Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81963
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳柏華(Albert Y. Chen)
dc.contributor.authorYu-Hsuan Hoen
dc.contributor.author何語萱zh_TW
dc.date.accessioned2022-11-25T05:33:13Z-
dc.date.available2026-09-28
dc.date.copyright2021-11-08
dc.date.issued2021
dc.date.submitted2021-09-29
dc.identifier.citationAmato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez, N., Hopke, P. K. (2009). Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2. Atmospheric Environment, 43(17), 2770–2780. https://doi.org/10.1016/j.atmosenv.2009.02.039 Beddows, D. C. S., Harrison, R. M. (2021). PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: Dependence upon vehicle mass and implications for battery electric vehicles. Atmospheric Environment, 244, 117886. https://doi.org/10.1016/j.atmosenv.2020.117886 Biglari, M., Soleimani, A., Hassanpour, H. (2018). A Cascaded Part-Based System for Fine-Grained Vehicle Classification. IEEE Transactions on Intelligent Transportation Systems, 19(1), 273–283. https://doi.org/10.1109/TITS.2017.2749961 Bishop, G. A., Stedman, D. H. (2008). A decade of on-road emissions measurements. Environmental Science and Technology, 42(5), 1651–1656. https://doi.org/10.1021/es702413b Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. ArXiv. Boonsim, N., Prakoonwit, S. (2017). Car make and model recognition under limited lighting conditions at night. Pattern Analysis and Applications, 20(4), 1195–1207. https://doi.org/10.1007/s10044-016-0559-6 Bukowiecki, N., Lienemann, P., Hill, M., Furger, M., Richard, A., Amato, F., Prévôt, A. S. H., Baltensperger, U., Buchmann, B., Gehrig, R. (2010). PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmospheric Environment, 44(19), 2330–2340. https://doi.org/10.1016/j.atmosenv.2010.03.039 Chan, T. L., Ning, Z., Leung, C. W., Cheung, C. S., Hung, W. T., Dong, G. (2004). On-road remote sensing of petrol vehicle emissions measurement and emission factors estimation in Hong Kong. Atmospheric Environment, 38(14), 2055–2066. https://doi.org/10.1016/j.atmosenv.2004.01.031 Charron, A., Harrison, R. M. (2005). Fine (PM2.5) and coarse (PM2.5-10) particulate matter on a heavily trafficked London highway: Sources and processes. Environmental Science and Technology, 39(20), 7768–7776. https://doi.org/10.1021/es050462i Chen, A. Y., Chiu, Y. L., Hsieh, M. H., Lin, P. W., Angah, O. (2020). Conflict analytics through the vehicle safety space in mixed traffic flows using UAV image sequences. Transportation Research Part C: Emerging Technologies, 119, 102744. https://doi.org/10.1016/j.trc.2020.102744 Chen, K. S., Wang, W. C., Chen, H. M., Lin, C. F., Hsu, H. C., Kao, J. H., Hu, M. T. (2003). Motorcycle emissions and fuel consumption in urban and rural driving conditions. Science of the Total Environment, 312(1–3), 113–122. https://doi.org/10.1016/S0048-9697(03)00196-7 Chiang, H. L., Huang, P. H., Lai, Y. M., Lee, T. Y. (2014). Comparison of the regulated air pollutant emission characteristics of real-world driving cycle and ECE cycle for motorcycles. Atmospheric Environment, 87, 1–9. https://doi.org/10.1016/j.atmosenv.2013.12.031 Coifman, B., Beymer, D., McLauchlan, P., Malik, J. (1998). A real-time computer vision system for vehicle tracking and traffic surveillance. Transportation Research Part C: Emerging Technologies, 6(4), 271–288. https://doi.org/10.1016/S0968-090X(98)00019-9 Coifman, B., Kim, S. B. (2009). Speed estimation and length based vehicle classification from freeway single-loop detectors. Transportation Research Part C: Emerging Technologies, 17(4), 349–364. https://doi.org/10.1016/j.trc.2009.01.004 Cox, B. L., Mutel, C. L. (2018). The environmental and cost performance of current and future motorcycles. Applied Energy, 212, 1013–1024. https://doi.org/10.1016/j.apenergy.2017.12.100 Dalal, N., Triggs, B. (2005). Histograms of oriented gradients for human detection. Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, I, 886–893. https://doi.org/10.1109/CVPR.2005.177 Dlugokencky, E. and Tans, P. (2020). Trends in Atmospheric Carbon Dioxide. National Oceanic and Atmospheric Administration, Global Monitoring Laboratory (NOAA/GML). https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data.html Fondelli, M. C., Chellini, E., Yli-Tuomi, T., Cenni, I., Gasparrini, A., Nava, S., Garcia-Orellana, I., Lupi, A., Grechi, D., Mallone, S., Jantunen, M. (2008). Fine particle concentrations in buses and taxis in Florence, Italy. Atmospheric Environment, 42(35), 8185–8193. https://doi.org/10.1016/j.atmosenv.2008.07.054 Franco, V., Kousoulidou, M., Muntean, M., Ntziachristos, L., Hausberger, S., Dilara, P. (2013). Road vehicle emission factors development: A review. In Atmospheric Environment (Vol. 70, pp. 84–97). Pergamon. https://doi.org/10.1016/j.atmosenv.2013.01.006 Gëller, M. D., Sardar, S. B., Phuleria, H., Fine, P. M., Sioutas, C. (2005). Measurements of particle number and mass concentrations and size distributions in a tunnel environment. Environmental Science and Technology, 39(22), 8653–8663. https://doi.org/10.1021/es050360s Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 580–587. https://doi.org/10.1109/CVPR.2014.81 Giugliano, M., Lonati, G., Butelli, P., Romele, L., Tardivo, R., Grosso, M. (2005). Fine particulate (PM2.5-PM1) at urban sites with different traffic exposure. Atmospheric Environment, 39(13), 2421–2431. https://doi.org/10.1016/j.atmosenv.2004.06.050 Google. (n.d.). Keelung Changxing St. Intersection - Google Maps. Retrieved June 27, 2021, from https://goo.gl/maps/NigZMwoYNM6EAsGq6 Hassani, A., Hosseini, V. (2016). An assessment of gasoline motorcycle emissions performance and understanding their contribution to Tehran air pollution. Transportation Research Part D: Transport and Environment, 47, 1–12. https://doi.org/10.1016/j.trd.2016.05.003 He, H., Shao, Z., Tan, J. (2015). Recognition of Car Makes and Models From a Single Traffic-Camera Image. IEEE Transactions on Intelligent Transportation Systems, 16(6), 3182–3192. https://doi.org/10.1109/TITS.2015.2437998 He, K., Gkioxari, G., Dollar, P., Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 2017-October, 2980–2988. https://doi.org/10.1109/ICCV.2017.322 Hernandez, S. V., Tok, A., Ritchie, S. G. (2016). Integration of Weigh-in-Motion (WIM) and inductive signature data for truck body classification. Transportation Research Part C: Emerging Technologies, 68, 1–21. https://doi.org/10.1016/j.trc.2016.03.003 Hsiao, E., Sinha, S. N., Ramnath, K., Baker, S., Zitnick, L., Szeliski, R. (2014). Car make and model recognition using 3D curve alignments. 2014 IEEE Winter Conference on Applications of Computer Vision, WACV 2014. https://doi.org/10.1109/WACV.2014.6836126 Hsieh, J. W., Chen, L. C., Chen, D. Y. (2014). Symmetrical SURF and Its applications to vehicle detection and vehicle make and model recognition. IEEE Transactions on Intelligent Transportation Systems, 15(1), 6–20. https://doi.org/10.1109/TITS.2013.2294646 Hu, C., Bai, X., Qi, L., Wang, X., Xue, G., Mei, L. (2015). Learning Discriminative Pattern for Real-Time Car Brand Recognition. IEEE Transactions on Intelligent Transportation Systems, 16(6), 3170–3181. https://doi.org/10.1109/TITS.2015.2441051 Jones, A. M., Harrison, R. M. (2006). Estimation of the emission factors of particle number and mass fractions from traffic at a site where mean vehicle speeds vary over short distances. Atmospheric Environment, 40(37), 7125–7137. https://doi.org/10.1016/J.ATMOSENV.2006.06.030 Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, Transactions of the ASME, 82(1), 35–45. https://doi.org/10.1115/1.3662552 Kirchstetter, T. W., Harley, R. A., Kreisberg, N. M., Stolzenburg, M. R., Hering, S. V. (1999). On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles. Atmospheric Environment, 33(18), 2955–2968. https://doi.org/10.1016/S1352-2310(99)00089-8 Kittelson, D. B., Watts, W. F., Johnson, J. P. (2004). Nanoparticle emissions on Minnesota highways. Atmospheric Environment, 38(1), 9–19. https://doi.org/10.1016/j.atmosenv.2003.09.037 Koossalapeerom, T., Satiennam, T., Satiennam, W., Leelapatra, W., Seedam, A., Rakpukdee, T. (2019). Comparative study of real-world driving cycles, energy consumption, and CO2 emissions of electric and gasoline motorcycles driving in a congested urban corridor. Sustainable Cities and Society, 45, 619–627. https://doi.org/10.1016/j.scs.2018.12.031 Krause, J., Stark, M., Deng, J., Fei-Fei, L. (2013). 3D object representations for fine-grained categorization. Proceedings of the IEEE International Conference on Computer Vision, 554–561. https://doi.org/10.1109/ICCVW.2013.77 Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1–2), 83–97. https://doi.org/10.1002/nav.3800020109 Li, J., Xu, Z., Fu, L., Zhou, X., Yu, H. (2021). Domain adaptation from daytime to nighttime: A situation-sensitive vehicle detection and traffic flow parameter estimation framework. Transportation Research Part C: Emerging Technologies, 124, 102946. https://doi.org/10.1016/j.trc.2020.102946 Li, L., Ge, Y., Wang, M., Peng, Z., Song, Y., Zhang, L., Yuan, W. (2015). Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends. Science of the Total Environment, 502, 627–631. https://doi.org/10.1016/j.scitotenv.2014.09.068 Lin, C. W., Lu, S. J., Lin, K. S. (2006). Test emission characteristics of motorcycles in Central Taiwan. Science of the Total Environment, 368(2–3), 435–443. https://doi.org/10.1016/j.scitotenv.2006.03.032 Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C. L. (2014). Microsoft COCO: Common Objects in Context. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8693 LNCS(PART 5), 740–755. https://doi.org/10.1007/978-3-319-10602-1_48 Liu, H. X., Sun, J. (2014). Length-based vehicle classification using event-based loop detector data. Transportation Research Part C: Emerging Technologies, 38, 156–166. https://doi.org/10.1016/j.trc.2013.11.010 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C. (2016). SSD: Single shot multibox detector. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9905 LNCS, 21–37. https://doi.org/10.1007/978-3-319-46448-0_2 Llorca, D. F., Colas, D., Daza, I. G., Parra, I., Sotelo, M. A. (2014). Vehicle model recognition using geometry and appearance of car emblems from rear view images. 2014 17th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014, 3094–3099. https://doi.org/10.1109/ITSC.2014.6958187 Mahesh, S., Ramadurai, G., Shiva Nagendra, S. M. (2019). Real-world emissions of gaseous pollutants from motorcycles on Indian urban arterials. Transportation Research Part D: Transport and Environment, 76, 72–84. https://doi.org/10.1016/j.trd.2019.09.010 Martinet, S., Liu, Y., Jean-Soro, L., Goriaux, M., André, M. (2019). In-situ estimation of non-regulated pollutant emission factors in an urban area of Nantes, France, with fleet composition characterization. Transportation Research Part D: Transport and Environment, 76, 193–210. https://doi.org/10.1016/j.trd.2019.09.023 Maykut, N. N., Lewtas, J., Kim, E., Larson, T. V. (2003). Source Apportionment of PM2.5 at an Urban IMPROVE Site in Seattle, Washington. Environmental Science and Technology, 37(22), 5135–5142. https://doi.org/10.1021/es030370y McCaffery, C., Zhu, H., Tang, T., Li, C., Karavalakis, G., Cao, S., Oshinuga, A., Burnette, A., Johnson, K. C., Durbin, T. D. (2021). Real-world NOx emissions from heavy-duty diesel, natural gas, and diesel hybrid electric vehicles of different vocations on California roadways. Science of the Total Environment, 784, 147224. https://doi.org/10.1016/j.scitotenv.2021.147224 Morris, B. T., Tran, C., Scora, G., Trivedi, M. M., Barth, M. J. (2012). Real-time video-based traffic measurement and visualization system for energy/emissions. IEEE Transactions on Intelligent Transportation Systems, 13(4), 1667–1678. https://doi.org/10.1109/TITS.2012.2208222 MOTC. (2021). Number of Registered Motor Vehicles. Republic of China: Ministry of Transport and Communications. https://stat.thb.gov.tw/hb01/webMain.aspx?sys=100 funid=e11100 Ning, Z., Polidori, A., Schauer, J. J., Sioutas, C. (2008). Emission factors of PM species based on freeway measurements and comparison with tunnel and dynamometer studies. Atmospheric Environment, 42(13), 3099–3114. https://doi.org/10.1016/j.atmosenv.2007.12.039 Phuleria, H. C., Geller, M. D., Fine, P. M., Sioutas, C. (2006). Size-resolved emissions of organic tracers from light- and heavy-duty vehicles measured in a California roadway tunnel. Environmental Science and Technology, 40(13), 4109–4118. https://doi.org/10.1021/es052186d Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 779–788. https://doi.org/10.1109/CVPR.2016.91 Redmon, J., Farhadi, A. (2018). YOLOv3: An Incremental Improvement. Riddle, S. G., Jakober, C. A., Robert, M. A., Cahill, T. M., Charles, M. J., Kleeman, M. J. (2007). Large PAHs detected in fine particulate matter emitted from light-duty gasoline vehicles. Atmospheric Environment, 41(38), 8658–8668. https://doi.org/10.1016/j.atmosenv.2007.07.023 Rienda, I. C., Alves, C. A. (2021). Road dust resuspension: A review. Atmospheric Research, 105740. https://doi.org/10.1016/j.atmosres.2021.105740 Saunier, N., Sayed, T. (2006). A feature-based tracking algorithm for vehicles in intersections. Third Canadian Conference on Computer and Robot Vision, CRV 2006, 2006, 59. https://doi.org/10.1109/CRV.2006.3 Schauer, J. J., Kleeman, M. J., Cass, G. R., Simoneit, B. R. T. (1999). Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks. Environmental Science and Technology, 33(10), 1578–1587. https://doi.org/10.1021/es980081n Schauer, J. J., Kleeman, M. J., Cass, G. R., Simoneit, B. R. T. (2002). Measurement of emissions from air pollution sources. 5. C1 - C32 organic compounds from gasoline-powered motor vehicles. Environmental Science and Technology, 36(6), 1169–1180. https://doi.org/10.1021/es0108077 Schneider, J., Kirchner, U., Borrmann, S., Vogt, R., Scheer, V. (2008). In situ measurements of particle number concentration, chemically resolved size distributions and black carbon content of traffic-related emissions on German motorways, rural roads and in city traffic. Atmospheric Environment, 42(18), 4257–4268. https://doi.org/10.1016/j.atmosenv.2008.01.014 Sharma, R., Manzie, C., Bessede, M., Crawford, R. H., Brear, M. J. (2013). Conventional, hybrid and electric vehicles for Australian driving conditions. Part 2: Life cycle CO2-e emissions. Transportation Research Part C: Emerging Technologies, 28, 63–73. https://doi.org/10.1016/j.trc.2012.12.011 Simoncini, M., Taccari, L., Sambo, F., Bravi, L., Salti, S., Lori, A. (2018). Vehicle classification from low-frequency GPS data with recurrent neural networks. Transportation Research Part C: Emerging Technologies, 91, 176–191. https://doi.org/10.1016/j.trc.2018.03.024 Sochor, J., Spanhel, J., Herout, A. (2019). BoxCars: Improving Fine-Grained Recognition of Vehicles Using 3-D Bounding Boxes in Traffic Surveillance. IEEE Transactions on Intelligent Transportation Systems, 20(1), 97–108. https://doi.org/10.1109/TITS.2018.2799228 Soon, F. C., Khaw, H. Y., Chuah, J. H., Kanesan, J. (2019). PCANet-Based Convolutional Neural Network Architecture for a Vehicle Model Recognition System. IEEE Transactions on Intelligent Transportation Systems, 20(2), 749–759. https://doi.org/10.1109/TITS.2018.2833620 Tian, B., Tang, M., Wang, F. Y. (2015). Vehicle detection grammars with partial occlusion handling for traffic surveillance. Transportation Research Part C: Emerging Technologies, 56, 80–93. https://doi.org/10.1016/j.trc.2015.02.020 Timmers, V. R. J. H., Achten, P. A. J. (2016). Non-exhaust PM emissions from electric vehicles. In Atmospheric Environment (Vol. 134, pp. 10–17). Elsevier Ltd. https://doi.org/10.1016/j.atmosenv.2016.03.017 Tsai, I. C., Lee, C. Y., Lung, S. C. C., Su, C. W. (2021). Characterization of the vehicle emissions in the Greater Taipei Area through vision-based traffic analysis system and its impacts on urban air quality. Science of the Total Environment, 782, 146571. https://doi.org/10.1016/j.scitotenv.2021.146571 Tsai, J. H., Huang, P. H., Chiang, H. L. (2017). Air pollutants and toxic emissions of various mileage motorcycles for ECE driving cycles. Atmospheric Environment, 153, 126–134. https://doi.org/10.1016/j.atmosenv.2017.01.019 TVMA. (2021). Types of Domestic Motorcycles Produced and Sold (in Chinese). In Taiwan Transportation Vehicle Manufacturers Association. Wåhlin, P., Berkowicz, R., Palmgren, F. (2006). Characterisation of traffic-generated particulate matter in Copenhagen. Atmospheric Environment, 40(12), 2151–2159. https://doi.org/10.1016/j.atmosenv.2005.11.049 Wan, Y., Huang, Y., Buckles, B. (2014). Camera calibration and vehicle tracking: Highway traffic video analytics. Transportation Research Part C: Emerging Technologies, 44, 202–213. https://doi.org/10.1016/j.trc.2014.02.018 Welch, G., Bishop, G. (1995). An Introduction to the Kalman Filter. https://www.cs.unc.edu/~welch/kalman/kalmanIntro.html Wu, F., Stern, R. E., Cui, S., Delle Monache, M. L., Bhadani, R., Bunting, M., Churchill, M., Hamilton, N., Haulcy, R., Piccoli, B., Seibold, B., Sprinkle, J., Work, D. B. (2019). Tracking vehicle trajectories and fuel rates in phantom traffic jams: Methodology and data. Transportation Research Part C: Emerging Technologies, 99, 82–109. https://doi.org/10.1016/j.trc.2018.12.012 Wu, L., Coifman, B. (2014). Improved vehicle classification from dual-loop detectors in congested traffic. Transportation Research Part C: Emerging Technologies, 46, 222–234. https://doi.org/10.1016/j.trc.2014.04.015 Wu, T. G., Chang, J. C., Huang, S. H., Lin, W. Y., Chan, C. C., Wu, C. F. (2021). Exposures and health impact for bicycle and electric scooter commuters in Taipei. Transportation Research Part D: Transport and Environment, 91, 102696. https://doi.org/10.1016/j.trd.2021.102696 Yang, L., Luo, P., Loy, C. C., Tang, X. (2015). A large-scale car dataset for fine-grained categorization and verification. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June-2015, 3973–3981. https://doi.org/10.1109/CVPR.2015.7299023 Yao, Y. C., Tsai, J. H., Wang, I. T. (2013). Emissions of gaseous pollutant from motorcycle powered by ethanol-gasoline blend. Applied Energy, 102, 93–100. https://doi.org/10.1016/j.apenergy.2012.07.041 Zangenehpour, S., Miranda-Moreno, L. F., Saunier, N. (2015). Automated classification based on video data at intersections with heavy pedestrian and bicycle traffic: Methodology and application. Transportation Research Part C: Emerging Technologies, 56, 161–176. https://doi.org/10.1016/j.trc.2015.04.003 Zhang, S., Wu, Y., Hu, J., Huang, R., Zhou, Y., Bao, X., Fu, L., Hao, J. (2014). Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China. Applied Energy, 132, 118–126. https://doi.org/10.1016/j.apenergy.2014.07.008 Zhao, J., Xu, H., Liu, H., Wu, J., Zheng, Y., Wu, D. (2019). Detection and tracking of pedestrians and vehicles using roadside LiDAR sensors. Transportation Research Part C: Emerging Technologies, 100, 68–87. https://doi.org/10.1016/j.trc.2019.01.007 Zhu, Y., Skerlos, S., Xu, M., Cooper, D. R. (2021). Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target. Environmental Science Technology, acs.est.1c00816. https://doi.org/10.1021/acs.est.1c00816
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81963-
dc.description.abstract機車在東南亞地區是主要的交通工具之一,由於其低開銷、高機動性及停泊便利性,其持有率穩居高位。在我國,機車持有率約為小客車持有率的兩倍,為持有率最高之交通運具。近年來,電動機車逐漸興起,其於機車數量的佔比逐年升高。儘管先前已有關於內燃機機車汙染排放的研究,但對於電動機車的污染排放則知之甚少。本研究對電動機車的非尾氣排放進行分析,藉此評估與電動機車排放相關的污染物。本研究所提出的分析方法是基於電腦視覺的電動機車與內燃機機車分類和污染物環境濃度監測。我們也進一步評估了機車車隊電氣化對都市污染物濃度的影響。以電動機車全面取代內燃機機車將可能減少都市污染物總排放量中近一半的細顆粒物、近四分之一的二氧化碳和八分之一以上的一氧化碳,然而同時可能增加約30%的粗顆粒物和近四分之一的PM1.0。有鑑於道路揚塵為粗顆粒物的主要排放源,本研究建議對電動機車引起的道路揚塵汙染作進一步調查。這項研究可應用於交通相關排放之個人暴露及健康危害評估。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:13Z (GMT). No. of bitstreams: 1
U0001-2709202117174800.pdf: 2631596 bytes, checksum: 4f8f84b0ee2f63e5f5b0469cae74d5df (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 # 誌謝 i 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES x Chapter 1 Introduction 1 1.1. Background and Motivation 1 1.2. Objective 3 1.3. Research Flowchart 3 1.4. Structure of the Study 4 Chapter 2 Literature Review 6 2.1. Emissions from Electric Vehicles 6 2.2. Vehicle Emission Measurement 7 2.3. Traffic Data Collection 8 2.4. Fine-Grained Vehicle Classification 9 2.5. Summary 10 Chapter 3 Methodology 11 3.1. Traffic Data Extraction 11 3.1.1. Motorcycle Powered Type Classifier Construction 11 3.1.2. Vehicle Counting by Categories 14 3.2. Data Collection 15 3.3. Emission Analysis 18 3.3.1. EM Contribution Analysis 18 3.3.2. Emission Reduction through Fleet Electrification 20 Chapter 4 Results 22 4.1. Data Description 22 4.2. Motorcycle Classification 23 4.2.1. Evaluation Indicators for Classification 23 4.2.2. Experimental Results of Motorcycle Classification 24 4.3. Vehicle Counting 26 4.4. EM Contribution Analysis 28 4.4.1. Overview of Vehicle Flow and Pollutant Concentration 29 4.4.2. Time Resolution Comparison 30 4.4.3. Contribution Separation for EMs and ICMs 33 4.4.4. Wind Direction Analysis 38 4.5. Emission Reduction through Fleet Electrification 40 Chapter 5 Discussion 42 5.1. Contribution 42 5.2. Limitations 42 5.3. Future Works 43 Chapter 6 Conclusions 45 Appendix A Motorcycle Average Body Weight 46 REFERENCES 47
dc.language.isoen
dc.subject車隊電氣化zh_TW
dc.subject電動機車zh_TW
dc.subject非尾氣排放zh_TW
dc.subject機器學習zh_TW
dc.subject深度學習zh_TW
dc.subject機車分類zh_TW
dc.subject交通影像資料zh_TW
dc.subjectelectric two-wheeleren
dc.subjectfleet electrificationen
dc.subjecttraffic video dataen
dc.subjectmotorcycle classificationen
dc.subjectdeep learningen
dc.subjectmachine learningen
dc.subjectnon-exhaust emissionen
dc.title基於電腦視覺機車分類之電動機車污染排放分析zh_TW
dc.titleElectric Motorcycle Emission Analysis through Computer Vision-Based Motorcycle Classificationen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0002-3046-8208
dc.contributor.oralexamcommittee陳柏翰(Hsin-Tsai Liu),蕭大智(Chih-Yang Tseng),許聿廷
dc.subject.keyword電動機車,非尾氣排放,機器學習,深度學習,機車分類,交通影像資料,車隊電氣化,zh_TW
dc.subject.keywordelectric two-wheeler,non-exhaust emission,machine learning,deep learning,motorcycle classification,traffic video data,fleet electrification,en
dc.relation.page55
dc.identifier.doi10.6342/NTU202103404
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-09-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2026-09-28-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-2709202117174800.pdf
  未授權公開取用
2.57 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved