond. Environ. Monit. Assess., 127: 119-125. DeFreitas, J.R., M.R. Banerjee, J.J. Germida (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soil, 24: 358-364. Delgado-Baquerizo, M., A. M. Oliverio, T. E. Brewer, A. Benavent-González, D. J. Eldridge, R. D. Bardgett, F. T. Maestre, B. K. Singh, N. Fierer (2018) A global atlas of the dominant bacteria found in soil. Science, 359(6373): 320-325. Dinkelaker, B., V. Römheld and H. Marschner (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ., 12:285-291. Drissner, D. and H. Blum, D. Tscherko and E. Kandeler (2007) Nine years of enriched CO2 changes the function and structural diversity of soil microorganisms in a grassland. European Journal of Soil Science, 58:260-269. Fierer, N., J.P. Schimel, P.A. Holden (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem., 35:167-176. Feng, Y., A.C. Motta, D.W. Reeves, C.H. Burmester, E. van Santen, and J.A. Osborne (2003) Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biol. Biochem., 35:1693–1703. Frostegård, Å., A. Tunlid, E. Bååth (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol., 11: 3605-3617. Gardner, W.H. (1986) Water content. In A. Klute, G.S. Campell, R. D. Jackson, M.M. Mortland, and D.R. Nielsen (ed.) Methods of soil analysis, Part 1. 2nd (ed.) p. 493-544. ASA and SSSA, Madison, WI, USA. Gee, G.W., and J.W. Bauder (1986) Particle-size analysis. In A. Klute, GS. Campell, R.D. Jackson, M.M. Mortland, and D.R. Nielsen (ed.) Methods of soil analysis, Part 1. 2nd (ed.) p. 383-411. ASA and SSSA, Madison, WI, USA. Geiger, G., H. Brandi, G. Furner, R. Schulin (1998) The effect of copper on the activity of cellulase and b-glucosidase in the presence of montmorillonite or Al-montmorillonite. Soil Biol. Biochem., 30:1537-1544. Glick, B.R. (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367-374. Gianfreda, L., J.M. Bollag (1996) Influence of natural and anthropogenic factors on enzyme activity in soil. In: Stotzky G, Bollag JM (ed.) Soil biochemistry, vol 9. p. 123–194 Marcel Dekker, New York. Gil-Sotres, F., C. Trasar-Cepeda, M. Leirós, S. Seoane (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry, 37:877-887. Grayston, S.J., D. Vaughan, D. Jones (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability Appl. Soil. Ecol., 5: 29-56. Gremion, F., A. Chatzinotas, H. Harms (2003) Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy-metal contaminated bulk and rhizosphere soil. Environ. Microbiol., 896-907. Gu, Y., J.D. Van Nostrand, Wu L., He Z., Qin Y. (2017) Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations. PLOS ONE 12(12): e0189656. Han, YH, Fu JW, Xiang P, Cao Y, B. Rathinasabapathi, Chen YS, Ma LQ (2017) Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata. J Hazard Mater., 32: 146-153. Hidri, R., O.M.-B. Mahmoud, A. Debez, C. Abdelly, J.-M. Barea, R. Azcon (2019) Modulation of C: N: P stoichiometry is involved in the effectiveness of a PGPR and AM fungus in increasing salt stress tolerance of Sulla carnosa Tunisian provenances. Appl. Soil Ecol., 143:161-172. Hiltner, L. (1904) Über neue Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59-78. Hinsinger, P., C. Plassard, Tang C., B. Jaillard (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil, 248: 43-59. Hinsinger, P. (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil. 237, 173-195. Hiroki, M. (1993) Effect of arsenic pollution on soil microbial-population. Soil Sci. Plant Nutr., 39 (2): 227-235. Hemida, S.K., S.A Omar, A.Y. Abdel-Mallek (1997) Microbial populations and enzyme activity in soil treated with heavy metals. Water Air Soil Pollution, 95:13-22. Huang, R.Q., Gao S.F., Wang W.L., S. Staunton, Wang G. (2006) Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Science of The Total Environment, 368(2-3): 531-541. IARC (1987). Summaries evaluations: Arsenic and arsenic compounds (Group 1). Lyon, International Agency for Research on Cancer, p. 100 (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Supplement 7. Inês, N., S. Jacquiod, A. Brejnrod, P. E. Holm, A. Johansen, K. K. Brandt, A. Priemé, S.J. Sørensen (2016) Coping with copper: legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microbiology Ecology, Volume 92, Issue 11. Jiang, C. A., Q. Wu, S. Zeng, X. Chen, Z. Wei, X. Long. (2013) Dissolution of different zinc salts and Zn uptake by Sedum alfredii and maize in mono- and co-cropping under hydroponic culture. J Environ Sci (China), 25:1890-1896. Jones, D. L. (1998) Organic acids in the rhizosphere - a critical review. Plant Soil, 205:25-44. Jones, D. L. and P. R. Darrah (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil, 166: 247-257. Jones, D. L., P. R. Darrah and V. L. Kochian (1996) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil, 180:57-66. Juma, N.G., M. A. Tabatabai (1977) Effects of trace elements on phosphatase activity in soils. Soil Sci. Soc. Am. J., 41:343-346. Kabata-Pendias, A. and H. Pendias (1992) Trace Elements in Soils and Plants, 2nd (ed.) p 365. CRC Press, Boca Raton. Kabata-Pendias, A., H. Pendias (1999) Biogeochemistry of trace elements. Warsaw: PWN Scientific Publishing House. Kabata-Pendias A (2010) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton. Kamaludeen, S., M. Megharaj, A. Juhasz, N. Sethunathan, R. Naidu (2003) Chromium-microorganism interactions in soils: remediation implications. Rev Environ Contam. T., 178: 93–164. Kandeler, E. and H. Gerner (1988) Short-term assay of soil urease using chlorimetric determination of ammonium. Biology and Fertility of Soils, 8: 199-202. Kennedy, N., J. Connolly, and N. Clipson (2005) Impact of lime, nitrogen and plant species on fungal community structure in grassland microcosms. Environ. Microbiol., 7: 780-788. Klose, S. and M. A. Tabatabai (2002) Response of phosphomonoesterases in soils to chloroform fumigation. Journal of Plant Nutrition and Soil Science, 165: 429-434. Küpper, H., B. Gotz, A. Mijovilovich, FC Küpper, W. Meyer-Klaucke (2009) Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiology, 151: 702- 714. Kuzyakov, Y. and G. Domanski (2000) Carbon input into the soil. J. Plant Nutr. Soil Sci., 163: 421-431. Lambers, H., O.K. Atkin, F.F. Millenaar (2002) Respiratory patterns in roots in relation to their functioning. In Y Waisel, A. Eshel, U. Kafkafi (Eds.). Plant Roots: The Hidden Half (3rd ed.) p. 521-552. Marcel Dekker, New York. Lasat, M. M., N. S. Pence, L. D. Deborah, and L. V. Kochian (2001) Zinc Phytoextraction in Thlaspi caerulescens. Int. J. Phytoremed., 3:129-144. Lasat, M.M. (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J. Environ. Qual., 31:109-120. Lange, B., O. Pourret, P. Meerts, P. Jitaru, B. Cancès, C. Grison and M. P. Faucon (2016) Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Chemosphere, 146: 75-84. Liu Z. and J. Liu (2013) Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the deepwater horizon oil spill. Microbiol. Open, 2 (3): 492-504. Lorenz, N., T. Hintemann, T. Kramarewa, A. Katayama, T. Yasuta, P. Marschner, E. Kandeler (2006) Response of microbial activity and microbial community composition, in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem., 38:1430-1437. Luna, C.M., C. A. Gonzalez, VS. Trippi (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol., 35: ll-15. Ma, L.Q., K.M. Komar, Tu C, Zhang W, Cai Y, E.D. Kennelley (2001) A fern that hyperaccumulates arsenic. Nature, 409:579. Macnair, M.R. (1981). The uptake of copper by plants of Mimulus guttatus differing in genotype primarily at a single major copper tolerance locus. New Phytologist,88: 723-730. Macnicol, R. D. and P. H. T. Beckett (1985). Critical tissue concentrations of potentially toxic elements. Plant and Soil, 85(1), 107-129. Maliszewska, W., S. Dec, H. Wierzbica, A. Wozniakowska (1985) The influence of various heavy metal compounds on the development and activity of soil microorganisms. Environ. Pollut. A., 37: 195-215. Marschner, H. (1995) Mineral nutrition of higher plants. Academic Press, London. Martinez, C. and M.A. Tabatabai (1997) Decomposition of biotechnology by-products in soils. Journal of Environmental Quality, 26: 625-632. McGrath, S.P., Zhao, F.J., E. Lombi (2002) Phytoremediation of metals, metalloids and radionuclides. Adv. Agron., 75:1-56. Merino, C., R. Godoy, F. Matus (2016) Soil enzymes and biological activity at different levels of organic matter stability. Journal of Soil Science and Plant Nutrition, 16:14-30. Moeskops, B., D. Sukristiyonubowo, S. Buchan, L. Sleutel, E. Herawaty, R. Husen, D. Saraswati, Setyorini and S. D. Neve (2010) Soil microbial communities and activities under intensive organic and conventional vegetable farming in west java. Indonesia. Applied Soil Ecology, 45:112-120. Molina-Santiago, C., J.R. Pearson, Y. Navarro, M.V. Berlanga-Clavero, A.M. Caraballo-Rodriguez, D. Petras, M.L. Garcia-Martin, G. Lamon, B. Haberstein, F.M. Cazorla, A. de Vicente, A. Loquet, P.C. Dorrestein, D. Romero (2019) The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat. Commun., 10. Muhammad, A., S. Ali, M. Rizwan, M. Ibrahim, F. Abbas, M. Farid, M. Zia-Ur-Rehman, M.K. Irshad, S.A. Bharwana (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environmental Science and Pollution Research, 22:8148-8162. Mulvaney, R.L. (1996) Nitrogen-Inorganic forms. In D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part 3 p. 1123-1184. ASA and SSSA, Madison, WI, USA. Myers, M. and JW McGarity (1968) The urease activity in profiles of five great soil groups from northern New South Wales. Plant Soil, 28:25-37. Nagajyoti, P. C., Lee, K. D. and T.V.M. Sreekanth (2010) Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3): 199-216. Neha, S., R. Rishabh, J. Sonam, P. Karan, S. Manish, T. Vijay, S. Rakesh, G. Vijai, M. Pranab, K. Ahamad and M. Pradeep M (2019) Review:Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules, 9: 220. Nelson, D.W., and L.E. Sommers (1996) Total carbon, organic carbon, and organic matter. p. 961-1010. In D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part 3. ASA and SSSA, Madison, WI, USA. Neumann, G., V. Römheld (2012) Marschner's Mineral Nutrition of Higher Plants (Third Edition). p347-368 Nian, H., Z.M. Yang, S.J. Ahn, Z.J. Cheng, H. Matsumoto (2002) Acomparative study on the aluminium- and copper-induced or-ganic acid exudation from wheat roots. Physiol. Plantarum, 116:575328–335. Nigam, R., S. Srivastava, S. Prakash, M. Srivastava (2001) Cadmium mobilizationand plant availability—the impact of organic acids commonly exuded from roots. Plant Soil, 230:107-113. Odum, E.P. (1985) Trends expected in stressed ecosystems. BioScience, 35: 419-422. Ohwaki, Y. and H. Hirata (1992) Differences in carboxylic acid and exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in roots. Soil Sci. Plant Nutr., 38: 235-243. O’Neill (1990) Arsenic. In: Alloway BJ (ed) Heavy metals in soils. Blackie, London Pearce D.A., K.K Newsham, M.A.S. Thorne, L. Clavo-Bado, M. Kresk, P. Laskaris, A. Hodson and E.M. Wellington (2012) Metagenomic analysis of a southern mairitime Antartic soil. Frontiers in Microbio., 3:403. Pérez-de-Mora A, P. Burgos, E. Madejón, F. Cabrera, P. Jaeckel, M. Schloter (2006) Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem., 38: 327–341. Porter, E.K. and P.J. Peterson (1975) Arsenic accumulation by plants on mine waste (United Kingdom). Sci Total Environ., 4:365-371. Rahman, M. (2002) Arsenic and contamination of drinking-water in Bangladesh: a public-health perspective. J Health Popul. Nutr., 20:193-197. Raven, J.A., M.C.W Evans and R.E. Korb (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res., 60:111-149. Raskin I., B.D. Ensley (2000) Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, Wiley-Interscience, New York (2000). Riina, T., T. Kairesalo, M.M. Häggblom (2004) Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol. Ecol., 47(1):39-50. Römheld, V. (1990) The soil–root interface in relation to mineral nutrition. Symbiosis, 9:19-27. Ruschel, A., Y. Henis and E. Salati (1975). Nitrogen-15 tracing of N-fixation with soil-grown sugarcane seedlings. Soil Biol. Biochem., 7:181–182. Salazar, S., L. E. Sanchez, J. Alvarez, A. Valverde, P. Galindo, J. M. Igual, A. Peix and I. Santa-Regina (2011) Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37:1123-1131. Schat, H., E. Kuiper, WM. Bookum, R. Vooijs (1993) A general model for the genetic control of copper tolerance in Silene vulgaris: evidence from crosses between plants from different tolerant populations. Heredity, 70: 142-147. Sellstedt A. and K.H. Richau (2013) Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiol Lett.,342:179–186. Sessitsch, A., and M. Puschenreiter (2008). Endophytes and rhizosphere bacteria of plants growing in heavy metal-containing soils. In “Microbiology of Extreme Soils” (P. Dion and C. S. Nautiyal, Eds.), 978-3-540-74230-2, pp. 317-332. Springer, Berlin Heidelberg. Shen, S., X.F. Li, W.R. Cullen, M. Weinfeld, X.C. Le (2013) Arsenic Binding to Proteins. Chem. Rev., 113(10):7769–7792. Shilev S., A. Fernández, M. Benlloch, E. Sancho (2006) Sunflower growth and tolerance to arsenic is increased by the rhizospheric bacteria Pseudomonas fluorescens. In: Morel JL., Echevarria G., Goncharova N. (eds) Phytoremediation of Metal-Contaminated Soils. NATO Science Series, vol 68. Springer, Dordrecht. Simon, T. (2000) The effect of nickel and arsenic on the occurrence and symbiotic abilities of native rhizobia. Rostl. Vyroba, 46 (2):63-68. Smith, A.H. and C.M. Steinmaus (2009) Health effects of arsenic and chromium in drinking water: recent human findings. Ann. Rev. Publ. Health, 30:107-122. Song, J., Zhao F.J., Luo Y.M., S.P McGrath, Zhang H. (2004) Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environmental Pollution, 128: 307-315. Speir, T.W., H.A. Kettles, A. Parshotam, P.L. Searle, L.N.C. Vlaar (1999) Simple kinetic approach to determine the toxicity of As[V] to soil biological properties. Soil Biol. Biochem., 31:705-713. Sun, Q., Wang X., Ding S. (2005) Rhizosphere effects in metal absorption by hyperaccumulators and its research advances. Chinese Journal of Ecology, 24(1) :30-36. Sun, X.Y., Y.L. Zhou, Y.J. Tan, Z.X. Wu, P. Lu, G.H. Zhang, F.X. Yu (2018) Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China.Environ. Sci. Pollu. Res., 25:22106-22119. Tabatabai, M. A. (1982) Soil enzymes. In: Methods of Soil Part 2 Chemical and 99 Microbiological Properties. A. L. (editor), pp. 903-947. Academic Press, New York, USA. Tabatabai, M. A. (1994) Soil enzymes. In Methods of soil analysis, Part 2. Microbiological and Biochemical properties, SSSA Book Series, no.5. Chp. 37. Tabatabai, M. A. and J. M. Bremner (1969) Use of p-nitrophenyl phosphate for assay soil phophatase activity. Soil Biology and Biochemistry, 1: 301-307. Teeri, T.T., A. Koivula, M. Linder, T. Reinikainen, L. Ruohonrn, M. Srisodsuk, M. Claeyssens, T.A. Jones (1995) Modes of action of two Trichoderma reesei cellobiohydrolases. In Petersen SB, Sevensson B, Pedersen S (Eds.) Carbohydrate bioengineering. pp. 211-225. Thomas, G. W. (1982) Exchangeable cation. In: Page, A. L., Miller, R. H., Keeney, D. R. (Eds.), Methods of soil Analysis, Part 2. Chemical and Microbiological properties. p159-165 Agronomy/Soil science Society of America, Madison. Wisconsin. Thomas, G.W. (1996) Soil pH and soil acidity. In Sparks, D.L., A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner (ed.) Methods of soil analysis, Part 3. pp.475-490. ASA and SSSA. Madison, WI, USA. Thomas, T. D. and R. D. Batt. (1969) Degradation of cell constituents by starved Streptococcus lactis in relation to survival. Journal of General Microbiology, 58: 347-362. Tipayno, S., C.G. Kim, T. Sa (2012) T-RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation. Appl. Soil Ecol., 61:137-146. Turpeinen, R., T. Kairesalo, M. M. Häggblom (2004) Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiology Ecology, 47(1): 39-50. Ullah, S.M., M.Z. Hossain, M. Islam, S. Jahan, Md. Bashirullah (2009) Extent of arsenic poisoning in the food chain of arsenic-affected areas. Dhaka Univ. J. Biol. Sci., 18:159-171. Uren, N.C. (2007) Types, Amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton, R., Varanini, Z. and Nannipieri, P. (Eds.). The Rhizosphere: Biochemistry and Organic Substances at the Soil-plant Interface. pp. 1-21. Taylor and Francis Group, Boca Raton, FL. U.S. Food and Drug Administration (2016) Arsenic in Rice and Rice Products Risk Assessment Report. Veena, V., P. Poornima, R. Parvatham, K.S. Kalaiselvi (2011) Isolation and characterization of β -glucosidase producing bacteria from different sources. African Journal of Biotechnology, 10: 14907-14912. Větrovský, T., and P. Baldrian (2015) An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. Biol. Fertil. Soils, 51: 827-837. Walker, C., C. Goodyear, D. Anderson, R.W. Titball (2000) Identification of arsenic resistant bacteria in the soil of a former munitions factory at Löcknitz, Germany. Land Contam Reclama, 8:13-18. Walkley, A., and I.A. Black (1934) An examination of Degtjareff method for determining soil organic carbon matter and a proposed modification of the chromic acid titration method. Soil Sci., 37:29-38. Wang, Y., J.A.J. Dungait, Xing K., S.M. Green, I. Hartley, Tu C., T.A. Quine, Tian J., Y. Kuzyakov (2019) Persistence of soil microbial function at the rock-soil interface in degraded karst topsoils. Land Degrad. Dev., 31:251-265. Wilke, B.M. (1988) Long-term effects of potential inorganic pollutants on the microbial activity of a sandy brown earth. Journal of Plant Nutrition and Soil Science, 151: 131-136. Willers, C., P.J.J. van Rensburg, S. Claassens (2015) Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications. J. Appl. Microbiol., 119:1207-1218. Xu, J. and I. Thornton (1985) Arsenic in garden soils and vegetable crops in Cornwall, England: implications for human health. Environ. Geochem. Health, 7:131-133. Yruela, I. (2009) Copper in plants: acquisition, transport and interactions. Funct. Plant Biol., 36:409–430. Zhang, Y. M. and C.O. Rock (2008) Membrane lipid homeostatis in bacteria. Nature Reviews Microbiology, 6: 222-233. Zhao, F.J., R.E. Hamon, M.J. McLaughlin (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol., 151: 613-620. Zhao, F.J., J.R. Wang, J.H.A. Barker, H. Schat, P.M. Bleeker, S.P. McGrath (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol., 159:403-410.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81972-
dc.description.abstract"本研究在臺灣北部某一砷、銅污染場址中進行實地調查,探討污染土壤中的根圈微生物特性。採集該污染場址中的三種優勢植物,分別為毛葉腎蕨(Nephrolepis hirsutula),台灣蘆竹(Arundo formosana Hack.)和長葉腎蕨(Nephrolepis biserrata (Sw.) Schott) ,並採集其根圈土壤與附近之非根圈土壤。採集的土壤一部分進行土壤物化性質分析(pH值,有机碳和有效性砷及銅),另一部分鮮土則用於分析微生物的群落結構特性,包括磷脂脂肪酸 (phospholipid fatty acids, PLFA) 、16S rRNA,和β-葡萄糖苷酶,酸性磷酸單酯酶和尿素酶三種酵素活性。實驗結果顯示,該場址土壤中砷和銅的全量最高分別達411 mg/kg及5404 mg/kg 。同時,根圈中的有机碳含量和EDTA萃取之有效性銅均明顯 (P < 0.05) 比非根圈土壤高,而根圈中的NaH2PO4萃取之有效砷的濃度卻降低了87%至93%,因此植物的生長增加了其根圈中的有效性銅的濃度,卻減少了有效性砷的濃度。微生物之PLFA在根圈及非根圈土壤中並沒有明顯的變化。冗餘分析結果顯示微生物PLFA與活性與土壤有效性砷及pH值呈負相關,而與有機碳呈正相關。16S rRNA的分析結果顯示,無論是非根圈或根圈土壤,其主要菌門皆為變形菌門、放線菌門、浮黴菌門、綠彎菌門、酸桿菌門及疣微菌門,佔了土壤中總菌群的90%。在微生物酵素活性方面,台灣蘆竹根圈中的β-葡萄糖苷酶、酸性磷酸單酯酶和尿素酶均顯著 (P < 0.05) 高於非根圈土壤。相較於非根圈土壤,根圈中微生物的PLFA雖然沒有顯著改變,但由於根圈土壤的有機碳增加、有效性砷減少,導致根圈中β-葡萄糖苷酶,酸性磷酸單酯酶和尿素酶的活性增加。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:24Z (GMT). No. of bitstreams: 1
U0001-1509202114342700.pdf: 3131453 bytes, checksum: 1fd340b773dbc26bfcf0d25963884239 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents目錄 誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 前言 1 第二章 文獻回顧 3 2.1 砷 3 2.2銅 3 2.3污染土壤之根圈特性 4 2.4砷與銅對土壤微生物菌落結構的影響 5 2.5砷與銅對土壤酵素活性的影響 7 2.6污染土壤中的植物對砷與銅的吸收 8 第三章 實驗步驟與方法 11 3.1 土壤與植物樣品採集 11 3.2土壤性質分析 12 3.3微生物群落結構分析 22 3.4微生物酵素活性分析 27 3.5植體分析 32 3.6統計分析 33 第四章 結果與討論 34 4.1 土壤基本理化性質 34 4.2土壤重金屬含量 35 4.3根圈與非根圈土壤的pH值 35 4.4根圈與非根圈土壤的有機碳含量 37 4.5根圈與非根圈土壤的有效性砷與銅含量 39 4.6土壤微生物種類及菌落結構 41 4.7土壤酵素活性 55 4.8 植物重金屬含量 59 4.9本研究在植生復育應用上的意義 61 第五章 結論 63 參考文獻 64
dc.language.isozh-TW
dc.subject植生穩定zh_TW
dc.subject砷zh_TW
dc.subject銅zh_TW
dc.subject根圈zh_TW
dc.subject磷脂脂肪酸zh_TW
dc.subject16S rRNAzh_TW
dc.subject酵素活性zh_TW
dc.subjectarsenicen
dc.subjectphytostabilizationen
dc.subjectenzyme activityen
dc.subject16S rRNAen
dc.subjectphospholipid fatty acid (PLFA)en
dc.subjectrhizosphereen
dc.subjectcopperen
dc.title在砷及銅污染土壤根圈中的微生物結構及活性zh_TW
dc.titleMicrobial structure and activities in rhizospheric soils contaminated with arsenic and copperen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張義宏(Hsin-Tsai Liu),林乃君(Chih-Yang Tseng),許昺慕,廖健森
dc.subject.keyword砷,銅,根圈,磷脂脂肪酸,16S rRNA,酵素活性,植生穩定,zh_TW
dc.subject.keywordarsenic,copper,rhizosphere,phospholipid fatty acid (PLFA),16S rRNA,enzyme activity,phytostabilization,en
dc.relation.page78
dc.identifier.doi10.6342/NTU202103191
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
dc.date.embargo-lift2025-09-22-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-1509202114342700.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved