Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81961
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌(Shih-Huang Tung)
dc.contributor.authorChien-Han Chenen
dc.contributor.author陳建翰zh_TW
dc.date.accessioned2022-11-25T05:33:11Z-
dc.date.available2026-10-04
dc.date.copyright2021-10-21
dc.date.issued2021
dc.date.submitted2021-10-05
dc.identifier.citation1. F.-L. Jin, X. Li and S.-J. Park, Journal of Industrial and Engineering Chemistry, 2015, 29, 1-11. 2. T. Vidil, F. Tournilhac, S. Musso, A. Robisson and L. Leibler, Progress in Polymer Science, 2016, 62, 126-179. 3. N. A. S. John and G. A. George, Progress in Polymer Science, 1994, 19, 755-795. 4. X. Fernández-Francos, A.-O. Konuray, A. Belmonte, S. De la Flor, À. Serra and X. Ramis, Polymer Chemistry, 2016, 7, 2280-2290. 5. M. Ogata, N. Kinjo and T. Kawata, Journal of Applied Polymer Science, 1993, 48, 583-601. 6. I. E. Dell'Erba and R. J. J. Williams, Polymer Engineering Science, 2006, 46, 351-359. 7. G. Hougham, G. Tesoro, A. Viehbeck and J. D. Chapple-Sokol, Macromolecules, 1994, 27, 5964-5971. 8. T. Nishikubo and T. Shimokawa, Die Makromolekulare Chemie, Rapid Communications, 1986, 7, 179-181. 9. T. Nishikubo, T. Iizawa and S. Saita, Journal of Polymer Science Part A: Polymer Chemistry, 1986, 24, 1685-1695. 10. T. Nishikubo, S. Saita and T. Fujii, Journal of Polymer Science Part A: Polymer Chemistry, 1987, 25, 1339-1351. 11. S. Nakamura and M. Arima, International Journal of Polymer Analysis and Characterization, 1995, 1, 75-86. 12. K. Takeuchi, E. Suzuki, K. Morinaga and K. Arita, US Patent, 2014, US 8,791,214 B792. 13. K. Arita and o. S. To, US Patent, 2015, US 2015/0344617 A0344611. 14. R. P. Babu, K. O'Connor and R. Seeram, Progress in Biomaterials, 2013, 2, 8. 15. A. Gandini and T. M. Lacerda, Progress in Polymer Science, 2015, 48, 1-39. 16. S. Sen, S. Patil and D. S. Argyropoulos, Green Chemistry, 2015, 17, 4862-4887. 17. G. Z. Papageorgiou, D. G. Papageorgiou, Z. Terzopoulou and D. N. Bikiaris, European Polymer Journal, 2016, 83, 202-229. 18. F. H. Isikgor and C. R. Becer, Polymer Chemistry, 2015, 6, 4497-4559. 19. S. Wang, S. Ma, Q. Li, X. Xu, B. Wang, W. Yuan, S. Zhou, S. You and J. Zhu, Green Chemistry, 2019, 21, 1484-1497. 20. M. Decostanzi, R. Auvergne, B. Boutevin and S. Caillol, Green Chemistry, 2019, 21, 724-747. 21. E. D. Hernandez, A. W. Bassett, J. M. Sadler, J. J. La Scala and J. F. Stanzione, ACS Sustainable Chemistry Engineering, 2016, 4, 4328-4339. 22. D. Fourcade, B. S. Ritter, P. Walter, R. Schönfeld and R. Mülhaupt, Green Chemistry, 2013, 15, 910-918. 23. A.-S. Mora, R. Tayouo, B. Boutevin, G. David and S. Caillol, Green Chemistry, 2018, 20, 4075-4084. 24. J. R. Mauck, S. K. Yadav, J. M. Sadler, J. J. La Scala, G. R. Palmese, K. M. Schmalbach and J. F. Stanzione III, Macromolecular Chemistry and Physics, 2017, 218, 1700013. 25. E. A. Baroncini, S. Kumar Yadav, G. R. Palmese and J. F. Stanzione III, Journal of Applied Polymer Science, 2016, 133. 26. R. Auvergne, S. Caillol, G. David, B. Boutevin and J.-P. Pascault, Chemical Reviews, 2014, 114, 1082-1115. 27. T. Koike, Polymer Engineering Science, 2012, 52, 701-717. 28. H. Nouailhas, C. Aouf, C. Le Guerneve, S. Caillol, B. Boutevin and H. Fulcrand, Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49, 2261-2270. 29. F. Dasgupta, WO Patent, 2011, WO 2011041487. 30. N. H. Nieu, T. T. M. Tan and N. L. Huong, Journal of Applied Polymer Science, 1996, 61, 2259-2264. 31. İ. Kaya, F. Doğan and M. Gül, Journal of Applied Polymer Science, 2011, 121, 3211-3222. 32. C. Aouf, J. Lecomte, P. Villeneuve, E. Dubreucq and H. Fulcrand, Green Chemistry, 2012, 14, 2328-2336. 33. S. Ma, T. Li, X. Liu and J. Zhu, Polymer International, 2016, 65, 164-173. 34. U. Biermann, W. Friedt, S. Lang, W. Lühs, G. Machmüller, J. O. Metzger, M. Rüsch gen. Klaas, H. J. Schäfer and M. P. Schneider, Angewandte Chemie International Edition, 2000, 39, 2206-2224. 35. Y. Takada, K. Shinbo, Y. Someya and M. Shibata, Journal of Applied Polymer Science, 2009, 113, 479-484. 36. F. Hu, J. J. La Scala, J. M. Sadler and G. R. Palmese, Macromolecules, 2014, 47, 3332-3342. 37. X. Feng, A. J. East, W. Hammond and M. Jaffe, in Contemporary Science of Polymeric Materials, American Chemical Society, 2010, vol. 1061, ch. 1, pp. 3-27. 38. S. Ma, X. Liu, L. Fan, Y. Jiang, L. Cao, Z. Tang and J. Zhu, ChemSusChem, 2014, 7, 555-562. 39. B. Sung, S. Prasad, S. C. Gupta, S. Patchva and B. B. Aggarwal, in Advances in Botanical Research, eds. L.-F. Shyur and A. S. Y. Lau, Academic Press, 2012, vol. 62, pp. 57-132. 40. J. Qin, H. Liu, P. Zhang, M. Wolcott and J. Zhang, Polymer International, 2014, 63, 760-765. 41. J. Wan, J. Zhao, B. Gan, C. Li, J. Molina-Aldareguia, Y. Zhao, Y.-T. Pan and D.-Y. Wang, ACS Sustainable Chemistry Engineering, 2016, 4, 2869-2880. 42. J. Wan, B. Gan, C. Li, J. Molina-Aldareguia, Z. Li, X. Wang and D.-Y. Wang, Journal of Materials Chemistry A, 2015, 3, 21907-21921. 43. J. Wan, B. Gan, C. Li, J. Molina-Aldareguia, E. N. Kalali, X. Wang and D.-Y. Wang, Chemical Engineering Journal, 2016, 284, 1080-1093. 44. J.-T. Miao, L. Yuan, Q. Guan, G. Liang and A. Gu, ACS Sustainable Chemistry Engineering, 2017, 5, 7003-7011. 45. I. Faye, M. Decostanzi, Y. Ecochard and S. Caillol, Green Chemistry, 2017, 19, 5236-5242. 46. X. Ning and H. Ishida, Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32, 1121-1129. 47. T. Agag and T. Takeichi, Macromolecules, 2003, 36, 6010-6017. 48. T. Takeichi, T. Kano and T. Agag, Polymer, 2005, 46, 12172-12180. 49. C.-F. Wang, Y.-C. Su, S.-W. Kuo, C.-F. Huang, Y.-C. Sheen and F.-C. Chang, Angewandte Chemie International Edition, 2006, 45, 2248-2251. 50. S.-W. Kuo, Y.-C. Wu, C.-F. Wang and K.-U. Jeong, The Journal of Physical Chemistry C, 2009, 113, 20666-20673. 51. M.-C. Tseng and Y.-L. Liu, Polymer, 2010, 51, 5567-5575. 52. K. Zhang, Q. Zhuang, Y. Zhou, X. Liu, G. Yang and Z. Han, Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50, 5115-5123. 53. C.-H. Chen, K.-W. Lee, C.-H. Lin and T.-Y. Juang, Polymers, 2018, 10, 411. 54. Y. L. Kobzar, I. M. Tkachenko, V. N. Bliznyuk, E. V. Lobko, O. V. Shekera and V. V. Shevchenko, Polymer, 2018, 145, 62-69. 55. Z. Brunovska, J. P. Liu and H. Ishida, Macromolecular Chemistry and Physics, 1999, 200, 1745-1752. 56. J. Dunkers and H. Ishida, Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37, 1913-1921. 57. C. Liu, D. Shen, R. M. Sebastián, J. Marquet and R. Schönfeld, Polymer, 2013, 54, 2873-2878. 58. J. Sun, W. Wei, Y. Xu, J. Qu, X. Liu and T. Endo, RSC Advances, 2015, 5, 19048-19057. 59. M. G. Mohamed, K.-C. Hsu and S.-W. Kuo, Polymer Chemistry, 2015, 6, 2423-2433. 60. C. H. Lin, C. K. Chien, C. H. Chen and T. Y. Juang, RSC Advances, 2017, 7, 37844-37851. 61. C. H. Lin, Z. J. Chen, C. H. Chen, M. W. Wang and T. Y. Juang, ACS Omega, 2017, 2, 3432-3440. 62. A. W. Kawaguchi, A. Sudo and T. Endo, Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52, 1448-1457. 63. M. Ergin, B. Kiskan, B. Gacal and Y. Yagci, Macromolecules, 2007, 40, 4724-4727. 64. C.-I. Chou and Y.-L. Liu, Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46, 6509-6517. 65. Y.-H. Wang, C.-M. Chang and Y.-L. Liu, Polymer, 2012, 53, 106-112. 66. M. Gomes, A. Gandini, A. J. D. Silvestre and B. Reis, Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49, 3759-3768. 67. C. K. Lee, J. S. Yu and H.-J. Lee, Journal of Heterocyclic Chemistry, 2002, 39, 1207-1217. 68. L. Han, M. L. Salum, K. Zhang, P. Froimowicz and H. Ishida, Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55, 3434-3445. 69. X. Ning and H. Ishida, Journal of Polymer Science Part B: Polymer Physics, 1994, 32, 921-927. 70. C. H. Lin, S. L. Chang, C. W. Hsieh and H. H. Lee, Polymer, 2008, 49, 1220-1229. 71. R. Andreu, J. A. Reina and J. C. Ronda, Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46, 3353-3366. 72. S. Ohashi, D. Iguchi, T. R. Heyl, P. Froimowicz and H. Ishida, Polymer Chemistry, 2018, 9, 4194-4204. 73. H. Ishida and S. Ohba, Polymer, 2005, 46, 5588-5595. 74. I. Hamerton, B. J. Howlin, A. L. Mitchell, L. T. McNamara and S. Takeda, Reactive and Functional Polymers, 2012, 72, 736-744. 75. P. Velez-Herrera, K. Doyama, H. Abe and H. Ishida, Macromolecules, 2008, 41, 9704-9714. 76. J. Chen, M. Zeng, Z. Feng, T. Pang, Y. Huang and Q. Xu, ACS Applied Polymer Materials, 2019, 1, 625-630. 77. H. Yee Low and H. Ishida, Polymer, 1999, 40, 4365-4376. 78. J. Liu and H. Ishida, Macromolecules, 2014, 47, 5682-5690. 79. Y. L. Kobzar, I. M. Tkachenko, V. N. Bliznyuk and V. V. Shevchenko, Reactive and Functional Polymers, 2018, 133, 71-92.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81961-
dc.description.abstract本研究首先將單官能環氧化合物、單官能酯類化合物、微量的三級氮觸媒進行熔融混摻,鑑定環氧基與活性酯基的反應機制,並設計多種應用以解決現今環氧樹脂熱性質與介電性質不佳、過度依賴石油原料之問題,此外,同時藉由此化學合成多官能氧代氮代苯併環己烷樹脂。 為了同時提升環氧樹脂固化物的熱性質與介電性質,本篇研究選用含有甲基丙烯酸酯末端的聚氧二甲苯商品SA9000與環氧樹脂進行共聚,並將固化物進行機械性質、熱性質與介電性質分析,其固化物薄膜具有透明性與可撓曲性,並具有優異的熱性質(Tg = 218-220 oC)與介電性質(Df = 0.003),兩者性質皆優於未改質的聚氧二甲苯雙酚SA90與環氧樹脂之共聚物。 環氧樹脂固化物現今多倚賴石油原料,而本篇研究由生質能衍生物合成了四種含有活性酯的雙官能環氧化合物,並透過FTIR、DSC分析得知四種環氧化合物皆具有自身固化特性,可透過自身固化的方式簡易達成全生質能為基底之固化物,而所得固化物皆具有優異的介電性質(Df = 0.007-0.010)。 多官能氧代氮代苯併環己烷樹脂雖有優異的機械性質,卻難以被合成,因此,本篇研究合成含有活性酯基的Bz化合物,並利用活性酯基與環氧基的反應,與兩種環氧樹脂DGEBA、HP7200合成雙官能與多官能氧代氮代苯併環己烷樹脂,透過DSC與FTIR分析,證明兩種合成的樹脂皆具有較低的固化溫度與較高的反應性,而升溫固化後,所得固化物具有優異的熱穩定性(Td5%=356-367 oC)與介電性質(Df=0.005-0.007)zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T05:33:11Z (GMT). No. of bitstreams: 1
U0001-2809202111253600.pdf: 6568202 bytes, checksum: 7ad8e46d2dd0edfe8970e4987582e370 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents中文摘要 I Abstract III 目錄 IV Scheme 目錄 VI 圖目錄 VIII 表目錄 IX 第一章 緒論 1 第二章 原理與文獻回顧 2 2.1 環氧樹脂之發展背景 2 2.2 環氧樹脂之開環機制 2 2.3 生質能衍生環氧樹脂 7 2.4 氧代氮代苯併環己烷樹脂之背景 10 第三章 實驗內容 13 3.1 實驗藥品與溶劑 13 3.2 實驗儀器與分析 16 3.3 實驗規劃 19 3.4 實驗步驟 21 3.4.1 活性酯基與環氧基反應機制鑑定 21 3.4.2 低介電與高熱穩定性環氧樹脂固化物 23 3.4.3 簡易達成全生質能為基底之環氧樹脂固化物的方法 26 3.4.3 由市售環氧樹脂合成多官能benzoxazine樹脂之方法 35 第四章 結果與討論 41 4.1 反應機制鑑定 41 4.1.1 模型反應(I):GPE均聚反應鑑定 41 4.1.2 模型反應(II):GPE與酯類化合物反應機制鑑定 42 4.1.3 模型反應(III):GPE與活性酯化合物反應機制鑑定 47 4.2 低介電與高熱穩定性環氧樹脂固化物 55 4.2.1 環氧樹脂與SA9000共聚機制 55 4.2.2 環氧樹脂與SA9000共聚固化物薄膜機械性質分析 55 4.2.3 環氧樹脂與SA9000共聚固化物熱機械性質分析 56 4.2.4 環氧樹脂與SA9000共聚固化物介電性質分析 60 4.3 簡易達成全生質能為基底之環氧樹脂固化物的方法 61 4.3.1環氧單體合成與鑑定 61 4.3.2環氧單體之DSC分析 66 4.3.3固化物FTIR分析與機制鑑定 67 4.3.4固化物熱機械性質與熱穩定性分析 68 4.3.5固化物介電性質分析 73 4.4 由市售環氧樹脂合成多官能benzoxazine樹脂之方法 74 4.4.1含活性酯之Bz化合物(4-BZBP)製備 74 4.4.2多官能Bz樹脂(EBz-D、EBz-H)製備 83 4.4.3 樹脂反應性分析 88 4.4.4 固化物機械性質及熱性質分析 90 4.4.5 固化物介電性質分析 93 第五章 結論 95 第六章 參考文獻 97 第七章 研究成果列表 101
dc.language.isozh-TW
dc.subject環氧樹脂zh_TW
dc.subject氧代氮代苯併環己烷zh_TW
dc.subject低介電zh_TW
dc.subject熱穩定性zh_TW
dc.subject活性酯基zh_TW
dc.subject生質能zh_TW
dc.subjectbenzoxazineen
dc.subjectepoxyen
dc.subjectactive-esteren
dc.subjectthermal stabilityen
dc.subjectlow-dielectricen
dc.subjectbio-baseden
dc.title環氧樹脂與活性酯共聚反應機制鑑定及其應用zh_TW
dc.titleIdentification and application of reaction mechanism between epoxy and active-esteren
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.coadvisor林慶炫(Ching-Hsuan Lin),鄭如忠(Ru-Jong Jeng)
dc.contributor.oralexamcommittee劉英麟(Hsin-Tsai Liu),戴憲弘(Chih-Yang Tseng),蘇文炯
dc.subject.keyword環氧樹脂,活性酯基,熱穩定性,低介電,生質能,氧代氮代苯併環己烷,zh_TW
dc.subject.keywordepoxy,active-ester,thermal stability,low-dielectric,bio-based,benzoxazine,en
dc.relation.page104
dc.identifier.doi10.6342/NTU202103424
dc.rights.note同意授權(限校園內公開)
dc.date.accepted2021-10-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
dc.date.embargo-lift2026-10-04-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2809202111253600.pdf
  未授權公開取用
6.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved