Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81947
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佩貞(Pei-Jen Chen)
dc.contributor.authorHsiang-Yun Luen
dc.contributor.author呂項筠zh_TW
dc.date.accessioned2022-11-25T03:07:13Z-
dc.date.available2026-09-17
dc.date.copyright2021-11-06
dc.date.issued2021
dc.date.submitted2021-09-17
dc.identifier.citation朱曜. (2015). 不同粒徑之二氧化鉛對青鱂魚成魚的生物可及性, 生物累積及毒性效應評估. 國立臺灣大學碩士論文, 1-87. Abdullah, S., Javed, M., Javid, A. J. I. J. A. B. (2007). Studies on acute toxicity of metals to the fish (Labeo rohita). International Journal of Agriculture and Biology, 9, 333-337. Adam, N., Leroux, F., Knapen, D., Bals, S., Blust, R. (2015). The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios. Water research, 68, 249-261. doi:10.1016/j.watres.2014.10.001 Ahamed, M., Akhtar, M. J., Khan, M. M., Alhadlaq, H. A., Aldalbahi, A. (2017). Nanocubes of indium oxide induce cytotoxicity and apoptosis through oxidative stress in human lung epithelial cells. Colloids and Surfaces B: Biointerfaces, 156, 157-164. Ahlinder, L., Ekstrand-Hammarström, B., Geladi, P., Österlund, L. (2013). Large uptake of titania and iron oxide nanoparticles in the nucleus of lung epithelial cells as measured by Raman imaging and multivariate classification. Biophysical journal, 105(2), 310-319. Ahmed, S., Kobayashi, H., Afroz, T., Ma, N., Oikawa, S., Kawanishi, S., . . . Hiraku, Y. (2020). Nitrative DNA damage in lung epithelial cells exposed to indium nanoparticles and indium ions. Scientific Reports, 10(1), 10741. Amde, M., Liu, J.-f., Tan, Z.-Q., Bekana, D. (2017a). Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. Environmental pollution, 230, 250-267. Bae, S.-H., Yu, J., Lee, T. G., Choi, S.-J. (2018). Protein food matrix–ZnO nanoparticle interactions affect protein conformation, but may not be biological responses. International journal of molecular sciences, 19(12), 3926. Bateman, K. S., Stentiford, G. D., Feist, S. W. (2004). A ranking system for the evaluation of intersex condition in European flounder (Platichthys flesus). Toxicology and Chemistry: An International Journal, 23(12), 2831-2836. Bel Hadj Tahar, R., Ban, T., Ohya, Y., Takahashi, Y. (1998). Tin doped indium oxide thin films: Electrical properties. Journal of Applied Physics, 83(5), 2631-2645. Betz, U., Olsson, M. K., Marthy, J., Escolá, M., Atamny, F. (2006). Thin films engineering of indium tin oxide: large area flat panel displays application. Surface Coatings Technology, 200(20-21), 5751-5759. Bhaskaran, A., May, D., Rand‐Weaver, M., Tyler, C. R. (1999). Fish p53 as a possible biomarker for genotoxins in the aquatic environment. Environmental Molecular Mutagenesis, 33(3), 177-184. Bian, S.-W., Mudunkotuwa, I. A., Rupasinghe, T., Grassian, V. H. (2011). Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir, 27(10), 6059-6068. Brouwer, D. (2010). Exposure to manufactured nanoparticles in different workplaces. Toxicology, 269(2-3), 120-127. Brun, N. R., Christen, V., Furrer, G., Fent, K. (2014). Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio). Environmental Science Technology, 48(19), 11679-11687. Brunelli, E., Domanico, F., La Russa, D., Pellegrino, D. (2014). Sex differences in oxidative stress biomarkers. Current Drug Targets, 15(8), 811-815. Brusle, J., i Anadon, G. G. (2017). The structure and function of fish liver. In Fish morphology (pp. 77-93): Routledge. Bystrzejewska-Piotrowska, G., Asztemborska, M., Giska, I., Mikoszewski, A. (2012). Influence of Earthworms on Extractability of Metals from Soils Contaminated with Al2O3, TiO2, Zn, and ZnO Nanoparticles and Microparticles of Al2O3. Polish Journal of Environmental Studies, 21(2). Cahill, G. M. (2002). Clock mechanisms in zebrafish. Cell Tissue Research, 309(1), 27-34. Cao, X., Han, Y., Li, F., Li, Z., McClements, D. J., He, L., . . . Xiao, H. (2019a). Impact of protein-nanoparticle interactions on gastrointestinal fate of ingested nanoparticles: Not just simple protein corona effects. NanoImpact, 13, 37-43. Chavali, M. S., Nikolova, M. (2019). Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Sciences, 1(6), 1-30. Chen, G., Liu, X., Su, C. (2012). Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns. Environmental Science Technology, 46(13), 7142-7150. Cheng, X.-l., Zheng, Y.-h., Tang, H.-y., JIN, S.-y., XIE, Q.-z. (2009). Study on the joint toxicity of Cu2+, Zn2+, Cd2+ to the juvenile of Megalobram apellegrini. Freshwater Fisheries, 39(2), 54-59. Chiang, C.-W., Ng, D.-Q., Lin, Y.-P., Chen, P.-J. (2016). Dissolved organic matter or salts change the bioavailability processes and toxicity of the nanoscale tetravalent lead corrosion product PbO2 to medaka Fish. Environmental Science Technology, 50(20), 11292-11301. De Maio, A. (1999). Heat shock proteins: facts, thoughts, and dreams. Shock, 11(1), 1-12. Donkor, J., Sariahmetoglu, M., Dewald, J., Brindley, D. N., Reue, K. (2007). Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. Journal of Biological Chemistry, 282(6), 3450-3457. Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., Guo, H. (2011). TiO 2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring, 13(4), 822-828. Egea, J., Klein, R. (2007). Bidirectional Eph–ephrin signaling during axon guidance. Trends in cell biology, 17(5), 230-238. Essers, M. A., Weijzen, S., de Vries‐Smits, A. M., Saarloos, I., de Ruiter, N. D., Bos, J. L., Burgering, B. M. (2004). FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. The EMBO journal, 23(24), 4802-4812. Fahmy, B., Cormier, S. A. (2009). Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology in Vitro, 23(7), 1365-1371. Feigelson, H. S., Shames, L. S., Pike, M. C., Coetzee, G. A., Stanczyk, F. Z., Henderson, B. E. (1998). Cytochrome P450 c17α gene (CYP17) polymorphism is associated with serum estrogen and progesterone concentrations. Cancer research, 58(4), 585-587. Fornace Jr, A. J., Jackman, J., Hollander, M. C., Hoffman‐Liebermann, B., Liebermann, D. A. (1992). Genotoxic‐stress‐response genes and growth‐arrest genes: gadd, MyD, and other genes induced by treatments eliciting growth arrest. Annals of the New York Academy of Sciences, 663(1), 139-153. Galderisi, U., Jori, F. P., Giordano, A. (2003). Cell cycle regulation and neural differentiation. Oncogene, 22(33), 5208-5219. Grillo, R., de Jesus, M. B., Fraceto, L. F. (2018). Environmental impact of nanotechnology: analyzing the present for building the future. Frontiers in Environmental Science, 6, 34. Handy, R. D., Henry, T. B., Scown, T. M., Johnston, B. D., Tyler, C. R. (2008). Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology, 17(5), 396-409. Hou, J., Wang, L., Wang, C., Zhang, S., Liu, H., Li, S., Wang, X. (2019). Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of Environmental Sciences, 75, 40-53. Hu, J., Wang, J., Liu, S., Zhang, Z., Zhang, H., Cai, X., . . . Liu, J. (2018). Effect of TiO2 nanoparticle aggregation on marine microalgae Isochrysis galbana. Journal of Environmental Sciences, 66, 208-215. Hubbard, S. R., Till, J. H. (2000). Protein tyrosine kinase structure and function. Annual Review of Biochemistry, 69(1), 373-398. Hur, S. J., Decker, E. A., McClements, D. J. J. F. c. (2009). Influence of initial emulsifier type on microstructural changes occurring in emulsified lipids during in vitro digestion. 114(1), 253-262. Johnston, B. D., Scown, T. M., Moger, J., Cumberland, S. A., Baalousha, M., Linge, K., . . . Tyler, C. R. (2010). Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environmental Science Technology, 44(3), 1144-1151. Karami, H., Alipour, M. (2009). Synthesis of lead dioxide nanoparticles by the pulsed current electrochemical method. Int. J. Electrochem. Sci, 4, 1511-1527. Karlsson, H. L., Cronholm, P., Gustafsson, J., Moller, L. (2008). Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21(9), 1726-1732. Kaufmann, W. K., Paules, R. S. (1996). DNA damage and cell cycle checkpoints. The FASEB Journal, 10(2), 238-247. Keller, A. A., Wang, H., Zhou, D., Lenihan, H. S., Cherr, G., Cardinale, B. J., . . . Ji, Z. (2010). Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental Science Technology, 44(6), 1962-1967. Lacave, J. M., Bilbao, E., Gilliland, D., Mura, F., Dini, L., Cajaraville, M. P., Orbea, A. (2020). Bioaccumulation, cellular and molecular effects in adult zebrafish after exposure to cadmium sulphide nanoparticles and to ionic cadmium. Chemosphere, 238, 124588. Lian, S., Wang, E., Kang, Z., Bai, Y., Gao, L., Jiang, M., . . . Xu, L. (2004). Synthesis of magnetite nanorods and porous hematite nanorods. Solid State Communications, 129(8), 485-490. Liu, Y., Zhou, J., White, K. P. (2014). RNA-seq differential expression studies: more sequence or more replication? Bioinformatics, 30(3), 301-304. Mahon, E., Salvati, A., Bombelli, F. B., Lynch, I., Dawson, K. A. (2012). Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. Journal of Controlled Release, 161(2), 164-174. Mao, Z., Sun, W., Xu, R., Novgorodov, S., Szulc, Z. M., Bielawski, J., . . . Mao, C. (2010). Alkaline ceramidase 2 (ACER2) and its product dihydrosphingosine mediate the cytotoxicity of N-(4-hydroxyphenyl) retinamide in tumor cells. Journal of Biological Chemistry, 285(38), 29078-29090. Marking, L. L., Dawson, V. K. (1973). Toxicity of quinaldine sulfate to fish. Investigations in Fish Control. McWilliams, P. G., Potts, W. (1978). The effects of pH and calcium concentrations on gill potentials in the brown trout, Salmo trutta. Journal of Comparative Physiology, 126(3), 277-286. Miao, L., Wang, C., Hou, J., Wang, P., Ao, Y., Li, Y., . . . Xu, Y. (2015). Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment. Journal of Nanoparticle Research, 17(10), 404. Mu, S.-W., Dang, Y., Wang, S.-S., Gu, J.-J. (2018). The role of high mobility group box 1 protein in acute cerebrovascular diseases. Biomedical Reports, 9(3), 191-197. Natsume, Y., Ito, S., Satsu, H., Shimizu, M. (2009). Protective effect of quercetin on ER stress caused by calcium dynamics dysregulation in intestinal epithelial cells. Toxicology, 258(2-3), 164-175. Nel, A., Xia, T., Mädler, L., Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622-627. Ng, D.-Q., Chu, Y., Tan, S.-W., Wang, S.-L., Lin, Y.-P., Chu, C.-H., . . . Chen, P.-J. (2019). In vivo evidence of intestinal lead dissolution from lead dioxide (PbO 2) nanoparticles and resulting bioaccumulation and toxicity in medaka fish. Environmental Science: Nano, 6(2), 580-591. Olsson, P.-E., Kling, P., Hogstrand, C. (1998). Mechanisms of heavy metal accumulation and toxicity in fish. In Metal metabolism in aquatic environments (pp. 321-350): Springer. Omar, F. M., Aziz, H. A., Stoll, S. (2014). Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid. Science of the Total Environment, 468, 195-201. Oskam, G. (2006). Metal oxide nanoparticles: synthesis, characterization and application. Journal of Sol-Gel Science and Technology, 37(3), 161-164. Patel, R. K., Jain, M. (2012). NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PloS One, 7(2), e30619. Paterson, G., Ataria, J. M., Hoque, M. E., Burns, D. C., Metcalfe, C. D. (2011). The toxicity of titanium dioxide nanopowder to early life stages of the Japanese medaka (Oryzias latipes). Chemosphere, 82(7), 1002-1009. Peijnenburg, W. J., Baalousha, M., Chen, J., Chaudry, Q., Von der kammer, F., Kuhlbusch, T. A., . . . Renker, M. (2015). A review of the properties and processes determining the fate of engineered nanomaterials in the aquatic environment. Critical Reviews in Environmental Science Technology, 45(19), 2084-2134. Pettibone, J. M., Cwiertny, D. M., Scherer, M., Grassian, V. H. (2008). Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir, 24(13), 6659-6667. Reed, R. B., Ladner, D. A., Higgins, C. P., Westerhoff, P., Ranville, J. F. (2012). Solubility of nano‐zinc oxide in environmentally and biologically important matrices. Environmental toxicology chemistry, 31(1), 93-99. Ren, G., Hu, D., Cheng, E. W., Vargas-Reus, M. A., Reip, P., Allaker, R. P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587-590. Sheng, A., Liu, F., Shi, L., Liu, J. (2016). Aggregation kinetics of hematite particles in the presence of outer membrane cytochrome OmcA of Shewanella oneidenesis MR-1. Environmental Science Technology, 50(20), 11016-11024. Shinomiya, A., Hamaguchi, S., Shibata, N. (2001). Sexual differentiation of germ cell deficient gonads in the medaka, Oryzias latipes. Journal of Experimental Zoology, 290(4), 402-410. Tabei, Y., Sugino, S., Nakajima, Y., Horie, M. (2018). Reactive oxygen species independent genotoxicity of indium tin oxide nanoparticles triggered by intracellular degradation. Food Chemical Toxicology, 118, 264-271. Tessier, A., Gobeil, C., Laforte, L. (2014). Reaction rates, depositional history and sources of indium in sediments from Appalachian and Canadian Shield lakes. Geochimica et Cosmochimica Acta, 137, 48-63. van Aerle, R., Lange, A., Moorhouse, A., Paszkiewicz, K., Ball, K., Johnston, B. D., . . . Santos, E. M. (2013). Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environmental Science Technology, 47(14), 8005-8014. Vega-López, A., Galar-Martínez, M., Jiménez-Orozco, F. A., García-Latorre, E., Domínguez-López, M. L. (2007). Gender related differences in the oxidative stress response to PCB exposure in an endangered goodeid fish (Girardinichthys viviparus). Comparative Biochemistry Physiology Part A: Molecular Integrative Physiology, 146(4), 672-678. Verma, S. K., Panda, P. K., Jha, E., Suar, M., Parashar, S. (2017). Altered physiochemical properties in industrially synthesized ZnO nanoparticles regulate oxidative stress; induce in vivo cytotoxicity in embryonic zebrafish by apoptosis. Scientific Reports, 7(1), 1-16. Wittbrodt, J., Shima, A., Schartl, M. (2002). Medaka—a model organism from the far East. Nature Reviews Genetics, 3(1), 53-64. Wragg, J., Cave, M., Taylor, H., Basta, N., Brandon, E., Casteel, S., . . . Van de Wiele, T. (2009). Inter-laboratory trial of a unified bioaccessibility testing procedure. British Geological Survey. Xiong, D., Fang, T., Yu, L., Sima, X., Zhu, W. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409(8), 1444-1452. Yan, J., Estévez, M. C., Smith, J. E., Wang, K., He, X., Wang, L., Tan, W. (2007). Dye-doped nanoparticles for bioanalysis. Nano Today, 2(3), 44-50. Yang, C.-H., Kung, T.-A., Chen, P.-J. (2019a). Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products. Environmental pollution, 252, 1920-1932. Yang, J.-L., Chen, L.-H. (2018). Toxicity of antimony, gallium, and indium toward a teleost model and a native fish species of semiconductor manufacturing districts of Taiwan. Journal of Elementology, 23(1). Yang, W.-K., Chiang, L.-F., Tan, S.-W., Chen, P.-J. (2018). Environmentally relevant concentrations of di (2-ethylhexyl) phthalate exposure alter larval growth and locomotion in medaka fish via multiple pathways. Science of the Total Environment, 640, 512-522. Yang, X., Wood, P. A., Ansell, C. M., Quiton, D. F. T., Oh, E.-Y., Du-Quiton, J., Hrushesky, W. J. (2009). The circadian clock gene Per1 suppresses cancer cell proliferation and tumor growth at specific times of day. Chronobiology International, 26(7), 1323-1339. Yung, M. M., Wong, S. W., Kwok, K. W., Liu, F., Leung, Y., Chan, W., . . . Leung, K. M. (2015). Salinity-dependent toxicities of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Aquatic Toxicology, 165, 31-40. Zhang, Y., Zhu, L., Zhou, Y., Chen, J. (2015). Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure. Journal of Environmental Sciences, 30, 223-230. Zhdanova, I. V., Reebs, S. G. (2006). Circadian rhythms in fish. Fish Physiology, 24, 197. Zhou, P., Guo, M., Cui, X. (2021). Effect of food on orally-ingested titanium dioxide and zinc oxide nanoparticle behaviors in simulated digestive tract. Chemosphere, 268, 128843.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81947-
dc.description.abstract"奈米氧化金屬顆粒(metal oxide nanoparticles, MONPs)具有獨特物化特性而被應用在許多領域中,導致其流佈到環境之中的可能性高,又因為顆粒本身及其釋出的離子皆可能對生物體造成影響,且環境中的離子強度變化、pH值與環境有機物質的存在都可能改變顆粒的行為,進而影響其對水生生物的生物有效性與毒性,,然而目前MONPs在環境中的行為與水生生物的毒性及生物有效性的關聯性仍有許多不明確之處。 本篇研究分成兩大部分,第一部分量測nIn2O3、nFe3O4、nCuO、nPbO2與bPbO2 奈米顆粒在不同環境基質水(SW、MW、HW與SW+HA)的團聚行為、溶解性以及懸浮性,並以體外模擬消化液試驗推測MONPs在生物體內的行為,接著以青鱂魚(Oryzias latipes)幼魚作為模式生物,將其暴露於各MONPs後七日,探討顆粒行為對生物有效性以及毒性之影響。結果顯示,水中離子強度及腐植酸會影響MONPs在水中的聚集、沉降行為與離子釋出量,進而影響青鱂魚幼魚之生物有效性以及毒性,腐植酸會使青鱂魚幼魚之急毒性顯著上升,同時降低顆粒之生物有效性。MONPs在模擬消化道之行為分析結果則顯示,MONPs在消化道環境中溶液釋出離子,且在模擬消化道環境中仍會持續團聚。 第二部分以六月齡之青鱂魚成魚為模式生物,搭配次世代定序(next generation sequencing, NGS)及化學分析技術,探討奈米氧化銦顆粒之生殖毒性機制,並評估顆粒相較於釋出離子是否具有加成的毒性效應。本研究將六月齡的公母成魚配對,並暴露於nIn2O3處理組 (1.0, 20 mg/L)、In3+處理組 (0.010, 1.0 mg/L) 與中硬度水控制組,進行長達21天的暴露實驗,並量測暴露期間的成魚產蛋率以及F1子代之受精率與死亡率,另量測轉錄體的基因表現量、氧化壓力指標以及組織病理學的結果,以了解nIn2O3可能之致毒機制。結果顯示,nIn2O3與In3+處理組之產蛋率相較於控制組並無顯著的差異,F1子代胚胎之死亡率則受nIn2O3影響顯著提高。本研究進一步以感應耦合電漿質譜儀分析成魚鰓、腸、肝與腦的銦含量,結果顯示高濃度顆粒處理組會使鰓、腸與控制組及銦離子處理組相比有更高的銦濃度累積,然而腦與肝的銦含量在各組間無顯著差異。鰓與腸的氧化壓力相關蛋白之活性測試結果顯示,部分蛋白活性在處理組與控制組間有顯著差異(如CAT與GST)。NGS的定序結果搭配基因本體論(gene ontology, GO)分析顯示暴露在較高濃度奈米氧化銦顆粒的青鱂魚的生理節律以及青鱂魚對非生物性外在環境感應之相關基因被顯著干擾,根據KEGG資料庫的比對,則顯示多種和細胞週期、氧化壓力、DNA損傷相關的途徑受到調控,然而暴露在In3+的處理組則有較少的基因受到調控,包括代謝、骨骼肌肉生成或鈣離子結合之相關基因皆可能受到In3+的影響。 綜觀而論,本研究成果連結不同MONPs在水中行為與水生生物毒性之間的關係,並提出能夠顯示奈米顆粒毒性專一性的生物指標,成果將可幫助訂定奈米顆粒的相關規範。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:07:13Z (GMT). No. of bitstreams: 1
U0001-2408202115365900.pdf: 5249198 bytes, checksum: ef027f410c587ee2ac5eae599f414412 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"致謝 i 摘要 ii ABSTRACT iv 縮寫對照表 vii 目錄 x 圖標題 xiv 表標題 xvi 1. 前言及研究動機 1 2. 文獻回顧 2 2.1 奈米氧化金屬顆粒(metal oxides nanoparticles, MONPs) 2 2.2 MONPs在環境中的行為與宿命 3 2.3 MONPs在水體中的生物有效性 4 2.4 MONPs進入魚體的途徑 5 2.5 MONPs在生物體中的行為 6 2.6 MONPs之生物毒性 7 2.6.1 MONPs對細胞的毒性 7 2.6.2 MONPs對魚類的毒性 9 2.7 模式生物 11 2.8 研究目的 12 3. 研究架構暨材料與方法 13 3.1 研究架構及說明 13 3.2 實驗材料 15 3.2.1 化學藥品與試劑 15 3.2.2 儀器設備 17 3.3 模式生物飼養 18 3.4 MONPs在環境中的行為分析 19 3.4.1 奈米氧化金屬顆粒與環境基質水 19 3.4.2 顆粒TEM測定 21 3.4.3 粒徑大小測定 21 3.4.4 界達電位測定 22 3.4.5 釋出離子量測定 22 3.4.6 沉降性質測定 22 3.5 MONPs在模擬消化道環境的行為 23 3.5.1 MONPs模擬消化道環境試驗設計 23 3.5.2 MONPs在模擬消化道的行為分析 23 3.6 MONPs的急毒性與生物有效性探討 25 3.6.1 MONPs急毒性之試驗設計 25 3.6.2 幼魚體內金屬含量測試 25 3.7 nIn2O3生殖毒性探討 26 3.7.1 nIn2O3生殖毒性探討試驗設計 26 3.7.2 生殖毒性指標分析 27 3.7.3 成魚器官銦分布 27 3.7.4 氧化壓力試驗 28 3.7.4.1 樣本均質與蛋白質濃度定量 28 3.7.4.2 過氧化氫酶(Catalase, CAT)活性測定 29 3.7.4.3 超氧歧化酶(Superoxide dismutase, SOD)活性測定 29 3.7.4.4 穀胱甘肽還原酶(Glutathione Reductase, GR)活性測定 30 3.7.4.5 穀胱甘肽硫轉移酶(Glutathione S-transferase, GST)活性 測定 30 3.7.5 轉錄體次世代定序 31 3.7.6 qPCR基因表現量分析 32 3.7.6.1 RNA樣品採集 32 3.7.6.2 總RNA萃取 32 3.7.6.3 RNA純化 32 3.7.6.4 RNA反轉錄 32 3.7.6.5 即時定量聚合酶連鎖反應 33 3.7.7 組織病理學觀測 35 3.8 統計分析 35 4. 結果與討論 36 4.1 MONPs在環境水體中的行為結果 36 4.1.1 MONPs之TEM型態 36 4.1.2 MONPs在模擬環境基質水中之粒徑變化結果 38 4.1.3 MONPs在模擬環境基質水中之沉降行為變化 41 4.1.4 MONPs在模擬環境基質水的表面電位變化 43 4.1.5 MONPs在模擬環境基質水中之離子釋出量結果 45 4.2 MONPs在模擬消化道環境的行為 47 4.2.1 MONPs在模擬消化道溶液中之粒徑變化結果 47 4.2.2 MONPs在模擬消化道溶液中之離子釋出量 49 4.3 MONPs的生物有效性與急毒性 51 4.3.1 幼魚七日暴露急毒性結果 51 4.3.2 幼魚體內金屬含量(生物有效性)結果 54 4.4 MONPs於水中及消化道行為對水生生物影響之綜合討論 56 4.4.1 MONPs在環境水體中之行為討論 56 4.4.2 MONPs在模擬消化道系統中之行為討論 60 4.4.3 MONPs行為與急毒性之相關性討論 61 4.4.4 MONPs行為與生物有效性之相關性討論 63 4.5 nIn2O3對青鱂魚成魚之生殖毒性及其它生物指標結果 65 4.5.1 暴露溶液的In濃度確認 65 4.5.2 生殖指標結果 67 4.5.3 成魚體內銦含量分布結果 71 4.5.4 氧化壓力試驗結果(鰓與腸) 75 4.5.5 公魚肝轉錄體NGS結果分析 81 4.5.5.1 各組別之重複性結果 81 4.5.5.2 差異表現基因(DEGs)數量 84 4.5.5.3 基因本體論(gene ontology, GO)分析 88 4.5.5.4 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway分析 97 4.5.6 qPCR結果分析 103 4.5.7 組織病理學觀察結果 107 5. 結論 111 6. 參考文獻 112 "
dc.language.isozh-TW
dc.subject次世代定序zh_TW
dc.subject奈米氧化金屬顆粒zh_TW
dc.subject奈米毒性zh_TW
dc.subject腐植酸zh_TW
dc.subjectmetal oxide nanoparticlesen
dc.subjecthumic acid (HA)en
dc.subjectnext generation sequencing (NGS)en
dc.subjectnanotoxicityen
dc.title奈米氧化金屬顆粒在水體中的行為與青鱂魚之生物有效性及毒性的關係zh_TW
dc.titleThe relationship between the aqueous behavior of metal oxide nanoparticles and the bioavailability and toxicity of medaka fishen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王應然(Hsin-Tsai Liu),侯文哲(Chih-Yang Tseng),廖秀娟
dc.subject.keyword奈米氧化金屬顆粒,奈米毒性,次世代定序,腐植酸,zh_TW
dc.subject.keywordmetal oxide nanoparticles,nanotoxicity,next generation sequencing (NGS),humic acid (HA),en
dc.relation.page119
dc.identifier.doi10.6342/NTU202102678
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-09-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
dc.date.embargo-lift2026-09-17-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-2408202115365900.pdf
  此日期後於網路公開 2026-09-17
5.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved