Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81951
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏瑞泓(Jui-Hung Yen)
dc.contributor.authorWan-Chun Liaoen
dc.contributor.author廖婉淳zh_TW
dc.date.accessioned2022-11-25T03:07:19Z-
dc.date.available2023-09-01
dc.date.copyright2021-11-11
dc.date.issued2021
dc.date.submitted2021-08-24
dc.identifier.citation王一雄。2004。農藥汙染物對作物的影響。植物重要防疫檢疫病害診斷鑑定技術研習會專刊,3,73-96。 李國欽、陳朝月。1979。殺丹、馬上除、多谷三種殺草劑對土壤中氨化及消化反應之影響。科學發展,8,913-920。 李國欽、賴水金。1977。土壤中農藥殘留量對微生物之影響。科學農業,25,347-355。 施念昊、許得美、徐慈鴻。2019。利用氣相層析串聯質譜法及超高效液相層析串聯質譜法同時檢測土壤中 352 種農藥殘留。臺灣農藥科學,6,1-36。 徐芳瑜。2011。添加植體對除草劑施得圃在土壤中的消散及土壤菌相的影響。臺灣大學農業化學系碩士論文。 高清文、李敏。2008。農藥合理化使用的現況與展望。農業試驗所特刊,133,87-106。 張秀齡。2001。醯胺類除草劑在不同土壤中的吸附、降解及移動之研究。國立臺灣大學農業化學研究所碩士論文。 許志聖、楊嘉凌、侯福分。2005。台灣水田除草劑的演變與發展。中華民國雜草學會會刊,26,1-14。 郭育倫。2019。微生物物種-環境因子分析。檢自http://toolsbiotech.blog.fc2.com/blog-entry-114.html?sp (Aug 16, 2021) 陳存澤、王斐能、鍾仁賜、張義宏。2012。不同的有機質肥料連用七年對土壤化學性質、酵素活性及微生物族群結構的影響。台灣農業化學與食品科學,50,179-188。 黃㯖昌、郭克忠。2004。殺菌劑之合理使用與管理。植物保護學會特刊,6,207-219。 費雯綺、王喻其。2007。植物保護手冊─糧食作物及其他篇,第33頁。台中。 楊秋忠。2003。加強生物多樣性調查與生物種原蒐集及利用研究。農政與農情,128。檢自https://www.coa.gov.tw/ws.php?id=4344 (May 10, 2021) 楊秀珠。2012 a。農藥之合理與安全施用技術。合理、安全及有效使用農藥輔導教材-農藥,1.1,1-36。 楊晁晟。2012 b。臺灣水田公益機能評估與實例探討計畫執行成果。農政與農情,235。檢自 https://www.coa.gov.tw/ws.php?id=2444924 (May 22, 2021) 蔣永正。1997。農藥的藥害。臺灣省農業藥物毒物試驗所技術專刊第74號。臺中,臺灣。 蔣永正。2004。水稻田常用農藥對稻株生育之影響。中華民國雜草學會會刊,25,83-96。 蔣永正。2011。除草劑的毒性及環境安全性。中華民國雜草學會會刊,32,117-131。 蔣永正、蔣慕琰。1998。水田雜草生態及防治。臺灣省農業藥物毒物試驗所技術專刊。81,1-23。 蔣永正、蔣慕琰。2009。常用除草劑之特性與應用。作物診斷與農藥安全使用手冊,205-226。 蔣慕琰、蔣永正、袁秋英。2002。除草劑引起之草相變遷及抗藥性。除草劑在台灣四十年回顧與展望研討會專刊。中華民國雜草學會。25-30。 蔡文珊。2001。農藥毒理特性與管理。農政與農情,113。檢自https://www.coa.gov.tw/ws.php?id=3985 (May 5, 2021) 謝式坢鈺。2003。水稻白葉枯病。植物保護圖鑑系列8─水稻保護,323-324。 Abdel-Mallek, A. Y., Mohorram, A. M., Abdel-Kader, M. I., and Omar, A. 1994. Effect of soil treatment with the organophosphorus insecticide profenofos on the fungal flora and some microbial activities. Microbiol. Rev. 30, 428-471. Akan, J. C., Inuwa, L. B., Chellube, Z. M., Mahmud, M. M., and Abdulrahman, F. I. 2019. Assessment of the levels of herbicide residues in fish samples from Alau Dam, Maiduguri, Borno, State. Niger. Environ. Chem. 3, 53-58. Ali, S., Mondal, S., Ghosh, G. K., Bisws, P. K., and Kundu, M. C. 2016. Effect of pesticides on mineral nitrogen content and soil microbial population in a lateritic soil of west bengal. Int. J. Plant Animal Env. Sci. 6, 27-32. Appleby, A. P., and Valverde, B. E. 1989. Behavior of dinitroaniline herbicides in plants. Weed Technol. 3, 198-206. Baboo, M., Pasayat, M., Samal, A., Kujur, M., Maharana, J. K., and Patel, A. L. 2013. Effect of four herbicides on soil organic carbon, microbial biomass-c, enzyme activity and microbial populations in agricultural soil. Int. J. Res. Environ. Sci. Technol. 3, 100-112. Baruah, M., and Mishra, R. R. 1986. Effect of herbicides butachlor, 2,4-D and oxyfluorfen on enzyme activities and CO2 evolution in submerged paddy field soil. Plant Soil. 96, 287-291. Beestman, G. B., and Deming, J. M. 1974. Dissipation of acetanilide herbicides from soils. Agron J. 66, 308-313. Bissett, A., Brown, M. V., Siciliano, S. D., and Thrall, P. H. 2013. Microbial community responses to anthropogenically induced environmental change: towards a systems approach. Ecol. Lett. 16, 128-139. Bottrill, D., Ogbourne, S. M., Citerne, N., Smith, T., Farrar, M. B., Hu, H. W., Omidvar, N., Wang, J., Burton, J., Kamper, W., and Bai, S. H. 2020. Short-term application of mulch, roundup and organic herbicides did not affect soil microbial biomass or bacterial and fungal diversity. Chemosphere 244. Boussingault, J. B., and Lewy, B. 1853. Memoire sur la composition de l'aire confine dans la terre vegetale. Ann. Chem. Phys. 37, 5-50. Bowen, G. D., and Rovira, A. D. 1999. The Rhizosphere and Its Management To Improve Plant Growth. In Advances in Agronomy. 66, 1-102. Bremner, J. M., and Mulvaney, C. S. 1982. Salicylic acid-thiosulphate modification of Kjeldahl method to include nitrate and nitrite. In Page, A. C., Miller, R. H., and Keeney, D. R. (Eds.), Agronomy 9: methods of soil analyses. Part 2. Chemical and microbiological properties. (pp. 621-622). Soil Science Society of America, Madison, Wisconsin, USA. Burrows, L. A., and Edwards, C. A. 2002. The use of integrated soil microcosms to predict effects of pesticides on soil. Eur. J. Soil Biol. 38, 245-249. Campbell, C., Grayston, S., and Hirst, D. 1997. Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. J Microbiol. Methods. 30, 33-41. Chen, Y. L. 1979. Effect of butachlor on ammonification and nitrification in water-logged soil. In Chen, Y. L. (Eds.), Proceedings of the seventh Asian-Pacific Weed Science Society Conference. (pp. 467-470). Sydney, Australia. Chen, Y. L., Lin, F. P., Chen, L. C., and Wang, Y. S. 1981. Effects of herbicide butachlor on nitrogen transformation of fertilizers and soil microbes in water-logged soil. J. Pestic. Sci. 6, 1-7. Chowdhury, S., and Pal, S. 2017. Effect of Butachlor on biochemical properties. Int. J. Biochem. Res. Rev. 16, 1-11. Classen, A. T., Boyle, S. I., Haskins, K. E., Overby, S. T., and Hart, S. C. 2003. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiol. Ecol. 44, 319-328. Crecchio, C., Gelsomino, A., Ambrosoli, R., Minati, J. L., and Ruggiero, P. 2004. Functional and molecular responses of soil microbial communities under differing soil management practices. Soil Biol. Biochem. 36, 1873-1883. Das, A. C., and Debnath, A. 2006. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal. Chemosphere. 65, 1082-1086. Domsch, K. H. 1970. Effects of fungicides on microbial population in soil. In Guyer, G. E. (Eds.), Pesticides in the Soil: Ecology, Degradation and Movement. (pp. 42-46). Symp. E. Lansing. MI, Michigan State University, East Lansing. Dwivedi, S., Saquib, Q., Al-Khedhairy, A. A., and Musarrat, J. 2012. Butachlor induced dissipation of mitochondrial membrane potential, oxidative DNA damage and necrosis in human peripheral blood mononuclear cells. Toxicology. 302, 77-87. Egbe, C. C., Oyetibo, G. O., and Ilori, M. O. 2021. Ecological impact of organochlorine pesticides consortium on autochthonous microbial community in agricultural soil. Ecotoxicol. Environ. Saf. 207, 1-9. Fang, H., Yu, Y. L., Wang, X. G., Chu, X. Q., and Yang, X. E. 2009. Persistence of the herbicide butachlor in soil after repeated applications and its effects on soil microbial functional diversity. J. Environ. Sci. Health B, 44, 123-129. Fließbach, A., and Mäder, P. 1996. Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol. Biochem. 32, 757-768. Floch, C., Chevremont, A. C., Joanico, K., Capowiez, Y., and Criquet, S. 2011. Indicators of pesticide contamination: Soil enzyme compared to functional diversity of bacterial communities via Biolog® Ecoplates. Eur. J. Soil Biol. 47, 256-263. Fox, J. E., Gulledge, J., Engelhaupt, E., Burrow, M. E., and McLachlan, J. A. 2007. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc. Natl. Acad. Sci. U.S.A. 104, 10282-10287. Gangloff, S., Stille, P., Schmitt, A., and Chabaux, F. 2016. Factors controlling the chemical composition of colloidal and dissolved fractions in soil solutions and the mobility of trace elements in soils. Geochim. Cosmochim. Acta. 189, 37-57. Garland, J. L. 1996. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil. Biol. Biochem. 28, 213-221. Garland, J. L. 1997. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol. Ecol. 24, 289-300. Garland, J. L., and Mills, A. L. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Environ. Microbiol. 57, 2351-2359. Geng, B. R., Yao, D., and Xue, Q. Q. 2005. Genotoxicity of pesticide dichlorvos and herbicide butachlor in Rhacophorus megacephalus tadpoles. Acta Zool. Sin. 51, 447-454. Guo, Y., Amundson, R., Gong, P., and Ahrens, R. 2003. Taxonomic Structure, Distribution, and Abundance of the Soils in the USA. Soil sci. Soc. Am. J. 67, 1507-1516. Hang, M., Ye, Y. F., Chen, Z. Y., Wu, W. X., and Du, Y. F. 2001. Effects of butachlor on microbial populations and enzyme activities in paddy soil. J. Environ. Sci. Health B. 36, 581-595. Hornsby, A. G., Wauchope, R. D., and Herner, A. E. 1996. Pesticide properties in the environment. New York, USA: Spriger-Verlag. Jadhav, A. S., Patil, M. G., and Sonwane, R. K. 2019. Effect of Different Doses of Pendimethalin on Microbial Activities and Nodulation in Chickpea. In Sayyed, R., Reddy, M., and Antonius, S. (Eds.), Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture. (pp. 157-162). Springer, Singapore. Jenkinson, D. S., and Ladd, J. N. 1981. Microbial biomass in soil: measurement and turnover. In Paul, E. A., Ladd, J. N. (Eds.), Soil Biochemistry. (pp. 415-471). Marcel Dekker, New York and Basel. Jiang, J., Sun, Q., Chen, L., and Zou, J. 2014. Effects of the herbicides butachlor and bensulfuron-methyl on N2O emissions from a dry-seeded rice field. Nutr. Cycl. Agroecosyst. 100, 345-356. Kah, M., Beulke, S., and Brown, C. D. 2007. Factors Influencing Degradation of Pesticides in Soil. J. Agric. Food Chem. 55, 4487-4492. Kaur, P., Randhawa, S. K., Duhan, A., and Bhullar, M. S. 2017. Influence of long term application of butachlor on its dissipation and harvest residues in soil and rice. Bull. Environ. Contam. Toxicol. 98, 874-880. Kent, A. D., and Triplett, E. W. 2002. Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu. Rev. Microbiol. 56, 211-236. Kimble, J., and Stewart, B. A. 1995. World soils as a source or sink for radiatively-active gases. In Lal, R., Kimble, J., Levine E., and Stewart B. A. (Eds.), Soil Management and Greenhouse Effect. (pp. 1-7). CRC Press, Boca Ratan, Florida. Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H., and Trevors, J. T. 2004. Methods of studying soil microbial diversity. J. Microbiol. Methods. 58, 169-188. Kulshrestha, G., and Singh, S. B. 1992. Influence of soil moisture and microbial activity on pendimethalin degradation. Bull. Environ. Contam. Toxicol. 48, 269-274. Kumar, V. 2015. A review on efficacy of biopesticides to control the agricultural insect’s pest. Int. J. Agric. Sci. Res. 4, 168-179. Legendre, P. and Anderson, M. J. 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1-24. Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., and Schleper, C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442, 806-809. Lin, H. T., Wong, S. S., and Li, G. C. 2003. Effects of acephate, benomyl and pendimethalin on ammmonification, nitrification and respiration in soil. Plant Prot. Bull. 45, 65-73. Lin, Q., and Brookes, P. C. 1999. An evaluation of the substrate-induced respiration method. Soil Biol. Biochem. 31, 1969-1983. Liu, J., Song, Y., Tang, M., Lu, Q., and Zhong, G. 2020. Enhanced dissipation of xenobiotic agrochemicals harnessing soil microbiome in the tillage-reduced rice-dominated agroecosystem. J. Hazard. Mater. 398, 1-9. Lo, C. C. 2010. Effect of pesticides on soil microbial community. J. Environ. Sci. Health Part B 45, 348-359. Lyon, T. L., and Buckman, H. O. 1922. The nature and properties of soils: A textbook of edaphology. Macmillan, New York. Martins, G. L., Friggi, C. A., Prestes, O. D., Vicari, M. C., Friggi, D. A., Adaime, M. B., and Zanella, R. 2014. Simultaneous LC-MS/MS Determination of Imidazolinone Herbicides Together with Other Multiclass Pesticide Residues in Soil. Clean - Soil, Air, Water. 42, 1441-1449. McBratney, A. B. 1992. On Variation, Uncertainty and Informatics in Environmental Soil Management. Aust J Crop Sci. 30, 913-935. Meena, R., Kumar, S., Datta, R., Lal, R., Vijayakumar, V., Brtnicky, M., and Marfo, T. 2020. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land 9, 1-22. Mendes, K. F., Olivatto, G. P., de Sousa, R. N., Junqueira, L. V., and Tornisielo, V. L. 2019. Natural biochar effect on sorption–desorption and mobility of diclosulam and pendimethalin in soil. Geoderma 347, 118-125. Meng, X. G., Long, X. F., Wang, N., Pan, S. Z., Song, B. A., and Hu, D. Y. 2019. Evaluation of degradation of a novel sulfone bactericide in soils: identifcation of degradation product and kinetics study. Int. J. Environ. Sci. Technol. 17, 891-902. Min, H., Ye, Y. F., Chen, Z. Y., Wu, W. X., and Du, Y. F. 2001. Effects of butachlor on microbial populations and enzyme activities in paddy soil. J. Environ. Sci. Health B 36, 581-595. Möller, J. 1879. Über die freie Kohlensäure im Boden. Forsch. Gebeite Agric. Physiol. 2, 329-338. Mukherjee, D., Mitra, S., and Das, A. C. 1991. Effect of oilcakes on changes in carbon, nitrogen and microbial population in soil. J. the Ind. Soc. of Soil Sci. 39, 457-62. Müller, F., Ackermann, P., and Margot, P. 2012. Fungicides, Agricultural, 2. Individual Fungicides. In Ullmann’s Encyclopedia of Industrial Chemistry. 6th ed. Chicago, Turabian, Wiley. 16, 157-228. Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., and Marinari, S. 2012. Soil enzymology: classical and molecular approaches. Biol. Fertil. Soils 48, 743-762. Nayak B. S., Prusty, J. C., and Monhanty, S. K. 1994. Effect of herbicides on bacteria, fungi and actinomycetes in sesame (Sesamum indicum) soil. Indian J. Agric. Sci. 64, 888-890. Nelson, D. W., and Sommers, L. E. 1982. Total carbon, organic carbon, and organic matter. In Page, A. C., Miller, R. H., and Keeney, D. R. (Eds.), Methods of Soil Analysis, Part 1. Physical and mineralogical Methods. (pp. 539-579). American Society of Agronomy, Madison, Wisconsin. Nicomrat, D., Tharajak, J., and Kanthang, P. 2016. Pesticides contaminated in rice paddy soil affecting on cultivated microorganism community. Appl. Mech. Mater. 848, 135-138. Nongthombam, S., Nayek, H., and Das, A. C. 2009. Effect of anilofos and pendimethalin on the mineralization of carbon and nitrogen in a Haplustept soil of West Bengal. J. Crop Weed 5, 206-212. Ockleford, C., Adriaanse, P., Berny, P., Brock, T., Duquesne, S., Grilli, S., Hernandez-Jerez, A. F., Bennekou, S. H., Klein, M., Kuhl, T., Laskowski, R., Machera, K., Pelkonen, O., Pieper, S., Stemmer, M., Sundh, I., Teodorovic, I., Tiktak, A., Topping, C. J., Wolterink, G., Craig, P., de Jong, F., Manachini, B., Sousa, P., Swarowsky, K., Auteri, D., Arena, M., and Rob, S. 2017. Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA. J. 15, 4690. OECD. 2000. OECD Guideline for the testing of chemicals. Test No. 217. Soil Microorganisms: Carbon Transformation Test. Paris, France. OECD. 2002. OECD Guideline for the testing of chemicals. Test No. 216. Soil Microorganisms: Nitrogen Transformation Test. Paris, France. OECD. 2002. OECD Guideline for the testing of chemicals. Test No. 307. Aerobic and Anaerobic Transformation in Soil. Paris, France. Ovreas, L. 2000. Population and community level approaches for analysing microbial diversity in natural environments. Ecol. Lett. 3, 236-251. Parr, J. F. 1974. Effects of pesticides on microorganisms in soil and water. In Guenzi, W. D. (Eds.), Pesticides in soil and water. (pp. 315-340). Soil Science Society of America, Madison, U.S.A. Philippot, L. 2002. Denitrifying genes in bacterial and archaeal genomes. Biochim. Biophys. Acta. 1577, 355-376. Pourbabaei, A. A., Khoshhal NakHjiri, E., Torabi, E., and Farahbakhsh, M. 2020. Dissipation of butachlor by a new strain of Pseudomonas sp. isolated from paddy soils. Pollution 6, 627-635. Prakash, N. B., and Devi, L. S. 2000. Persistence of butachlor in soils under different moisture regimes. J. Indian Soc. Soil Sci. 48, 249-256. Rahman, M. M., Nahar, K., Ali, M. M., Sultana, N., Karim, M. M., Adhikari, U. K., and Azad, M. A. K. 2020. Effect of long-term pesticides and chemical fertilizers application on the microbial community specifically anammox and denitrifying bacteria in rice field soil of jhenaidah and kushtia district, bangladesh. Bull. Environ. Contam. Toxicol. 104, 828-833. Rao, M. A., Scelza, R., Acevedo, F., Diez, M. C., and Gianfreda, L. 2014. Enzymes as useful tools for environmental purposes. Chemosphere 107, 145-162. Raj, S. K., and Syriac, E. K. 2017. Herbicidal effect on the bio-indicators of soil health- A review. J. Appl. Nat. Sci. 9, 2438-2448. Raymond, J., Siefert, J. L., Staples, C. R., and Blankenship, R. E. 2004. The natural history of nitrogen fixation. Mol. Biol. Evol. 21, 541-554. Reis, F. C. D., Tornisielo, V. L., Martins, B. A. B., Souza, A. J., Andrade, P. A. M., Andreote, F. D., Silveira, R. F., and Victoria Filho, R. 2019. Respiration induced by substrate and bacteria diversity after application of diuron, hexazinone, and sulfometuron-methyl alone and in mixture. J. Environ. Sci. Health B 54, 560-568. Reverchon, F., Bai, S. H., Liu, X., and Blumfield, T. J. 2015. Tree plantation systems influence nitrogen retention and the abundance of nitrogen functional genes in the solomon islands. Front. Microbiol. 6, 1439. Robertson, G. P., and Groffman, P. M. 2007. Nitrogen transformation. In Paul, E. A. (Eds.), Soil Microbiology, Ecology, and Biochemistry. (pp. 341-364). Oxford, UK: Elsevier Acad. Robertson, G. P., and Vitousek, P. M. 2009. Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34, 97-125. Rose, M. T., Ng, E. L., Weng, Z., Wood, R., Rose, T. J., and Zwieten, L.V. 2018. Minor effects of herbicides on microbial activity in agricultural soils are detected by N-transformation but not enzyme activity assays. Eur. J. Soil Biol. 87, 72-79. Saha, M., Pradhan, S., Chowdhury, A., Sanyal, A., Majumdar, A., and Saha, M. N. 2008. Effect of pendimethalin on soil microbial biomass carbon, basal soil respiration and microbial metabolic quotient in tropical soils. Pestic. Res. J. 20, 87-89. Sarmah, A. K., Müller, K., and Ahmad, R. 2004. Fate and behaviour of pesticides in the agroecosystem - a review with a New Zealand perspective. Aust. J. Soil Res. 42, 125-154. Savage, K. E. 1978. Persistence of several dinitroaniline herbicides as affected by soil moisture. Weed Sci. 26, 465-471. Schlesinger, W. H. 1990. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature. 348, 232-234. Schlesinger, W. H. 1995. An overview of the C cycle. In Lal, R., Kimble, J., Levin, J., and Stewart, B. A. (Eds.), Soils and Global Change. (pp. 9-26). Lewis Publishers, Boca Raton, FL. Simonson, R. W. 1968. Concept of soil. Adv. Agron. 20, 1-47. Singh, V., and Singh, K. 2016. Effect of herbicide Butachlor on the earthworm Eutyphoeus waltoni Michaelsen. Int. J. Pure App. Biosci. 4, 216-225. Sinha, A. P., Agnihotri, V. P., and Singh, K. 1979. Effect of herbicides on nitrification and ammonification activity in soil. Indian J. Microbiol. 19, 52-55. Sondhia, S., Singh, V. P., and Yaduraju, N. T. 2006. Persistence of butachlor in sandy clay loam soil and its residues in rice grains and straw. Ann. Plant Prot. Sci. 14, 206-209. Stotzky, G., and Norman, A. G. 1961. Factors limitingmicrobial activities in soil - I. The level of substrate, nitrogen and phosphorus. Archiv fur Mikrobiologie 40, 341-369. Stotzky, G. 1965. Microbial respiration. In Black, C. A., Evans, D. D., Ensminger, L. E., White, J. L., Clark, F. E., and Dinauer, R. C. (Eds.), Methods of Soil Analysis- Part 2, Chemical and Microbiological Properties. (pp. 1550-1572). Amercan Society of Agronomy. Madison. Wisconsin. USA. Thiour-Mauprivez, C., Martin-Laurent, F., Calvayrac, C., and Barthelmebs, L. 2019. Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers? Sci. Total Environ. 684, 314-325. Thomas, G. W. 1982. Exchangeable cations. In Page, A. C., Miller, R. H., and Keeney, D. R. (Eds.), Methods of Soil Analysis, Part 2 – Chemical and Microbiological Properties. (pp. 159-165). Soil Science Society of America, Madison, Wisconsin, USA. Thomas, G. W. 1996. Soil pH and Soil Acidity. In Sparks, D. L. (Eds.), Methods of Soil Analysis, Part 3 – Chemical Methods. (pp. 475–490). Soil Science Society of America, Madison, Wisconsin, USA. Tomlin, C. D., and Ed, S. 2003. The pesticide Manual, 16th ed., BCPC and RSC, UK. Torabi, E., Wiegert, C., Guyot, B., Vuilleumier, S., and Imfeld, G. 2020. Dissipation of S-metolachlor and butachlor in agricultural soils and responses of bacterial communities: Insights from compound-specific isotope and biomolecular analyses. J. Environ. Sci. (China). 92, 163-175. Torstenssen, L., and Stenstorm, J. 1986. Basic respiration rate as a tool for prediction of pesticide persistence in soil. Toxic. Assess. 1, 57-72. Torsvik, V., Goksoyr, J., and Daae, F. L. 1990 a. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782-787. Torsvik, V., Salte, K., Soerheim, R., and Goksoeyr, J. 1990 b. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol. 56, 776-781. Trevors, J. T. 1998. Bacterial biodiversity in soil with an emphasis on chemically-contaminated soils. Water Air Soil Pollut. 101, 45-67. Ullah, M. R., and Dijkstra, F. A. 2019. Fungicide and Bactericide Effects on Carbon and Nitrogen Cycling in Soils: A Meta-Analysis. Soil Syst. 3, 1-15. Ullah, M. R., Carrillo, Y., and Dijkstra, F. A. 2021. Biocides provide a source of carbon and nitrogen directly to surviving microbes and indirectly through a pulse in microbial necromass. Appl. Soil Ecol. 160, 1-11. USDA. 1993. Soil Survey Manual. Revised Edition, United States Department of Agriculture Handbook No. 18, US Department of Agriculture, Washington, DC. Vajargah, M. F., and Hedayati, A. 2017. Acute toxicity of butachlor to Rutilus rutilus caspicus and Sander lucioperca in vivo condition. Transylv. Rev. Syst. Ecol. Res. 19, 85-92. Wainwright, M. 1978. A review of the effects of pesticides on microbial activity in soils. J. Soil Sci. 29, 287-298. Walkley, A., and Black, I. A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29-38. Wang, Y., Amundson, R., and Trumbore, S. 1999. The impact of land use change on C turnover in soils. Global Biogeochem. Cycles 13, 47-57. Wang, Y., Cang, T., Yu, R., Wu, S., Liu, X., Chen, C., Wang, Q., and Cai, L. 2016. Joint acute toxicity of the herbicide butachlor and three insecticides to the terrestrial earthworm, Eisenia fetida. Environ. Sci. and Pollut. Res. 23, 11766-11776. Wardle, D. A., and Parkinson, D. 1990. Interactions between microclimatic variables and the soil microbial biomass. Biol. Fertil. Soils 9, 273-280. Weber, J. B. 1990. Behavior of dinitroaniline herbicides in soils. Weed Technol. 4, 394-406. West, A., and Sparling, G. 1986. Modifications to the substrate-induced respiration method to permit measurement of microbial biomass in soils of differing water contents. J. Microbiol. Methods 5, 177-189. Witter, E., Martensson, A. M., and Garcia, F. V. 1993. Size of the soil microbial biomass in a long-term field experiment as affected by different N-fertilizers and organic manures. Soil. Biol. Biochem. 25, 659-669. Wollny, E. 1881. Untersuchungen tiber den Einfluss der physikalischen Eigenschaften des Bodens auf dessen Gehalt an freier Kohlensiiure. Forsch. Gebeite Agric. Physiol. 4, 1-28. Wu, M., Li, G., Chen, X., Liu, J., Liu, M., Jiang, C., and Li, Z. 2018. Rational dose of insecticide chlorantraniliprole displays a transient impact on the microbial metabolic functions and bacterial community in a silty-loam paddy soil. Sci. Total Environ. 616-617, 236-244 Yang, Y., Wang, N., Guo, X., Zhang, Y., and Ye, B. 2017. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS One. 12:e0178425. Zain, N. M. M., Mohamad, R. B., Sijam, K., Morshed, M. M., and Awang, Y. 2013. Effects of selected herbicides on soil microbial populations in oil palm plantation of Malaysia: a microcosom experiment. Afri. J. Microb. Res. 7, 367-374. Zaller, J. G., Cantelmo, C., Santos, G. D., Muther, S., Gruber, E., Pallua, P., Mandi, K., Friedrich, B., Hofstetter, I., Schmuckenschlager, B., and Faber, F. 2018. Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice. Environ. Sci. Pollut. Res. 25, 23215-232226. Zimdahl, R. L., Catizone, P., and Butcher, A. C. 1984. Degradation of pendimethalin in Soil. Weed Sci. 32, 408-412.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81951-
dc.description.abstract農藥對於土壤環境及生物具潛在影響,經施用後進入到土壤中,可能改變土壤物化性質與影響土壤微生物的活性及多樣性,其中土壤微生物參與許多土壤中的反應過程,包含有機質分解及碳與氮的循環,而農藥可能會對土壤微生物及其參與之生化反應過程造成影響。本研究選用三種施用於水田之農藥,包含除草劑施得圃 (Pendimethalin)、丁基拉草 (Butachlor),以及殺菌劑克枯爛 (Tecloftalam) 進行土壤孵育試驗,探討農藥以不同劑量施用於水田土壤環境中的消散情況,以及農藥對土壤碳及氮轉化作用、土壤微生物的代謝活性與群落結構之影響。本研究以國立臺灣大學農業試驗場水田土壤 (NTU) 及桃園農業改良場水田土壤 (TYD) 為試驗土壤,將土壤預孵育14天後進行農藥添加,以田間推薦用量及五倍推薦用量施用,並於施用後之第1天、第7天、第14天及第28天,分別測定土壤基本性質、土壤碳及氮轉化試驗、農藥殘留分析及微生物代謝活性與多樣性。結果顯示施得圃之施用會降低兩種水田土壤之有機碳含量與微生物的碳呼吸作用,於兩種土壤中殘留量皆隨時間顯著下降,且施用施得圃會改變兩種土壤微生物群落結構;於土壤氮轉化試驗結果,施得圃會促進NTU土壤氮轉化作用,而對於TYD土壤則無顯著影響。施用丁基拉草會降低TYD土壤pH值及EC值,對兩種土壤中微生物的碳呼吸作用有先降後升之情形,對於兩種土壤氮轉化作用則無顯著影響,於兩種土壤中殘留量皆隨時間遞減。丁基拉草以不同濃度施用皆會顯著影響TYD土壤微生物群落結構,而NTU土壤微生物群落結構則於高濃度施用下改變。施用克枯爛會降低兩種土壤EC值,及降低TYD土壤有機碳含量;碳轉化試驗結果,克枯爛會顯著降低TYD土壤微生物呼吸作用;氮轉化結果於施用前期會降低NTU土壤銨態氮含量,而對TYD土壤則會降低土壤硝酸態氮含量;施用不同劑量皆會顯著改變兩種土壤微生物群落結構。綜上所述,本研究結果顯示施得圃、丁基拉草以及克枯爛的施用會對不同性質的土壤發生影響,而對於土壤性質的影響需要依農藥性質分別檢視,而且土壤微生物所參與環境中兩個重要的循環—碳及氮轉化作用,亦隨農藥種類及土壤性質而有差異,故於使用農藥時需考量且準確評估其對環境污染等影響,以達環境友善與農業耕作管理相互平衡之關係。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:07:19Z (GMT). No. of bitstreams: 1
U0001-2408202111404600.pdf: 3091910 bytes, checksum: 487174bce3ed5f5e8e71cf1d41319a72 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents中文摘要 I 英文摘要 III 目錄 V 圖目錄 VII 表目錄 X 壹、前言 1 1.1 前人研究 1 1.2 農藥與土壤環境的關係 3 1.3 微生物與土壤碳轉化 6 1.4 微生物與土壤氮轉化 8 1.5 土壤微生物群落多樣性 10 1.6 研究試驗土壤之水田環境與農藥施用 12 1.7 本研究用藥簡介 14 貳、研究目的 21 參、試驗架構 22 肆、材料與方法 23 4.1 試驗土壤與基本性質分析 23 4.2 土壤孵育試驗 27 4.3 土壤碳轉化試驗 31 4.4 土壤氮轉化試驗 34 4.5 農藥於土壤中的殘留量分析 38 4.6 土壤微生物群落層級生理圖譜分析 42 4.7 統計分析 44 伍、結果與討論 45 5.1 供試土壤基本性質測定結果 45 5.2 施用施得圃對土壤之影響 47 5.2.1 施得圃對土壤性質之影響 47 5.2.2 施得圃對土壤碳轉化之影響 51 5.2.3 施得圃對土壤氮轉化之影響 55 5.2.4 施得圃於土壤中的殘留量分析 60 5.2.5 施得圃對於土壤微生物群落之影響 63 5.3 施用丁基拉草對土壤之影響 66 5.3.1 丁基拉草對土壤性質之影響 66 5.3.2 丁基拉草對土壤碳轉化之影響 70 5.3.3 丁基拉草對土壤氮轉化之影響 76 5.3.4 丁基拉草於土壤中的殘留量分析 81 5.3.5 丁基拉草對於土壤微生物群落之影響 84 5.4 施用克枯爛對土壤之影響 88 5.4.1 克枯爛對土壤性質之影響 88 5.4.2 克枯爛對土壤碳轉化之影響 91 5.4.3 克枯爛對土壤氮轉化之影響 95 5.4.4 克枯爛於土壤中的殘留量分析 100 5.4.5 克枯爛對於土壤微生物群落之影響 101 5.5 結果統整 105 陸、結論 117 柒、參考文獻 118
dc.language.isozh-TW
dc.subject土壤微生物zh_TW
dc.subject施得圃zh_TW
dc.subject丁基拉草zh_TW
dc.subject克枯爛zh_TW
dc.subject氮轉化zh_TW
dc.subject土壤呼吸zh_TW
dc.subjectNitrogen transformationen
dc.subjectSoil microorganismen
dc.subjectSoil respirationen
dc.subjectPendimethalinen
dc.subjectButachloren
dc.subjectTecloftalamen
dc.title施用不同農藥對於水田土壤的碳及氮轉化影響zh_TW
dc.titleEffects of pesticide application on carbon and nitrogen transformation in paddy soilsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳玟瑾(Hsin-Tsai Liu),林乃君(Chih-Yang Tseng),徐慈鴻,何素鵬
dc.subject.keyword施得圃,丁基拉草,克枯爛,氮轉化,土壤呼吸,土壤微生物,zh_TW
dc.subject.keywordPendimethalin,Butachlor,Tecloftalam,Nitrogen transformation,Soil respiration,Soil microorganism,en
dc.relation.page129
dc.identifier.doi10.6342/NTU202102664
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
dc.date.embargo-lift2023-09-01-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-2408202111404600.pdf3.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved