Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 腦與心智科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8194
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳恩賜(Joshua Oon Soo Goh)
dc.contributor.authorYi-Chuang Linen
dc.contributor.author林以莊zh_TW
dc.date.accessioned2021-05-20T00:49:54Z-
dc.date.available2020-08-26
dc.date.available2021-05-20T00:49:54Z-
dc.date.copyright2020-08-26
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citationAlbert, W., Reinitz, M. T., Beusmans, J., Gopal, S. (1999). The role of attention in spatial learning during simulated route navigation. Environment and planning A, 31(8), 1459-1472.
Barry, C., Burgess, N. (2007). Learning in a geometric model of place cell firing. Hippocampus, 17(9), 786-800.
Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O'Keefe, J., . . . Burgess, N. (2006). The boundary vector cell model of place cell firing and spatial memory. Reviews in the Neurosciences, 17(1-2), 71.
Bechara, A., Damasio, H., Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10(3), 295-307.
Bellmund, J. L. S., Deuker, L., Navarro Schröder, T., Doeller, C. F. (2016). Grid-cell representations in mental simulation. eLife, 5, e17089. doi:10.7554/eLife.17089
Bjerknes, T. L., Moser, E. I., Moser, M.-B. (2014). Representation of geometric borders in the developing rat. Neuron, 82(1), 71-78. doi:10.1016/j.neuron.2014.02.014
Bowman, D. A., Davis, E. T., Hodges, L. F., Badre, A. N. (1999). Maintaining spatial orientation during travel in an immersive virtual environment. Presence, 8(6), 618-631.
Chen, L. L., Lin, L.-H., Green, E. J., Barnes, C. A., McNaughton, B. L. (1994). Head-direction cells in the rat posterior cortex. Experimental brain research, 101(1), 8-23.
Chrastil, E. R., Sherrill, K. R., Hasselmo, M. E., Stern, C. E. (2015). There and Back Again: Hippocampus and Retrosplenial Cortex Track Homing Distance during Human Path Integration. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(46), 15442-15452. doi:10.1523/JNEUROSCI.1209-15.2015
Chrastil, E. R., Warren, W. H. (2013). Active and passive spatial learning in human navigation: Acquisition of survey knowledge. Journal of experimental psychology: learning, memory, and cognition, 39(5), 1520.
Chrastil, E. R., Warren, W. H. (2015). Active and passive spatial learning in human navigation: acquisition of graph knowledge. Journal of Experimental Psychology. Learning, Memory, and Cognition, 41(4), 1162-1178. doi:10.1037/xlm0000082
Daw, N. D., O'doherty, J. P., Dayan, P., Seymour, B., Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876-879.
De Martino, B., Kumaran, D., Seymour, B., Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. Science (New York, N.Y.), 313(5787), 684-687.
Doeller, C. F., Barry, C., Burgess, N. (2010). Evidence for grid cells in a human memory network. Nature, 463(7281), 657. doi:10.1038/nature08704
Duarte, I. C., Ferreira, C., Marques, J., Castelo-Branco, M. (2014). Anterior/posterior competitive deactivation/activation dichotomy in the human hippocampus as revealed by a 3D navigation task. PLoS One, 9(1), e86213.
Edvardsen, V., Bicanski, A., Burgess, N. (2020). Navigating with grid and place cells in cluttered environments. Hippocampus, 30(3), 220-232.
Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184-188.
Elliott, R., Dolan, R. J., Frith, C. D. (2000). Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cerebral Cortex, 10(3), 308-317.
Epic Games. (2019). Unreal Engine (Version: 4.18.3) [Computer software]. Retrieved from https://www.unrealengine.com
Epstein, R. A., Patai, E. Z., Julian, J. B., Spiers, H. J. (2017). The cognitive map in humans: spatial navigation and beyond. Nature Neuroscience, 20(11), 1504.
Etienne, A. S., Jeffery, K. J. (2004). Path integration in mammals. Hippocampus, 14(2), 180-192.
Etienne, A. S., Teroni, E., Hurni, C., Portenier, V. (1990). The effect of a single light cue on homing behaviour of the golden hamster. Animal Behaviour, 39(1), 17-41.
Gagliardo, A., Ioalé, P., Bingman, V. P. (1999). Homing in pigeons: the role of the hippocampal formation in the representation of landmarks used for navigation. Journal of Neuroscience, 19(1), 311-315.
Geva-Sagiv, M., Las, L., Yovel, Y., Ulanovsky, N. (2015). Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience, 16(2), 94-108.
Gu, Y., Lewallen, S., Kinkhabwala, A. A., Domnisoru, C., Yoon, K., Gauthier, J. L., . . . Tank, D. W. (2018). A map-like micro-organization of grid cells in the medial entorhinal cortex. Cell, 175(3), 736-750. e730.
Guterstam, A., Björnsdotter, M., Gentile, G., Ehrsson, H. H. (2015). Posterior cingulate cortex integrates the senses of self-location and body ownership. Current Biology, 25(11), 1416-1425.
Haber, S. N., Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4-26.
Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806. doi:10.1038/nature03721
Hägglund, M., Mørreaunet, M., Moser, M.-B., Moser, E. I. (2019). Grid-cell distortion along geometric borders. Current Biology, 29(6), 1047-1054. e1043.
Hare, T. A., Camerer, C. F., Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science (New York, N.Y.), 324(5927), 646-648.
Hazama, Y., Tamura, R. (2019). Effects of self-locomotion on the activity of place cells in the hippocampus of a freely behaving monkey. Neuroscience letters, 701, 32-37.
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science (New York, N.Y.), 310(5754), 1680-1683.
Ikeda, A., Lüders, H. O., Burgess, R. C., Shibasaki, H. (1992). Movement-related potentials recorded from supplementary motor area and primary motor area: role of supplementary motor area in voluntary movements. Brain, 115(4), 1017-1043.
Jacobs, J., Weidemann, C. T., Miller, J. F., Solway, A., Burke, J. F., Wei, X.-X., . . . Fried, I. (2013). Direct recordings of grid-like neuronal activity in human spatial navigation. Nature Neuroscience, 16(9), 1188-1190.
Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J., Rushworth, M. F. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience, 9(7), 940-947.
Kesner, R. P., Olton, D. S. (2014). Neurobiology of comparative cognition: Psychology Press.
Knapp, J. M., Loomis, J. M. (2004). Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence: Teleoperators Virtual Environments, 13(5), 572-577.
Knutson, B., Fong, G. W., Adams, C. M., Varner, J. L., Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12(17), 3683-3687.
Li, Z., Phillips, J., Durgin, F. H. (2011). The underestimation of egocentric distance: Evidence from frontal matching tasks. Attention, Perception, Psychophysics, 73(7), 2205.
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 4398-4403.
Marchette, S. A., Bakker, A., Shelton, A. L. (2011). Cognitive Mappers to Creatures of Habit: Differential Engagement of Place and Response Learning Mechanisms Predicts Human Navigational Behavior. Journal of Neuroscience, 31(43), 15264-15268. doi:10.1523/JNEUROSCI.3634-11.2011
Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., . . . Pike, B. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1412), 1293-1322.
Morgan, L. K., Macevoy, S. P., Aguirre, G. K., Epstein, R. A. (2011). Distances between real-world locations are represented in the human hippocampus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(4), 1238-1245. doi:10.1523/JNEUROSCI.4667-10.2011
Morris, R. G., Garrud, P., Rawlins, J. a., O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681-683.
Muller, R. U., Kubie, J. L. (1987). The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. Journal of Neuroscience, 7(7), 1951-1968.
Nadel, L., Hoscheidt, S., Ryan, L. R. (2013). Spatial cognition and the hippocampus: the anterior–posterior axis. Journal of cognitive neuroscience, 25(1), 22-28.
O'Keefe, J., Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381(6581), 425-428.
O'Keefe, J., Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171-175. doi:https://doi.org/10.1016/0006-8993(71)90358-1
O'keefe, J., Nadel, L. (1978). The hippocampus as a cognitive map: Oxford: Clarendon Press.
Packard, M. G., McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65(1), 65-72.
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E. (2011). Statistical parametric mapping: the analysis of functional brain images: Elsevier.
R Core Team (2013). R: A language and environment for statistical computing [Computer software manual]. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/
Rolls, E., Miyashita, Y., Cahusac, P., Kesner, R., Niki, H., Feigenbaum, J., Bach, L. (1989). Hippocampal neurons in the monkey with activity related to the place in which a stimulus is shown. Journal of Neuroscience, 9(6), 1835-1845.
Rolls, E. T. (1999). Spatial view cells and the representation of place in the primate hippocampus. Hippocampus, 9(4), 467-480.
Rushworth, M. F., Behrens, T., Rudebeck, P., Walton, M. (2007). Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends in Cognitive Sciences, 11(4), 168-176.
Schneider, W., Eschman, A., and Zuccolotto, A. (2012). E-Prime Reference Guide. Pittsburgh: Psychology Software Tools, Inc.
Sherrill, K. R., Chrastil, E. R., Aselcioglu, I., Hasselmo, M. E., Stern, C. E. (2018). Structural differences in hippocampal and entorhinal gray matter volume support individual differences in first person navigational ability. Neuroscience, 380, 123-131.
Shibasaki, H., Sadato, N., Lyshkow, H., Yonekura, Y., Honda, M., Nagamine, T., . . . Miyazaki, M. (1993). Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain, 116(6), 1387-1398.
Taube, J. S. (1995). Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. Journal of Neuroscience, 15(1), 70-86.
Taube, J. S., Muller, R. U., Ranck, J. B. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal of Neuroscience, 10(2), 420-435.
The Math Works, Inc. (2017). MATLAB (Version 2017a) [Computer software]. Retrieved from https://www.mathworks.com/
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological review, 55(4), 189.
Ulanovsky, N., Moss, C. F. (2007). Hippocampal cellular and network activity in freely moving echolocating bats. Nature Neuroscience, 10(2), 224-233.
Wunderlich, K., Rangel, A., O'Doherty, J. P. (2009). Neural computations underlying action-based decision making in the human brain. Proceedings of the National Academy of Sciences, 106(40), 17199-17204.
Yamamoto, N. (2012). The role of active locomotion in space perception. Cognitive Processing, 13(1), 365-368.
Yan, C.-G., Wang, X.-D., Zuo, X.-N., Zang, Y.-F. (2016). DPABI: data processing analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339-351.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8194-
dc.description.abstract位於海馬迴中之網格細胞與位置細胞是為建立認知地圖之空間表徵。於本研究中,我們假設於導航期間,價值決策之能動性將加強發生於交界處與地標處之決策事件之權重,進而提升導航表現。此發生於交界處與地標處,或稱空間節點之編碼,提供了海馬迴神經細胞額外之權重,以編碼空間成為結構性之節點地圖。基於此假設,我們檢驗了於學習及提取期間,空間地圖於內部(自由導航)與外部(引導導航)產生之導航行為下之神經反應。我們招募了二十一位受試者於虛擬迷宮中分別進行自由導航、與引導導航之功能性磁振造影(fMRI)實驗。學習期間,於自由導航之情況下,受試者自由習得地標位置;於引導導航之情況下,受試者觀看影片引導其習得地標位置。提取期間,受試者判定目的地標之方向、距離、並且導航至目的地標始自不同之地點。我們觀察到於提取期間,引導導航相較於自由導航,受試者需花費更多時間導航至目的地標,並且展現更頻繁之失誤。關鍵腦區包含學習期間之輔助運動皮質區、與學習及提取期間之海馬迴,於自由導航之下,展現較引導導航下更高對於空間節點之神經反應;學習期間之顳中迴與提取期間之前、後扣帶迴皮質,於引導導航之下,展現較自由導航下更高對於空間節點之神經反應。特別來說,前海馬迴於學習期間自由導航下,展現較引導導航下更高對於空間節點之神經反應;後海馬迴則表現於提取期間引導導航下,較自由導航下更高由距離誤判比率調控對於距離判斷之神經反應。總結而言,我們展示於空間導航期間,價值決策能動性對於前海馬迴建構空間節點訊息之重要性。zh_TW
dc.description.abstractGrid and place cell activity in the hippocampus (HC) instantiate cognitive map representations of space. In this study, we hypothesized that agency in navigational decision-making enhances navigational performances via emphasis on decision events at junctions and landmarks. Such coding of junctions and landmarks, or spatial nodes, provides HC neurons with additional weighting to encode plain space into structured node maps. To this end, we evaluated neural responses during learning and retrieving spatial maps under conditions of internally (Free) vs. externally (Tour) generated navigational movements. Twenty-one participants underwent functional magnetic resonance imaging (fMRI) spatial navigational experiments in virtual mazes under Free and Tour conditions. In the Free condition, participants learned landmark locations by free navigation. During retrieval, participants determined directions and distances and navigated to target landmarks from various start locations. In the Tour condition, participants viewed videos guiding them through the landmarks then did the same retrieval test. Navigation to target landmarks during retrieval took longer and failed more often for Tour than Free conditions. Critically, supplementary motor area responses during learning and HC responses during learning and retrieval to spatial nodes were higher for Free than Tour conditions. Middle temporal gyrus responses during learning, anterior and posterior cingulate cortex responses during retrieval to spatial nodes were higher for Tour than Free conditions. In particular, anterior HC responses to spatial nodes during learning were higher for Free than Tour conditions. In addition, posterior HC response modulation by distance mis-estimation during retrieval was greater for Tour than Free conditions. In sum, we demonstrate that agency in making navigational decisions is important for spatial node formation in anterior HC.en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:49:54Z (GMT). No. of bitstreams: 1
U0001-1508202000162100.pdf: 62484940 bytes, checksum: e8c31bc5b74b8c2bfe785b3993b59d03 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iv
Abstract v
Content vii
Introduction 1
Grid and Place Cells Represent Space in Animal Hippocampus 2
Grid and Place Cells are also in the Human Hippocampus 4
Navigational Agency Modulates Spatial Map Representations 7
Theory: Decision Making Circuits Provide Basis to Label Internal Brain Activity States in Navigational Agency 9
Hypothesis: Map Learning with Navigational Decisions Enhances Spatial Representations 11
Methods 14
Participants 14
Stimuli 14
Virtual Environment Visuals, Interface, and Parameters 14
Debriefing and Questionnaire 16
Procedure 16
Familiarization 17
Formal Experiment 19
Debriefing and Questionnaire 20
Behavioral Error Rates During Retrieval Analysis 20
Brain Imaging Acquisition 21
fMRI Data Preprocessing 22
First Level Model of Learning Phase Neural Responses 23
First Level Model of Retrieval Phase Neural Responses 24
Second Level Model of Neural Responses 24
Region of Interest (ROI) Definition and Analysis 25
Results 26
Behavioral Results 26
Learning Patterns in Free and Tour Conditions 26
Better Map Retrieval Performances in Free than Tour 26
Functional Imaging Results 27
Differences of Neural Responses During Free and Tour Learning 27
Differences of Neural Responses During Free and Tour Retrieval 28
Specific Spatial Environments Represented in ROIs 29
Specific Neural Responses in Hippocampal Subregions 30
Correlations Between Hippocampal Responses and Behavioral Performances 30
Discussion 32
Navigational Agency Enhances Navigational Performances 32
Decision Making Provides Basis to Label Internal Brain Activity States in Navigational Agency 34
Dissociation Between Anterior and Posterior Hippocampus in Decision Making Based Navigational Neural Representations 36
Limitations and Implications 37
References 39
Figures 47
Figure 1. Hypothesized Brain Activations During Learning 47
Figure 2. Hypothesized Brain Activations During Retrieval 48
Figure 3. Virtual Environment Settings 49
Figure 4. Familiarization Procedure and Design 50
Figure 5. Formal Experiment Procedure and Design 51
Figure 6. a priori anatomical hippocampal ROIs 52
Figure 7. Learning Paths in Free and Tour Conditions of Single Subject 53
Figure 8. Learning Patterns in Free and Tour Conditions 54
Figure 9. Behavioral Error Rates 55
Figure 10. Behavioral Durations 56
Figure 11. Differences of Neural Responses During Free and Tour Learning 57
Figure 12. Differences of Neural Responses at Different Location States During Free and Tour Learning 58
Figure 13. Differences of Neural Responses at Different Location States During Free and Tour Retrieval 59
Figure 14. Differences of Neural Responses During Free and Tour Retrieval Judgements 60
Figure 15. Specific Spatial Environments Represented in ROIs 61
Figure 16. Specific Neural Responses in Hippocampal Subregions 62
Figure 17. Correlations Between Hippocampal Responses and Behavioral Performances 63
Tables 64
Table 1. Learning Patterns in Free and Tour Conditions 64
Table 2. ANOVA Table of Error Rates 65
Table 3. Paired T Test Table of Error Rates in Free and Tour Conditions 66
Table 4. Paired T Test Table of Direction Judgement Error Rate 67
Table 5. Paired T Test Table of Distance Judgement Error Rate 68
Table 6. Paired T Test Table of Navigational Error Rate 69
Table 7. ANOVA Table of Durations 70
Table 8. Paired T Test Table of Durations in Free and Tour Conditions 71
Table 9. Paired T Test Table of Direction Judgement Duration 72
Table 10. Paired T Test Table of Distance Judgement Duration 73
Table 11. Paired T Test Table of Navigational Duration 74
Table 12. Differences of Neural Responses During Free and Tour Learning 75
Table 13. Differences of Neural Responses At Different Location States During Free and Tour Learning 76
Table 14. Differences of Neural Responses At Different Location States During Free and Tour Retrieval 77
Table 15. Differences of Neural Responses During Free and Tour Retrieval Judgements 78
Table 16. Specific Spatial Environments Represented in ROIs 79
Table 17. Specific Neural Responses in Hippocampal Subregions 80
dc.language.isoen
dc.title導航能動性提升空間環境之神經表徵zh_TW
dc.titleNavigational Agency Enhances Neural Representations of Spatial Environmentsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張玉玲(Yu-Ling Chang),黃植懋(Chih-Mao Huang)
dc.subject.keyword空間導航,價值決策,網格細胞,位置細胞,海馬迴,功能性磁振造影,zh_TW
dc.subject.keywordSpatial navigation,Decision making,Grid cell,Place cell,Hippocampus,fMRI,en
dc.relation.page80
dc.identifier.doi10.6342/NTU202003498
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept腦與心智科學研究所zh_TW
顯示於系所單位:腦與心智科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1508202000162100.pdf61.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved