請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81967完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅雯(Ya-Wen Liu) | |
| dc.contributor.author | Hsin-Yi Chiu | en |
| dc.contributor.author | 邱欣儀 | zh_TW |
| dc.date.accessioned | 2022-11-25T05:33:17Z | - |
| dc.date.available | 2026-09-24 | |
| dc.date.copyright | 2021-11-09 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-24 | |
| dc.identifier.citation | Abrisch, R.G., Gumbin, S.C., Wisniewski, B.T., et al. (2020). Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J Cell Biol 219. Ban, T., Ishihara, T., Kohno, H., et al. (2017). Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat Cell Biol 19, 856-863. Boissan, M., Montagnac, G., Shen, Q., et al. (2014). Membrane trafficking. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science 344, 1510-1515. Boissan, M., Schlattner, U., and Lacombe, M.L. (2018). The NDPK/NME superfamily: state of the art. Lab Invest 98, 164-174. Cao, Y.L., Meng, S., Chen, Y., et al. (2017). MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature 542, 372-376. Chan, D.C. (2020). Mitochondrial Dynamics and Its Involvement in Disease. Annu Rev Pathol 15, 235-259. Chen, C.-W., Wang, H.-L., Huang, C.-W., et al. (2019). Two separate functions of NME3 critical for cell survival underlie a neurodegenerative disorder. Proceedings of the National Academy of Sciences 116, 566-574. Choi, S.Y., Huang, P., Jenkins, G.M., et al. (2006). A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8, 1255-1262. Desvignes, T., Pontarotti, P., Fauvel, C., et al. (2009). Nme protein family evolutionary history, a vertebrate perspective. BMC Evol Biol 9, 256. DeVay, R.M., Dominguez-Ramirez, L., Lackner, L.L., et al. (2009). Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J Cell Biol 186, 793-803. Drin, G., and Antonny, B. (2010). Amphipathic helices and membrane curvature. FEBS Lett 584, 1840-1847. Egea-Jimenez, A.L., and Zimmermann, P. (2018). Phospholipase D and phosphatidic acid in the biogenesis and cargo loading of extracellular vesicles. J Lipid Res 59, 1554-1560. Gavin, A.L., Huang, D., Huber, C., et al. (2018). PLD3 and PLD4 are single-stranded acid exonucleases that regulate endosomal nucleic-acid sensing. Nat Immunol 19, 942-953. Honsho, M., Abe, Y., Imoto, Y., et al. (2020). Mammalian Homologue NME3 of DYNAMO1 Regulates Peroxisome Division. Int J Mol Sci 21. Huang, H., Gao, Q., Peng, X., et al. (2011). piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20, 376-387. Huang, P., Altshuller, Y.M., Hou, J.C., et al. (2005). Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1. Mol Biol Cell 16, 2614-2623. Imoto, Y., Abe, Y., Honsho, M., et al. (2018). Onsite GTP fuelling via DYNAMO1 drives division of mitochondria and peroxisomes. Nat Commun 9, 4634. Javadov, S., Kozlov, A.V., and Camara, A.K.S. (2020). Mitochondria in Health and Diseases. Cells 9. Kameoka, S., Adachi, Y., Okamoto, K., et al. (2018). Phosphatidic Acid and Cardiolipin Coordinate Mitochondrial Dynamics. Trends Cell Biol 28, 67-76. Lacombe, M.L., Munier, A., Mehus, J.G., et al. (2000). The Human Nm23/Nucleoside Diphosphate Kinases. J Bioenerg Biomembr 32, 247–258. Mejia, E.M., and Hatch, G.M. (2016). Mitochondrial phospholipids: role in mitochondrial function. J Bioenerg Biomembr 48, 99-112. Murley, A., and Nunnari, J. (2016). The Emerging Network of Mitochondria-Organelle Contacts. Mol Cell 61, 648-653. Nelson, R.K., and Frohman, M.A. (2015). Physiological and pathophysiological roles for phospholipase D. J Lipid Res 56, 2229-2237. Nishimasu, H., Ishizu, H., Saito, K., et al. (2012). Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 491, 284-287. Osman, C., Voelker, D.R., and Langer, T. (2011). Making heads or tails of phospholipids in mitochondria. J Cell Biol 192, 7-16. Pane, A., Wehr, K., and Schupbach, T. (2007). zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev Cell 12, 851-862. Pfanner, N., Warscheid, B., and Wiedemann, N. (2019). Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 20, 267-284. Schlattner, U., Tokarska-Schlattner, M., Epand, R.M., et al. (2018). NME4/nucleoside diphosphate kinase D in cardiolipin signaling and mitophagy. Lab Invest 98, 228-232. Schlattner, U., Tokarska-Schlattner, M., Ramirez, S., et al. (2013). Dual function of mitochondrial Nm23-H4 protein in phosphotransfer and intermembrane lipid transfer: a cardiolipin-dependent switch. J Biol Chem 288, 111-121. Tamura, Y., Sesaki, H., and Endo, T. (2014). Phospholipid transport via mitochondria. Traffic 15, 933-945. Tanguy, E., Wang, Q., and Vitale, N. (2020). Role of Phospholipase D-Derived Phosphatidic Acid in Regulated Exocytosis and Neurological Disease. Handb Exp Pharmacol 259, 115-130. Tei, R., and Baskin, J.M. (2020). Spatiotemporal control of phosphatidic acid signaling with optogenetic, engineered phospholipase Ds. J Cell Biol 219. Tilokani, L., Nagashima, S., Paupe, V., et al. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62, 341-360. Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11, 872-884. Yu, R., Lendahl, U., Nister, M., et al. (2020). Regulation of Mammalian Mitochondrial Dynamics: Opportunities and Challenges. Front Endocrinol (Lausanne) 11, 374. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81967 | - |
| dc.description.abstract | 粒線體融合及分裂是透過多種蛋白質與脂質錯綜複雜地協作並調控而成。在磷脂酶D家族中,磷脂酶D六在粒線體外膜上將心磷脂轉換為磷脂酸並促使粒線體聚集。但是,目前對於磷脂酶D六及磷脂酸是如何造成粒線體型態改變仍不清楚。先前,我們已經發現核苷二磷酸激酶三會與磷脂酸結合並透過其N端定位於粒線體,進而使粒線體靠近彼此。本篇研究發現磷脂酶D六的缺失使核苷二磷酸激酶三之N端在粒線體上的定位降低。藉由活細胞影像及定量,我們發現核苷二磷酸激酶三聚集在粒線體之間接觸位置,而曾有研究提出磷脂酶D六可能位於粒線體之間接觸位置並轉換對向粒線體上的心磷脂為磷脂酸。我們進一步觀察粒線體相互接觸後的型態,發現表現核苷二磷酸激酶三之粒線體傾向融合,而表現聚合能力缺陷之核苷二磷酸激酶三突變的粒線體則傾向在短時間內分開,表示核苷二磷酸激酶三透過其六聚體構造將粒線體拉近。藉由基因下調-回復實驗,我們也發現核苷二磷酸激酶三可以恢復因磷脂酶D六缺失所造成的粒線體破碎。這些結果證明了核苷二磷酸激酶三為磷脂酶D六之下游蛋白,在粒線體之間接觸位置結合對向粒線體上磷脂酶D六產生之磷脂酸並牽引兩端粒線體靠近,進而促進粒線體融合。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T05:33:17Z (GMT). No. of bitstreams: 1 U0001-2309202110194100.pdf: 5288517 bytes, checksum: b9265e32ab58938d822215bd863ca83f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "論文口試委員審定書 i 誌謝 ii 中文摘要 iii Abstract iv Chapter 1 Introduction 1 1.1 Proteins and lipids regulation in mitochondria dynamics 1 1.2 Nucleoside diphosphate kinase 3 1.3 Phospholipase D family and lipid conversion 4 1.4 Our hypothesis on NME3 and PLD6-mediated mitochondria dynamics 6 Chapter 2 Material and methods 7 2.1 Cell culture, transfection and lentiviral infection 7 2.2 Tandem siRNA knockdown 8 2.3 Mitochondria labeling and immunofluorescent staining 9 2.4 Microscopy 10 2.5 Image quantification 10 2.6 Fractionation assay 10 2.7 Time-lapse Microscopy 11 Statistical analysis 12 Chapter 3 Results 12 3.1 The mitochondrial distribution of NME3-GFP. 12 3.2 The level of mitochondrial PA regulates NME3 distribution. 13 3.3 The dynamic distribution of NME3 on mitochondria. 17 3.4 The PLD6-NME3-Mitochodniral fusion axis. 18 Chapter 4 Discussion 20 4.1 Differential functions of NME3 in distinct organisms. 20 4.2 Mechanisms of NME3 targeting to mitochondria. 21 4.3 PLD6, an atypical phospholipase D 23 Chapter 5 Figures 24 Figure 1. NME3-GFP localizes to mitochondria and is partially enriched at the tips. 24 Figure 2. The mitochondrial targeting of endogenous NME3-GFP is not altered in PLD6 knockdown HeLa cells. 26 Figure 3. The mitochondrial targeting of exogenous NME3-GFP is not decreased in PLD6 knockdown HeLa cells. 28 Figure 4. Fractionation assay for endogenous NME3-GFP distribution. 30 Figure 5. Subcellular distribution of endogenous NME3-HA. 32 Figure 6. The mitochondrial targeting of N17-GFP is significantly reduced in PLD6 knockdown HeLa cells. 34 Figure 7. Less N17 targets to mitochondria in PLD6 knockdown C2C12. 36 Figure 8. Mitochondria targeting of NME3 was not increased in the presence of PLD6-WT or HN mutant. 38 Figure 9. Both PLD6-WT and PLD6-HN increases mitochondria targeting of N17. 40 Figure 10. No significant enrichment of NME3 at ER-mitochondria contact sites. 42 Figure 11. NME3-GFP is enriched at the interface of two contact mitochondria. 44 Figure 12. The oligomerization ability of NME3-GFP is important for its enrichment at mito-mito contact site. 46 Figure 13. The oligomerization ability of NME3-GFP is involved in the rate of mitochondrial fusion. 48 Figure 14. The enrichment of NME3 at mitochondria contact sites is decreased in PLD6 knockdown cells. 50 Figure 15. Effects of PLD6 KD on the enrichment of N17-GFP at mito-mito-contact site. 52 Figure 16. Knockdown of NME3 diminishes PLD6-induced mitochondria clustering. 54 Figure 17. NME3 restores mitochondria fragmentation in PLD6-depleted HeLa cells. 56 Figure 18. NME3 rescues mitochondria fragmentation caused by PLD6 knockdown in C2C12 myoblasts. 58 Figure 19. Effects of different tags on PLD6-mediated mitochondria morphology and N17 location. 60 Figure 20. Hypothesized model of NME3 tethering mitochondria through binding to PLD6-generated PA. 62 Chapter 6 References 64 Appendix 68 Appendix 1. Scheme of light-inducible Opto-PLD. 68 Appendix 2. Opto-PLD causes mitochondria clustering after photoconversion. 70 Appendix 3. Opto-PLD increases N17-GFP mitochondria targeting. 72 Appendix 4. NME3 knockdown efficiency. 74 " | |
| dc.language.iso | en | |
| dc.subject | 粒線體系鏈 | zh_TW |
| dc.subject | 磷脂酶D | zh_TW |
| dc.subject | 磷脂酸 | zh_TW |
| dc.subject | 核苷二磷酸激酶 | zh_TW |
| dc.subject | phosphatidic acid | en |
| dc.subject | phospholipase D | en |
| dc.subject | contact sites | en |
| dc.subject | NDP kinase | en |
| dc.subject | mitochondrial tethering | en |
| dc.title | 磷脂酶D六在核苷二磷酸激酶三調控之粒線體系鏈之功能 | zh_TW |
| dc.title | The Role of Phospholipase D PLD6 on NME3-Mediated Mitochondria Tethering | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張智芬(Hsin-Tsai Liu),許家維(Chih-Yang Tseng) | |
| dc.subject.keyword | 粒線體系鏈,磷脂酶D,磷脂酸,核苷二磷酸激酶, | zh_TW |
| dc.subject.keyword | mitochondrial tethering,phospholipase D,phosphatidic acid,NDP kinase,contact sites, | en |
| dc.relation.page | 75 | |
| dc.identifier.doi | 10.6342/NTU202103307 | |
| dc.rights.note | 同意授權(限校園內公開) | |
| dc.date.accepted | 2021-09-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-09-24 | - |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2309202110194100.pdf 未授權公開取用 | 5.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
