請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81936完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張培仁(Pei-Zen Chang),李尉彰(Wei-Chang Li) | |
| dc.contributor.author | Yu-Shu Lin | en |
| dc.contributor.author | 林鈺紓 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:06:59Z | - |
| dc.date.available | 2026-09-06 | |
| dc.date.copyright | 2021-11-12 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-09 | |
| dc.identifier.citation | 'Multi-Component Dynamometer up to 10 kN,' KISTLER, [Online]. Available: https://www.kistler.com/en/product/type-9257b/. 'Low cost sensors have high impact on productivity,' [Online]. Available: https://www.amrc.co.uk/news/low-cost-sensors-have-high-impact-on-productivity-2. 'Extended cutting tool lifetime in turning processes with Piezo Tool System from Kistler,' [Online]. Available: https://www.kistler.com/en/about-us/competencies/newsletter-august-2019/new-features/article/extended-cutting-tool-lifetime-in-turning-processes-with-piezo-tool-system-from-kistler/. K. Cheng, Z.-C. Niu, R. C. Wang, R. Rakowski and R. Bateman , 'Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives,' Chinese Journal of Mechanical Engineering, vol. 30, pp. 1162-1176, Aug. 2017. Y. Zhao, Y. Zhao and X. Ge, 'The Development of a Triaxial Cutting Force Sensor Based on a MEMS Strain Gauge,' Micromachines (Basel), vol. 9, no. 1: 30, Jan. 2018. 籃貫銘, '智慧機械成台灣跨入工業4.0的尖兵,' [Online]. Available: http://smartauto.ctimes.com.tw/DispArt.asp?O=HK27H8IFEM8ARASTD5. M. Rizal, J. A. Ghani, M. Z. Nuawi and C. H. CheHaron, 'Development and testing of an integrated rotating dynamometer on tool holder for milling process,' Mechanical Systems and Signal Processing, Vols. 52-53, pp. 559-576, Feb. 2015. M. Uddin and D. Songyi, 'On the design and analysis of an octagonal–ellipse ring based cutting,' Measurement, vol. 90, pp. 168-177, Aug. 2016. Y. Qin, D. Wang and Y. Yang , 'Integrated cutting force measurement system based on MEMS sensor for monitoring milling process,' Microsystem Technologies, vol. 26, pp. 2095-2104, Feb. 2020. J. H. Kim, H. K. Chang, D. C. Han and D. Y. Jang, 'Cutting Force Estimation by Measuring Spindle Displacement in Milling Process,' CIRP Annals - Manufacturing Technology, vol. 54, no. 1, pp. 67-70, 2005. Z. Xie, Y. Lu and J. Li, 'Development and testing of an integrated smart tool holder for four-component cutting force measurement,' Mechanical Systems and Signal Processing, vol. 93, pp. 225-240, Sep. 2017. M. Luo, H. Luo, D. Axinte, D. Liu, J. Mei and Z. Liao, 'A wireless instrumented milling cutter system with embedded PVDF sensors,' Mechanical Systems and Signal Processing, vol. 110, pp. 556-568, Sep. 2018. W.-G. Drossel, S. Gebhardt, A. Bucht, B. Kranz, J. Schneider and M. Ettrichrätz, 'Performance of a new piezoceramic thick sensor for measurement and control of cutting forces during milling,' CIRP Annals - Manufacturing Technology, vol. 67, no. 1, pp. 45-48, May 2018. S. Rezvani, N. Nikolov, C.-J. Kim, S. S. Park and J. Lee, 'Development of a Vise with built-in Piezoelectric and Strain Gauge Sensors for Clamping and Cutting Force Measurements,' Procedia Manufacturing, vol. 48, pp. 1041-1046, 2020. M. Lucibella, 'March 1880: The Curie Brothers Discover Piezoelectricity,' AMERICAN PHYSICAL SOCIETY, Mar. 2014. [Online]. Available: https://www.aps.org/publications/apsnews/201403/physicshistory.cfm. D. Damjanovic, 'Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,' Reports on Progress in Physics, vol. 61, no. 9, pp. 1267-1324, 1998. H. Khanbareh, 'Expanding the Functionality of Piezo-Particulate Composites,' in Ph.D dissertation, Delft University of Technology, Netherlands, 2016. T. Furukawa, 'Piezoelectricity and pyroelectricity in polymers,' IEEE Transactions on Electrical Insulation, vol. 24(3), pp. 375-394, Jun. 1989. T. Tanaka, G. C. Montanari and R. Mulhaupt, 'Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11(5), pp. 763-784, Oct. 2004. B. Jaffe, Piezoelectric Ceramics, Academic Press, 1971. R. A. Kishore and S. Priya, 'A Review on Low-Grade Thermal Energy Harvesting: Materials, Methods and Devices,' Materials, vol. 11(8), p. 1433, Aug. 2018. M. Stewart, M. G. Cain and D. A. Hall, 'Ferroelectric Hysteresis Measurement Analysis,' National Physical Laboratory, Teddington, Middlesex, United Kingdom, 1999. L. Jin, F. Li and S. Zhang, 'Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures,' Journal of the American Ceramic Society, vol. 97, no. 1, Jan. 2014. R. C. Smith, Smart Material Systems: Model Development, Frontiers in Applied Mathematics, 2005. E. K. Akdogan, M. Allahverdi and A. Safari, 'Piezoelectric composites for sensor and actuator applications,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52(5), pp. 746-775, May 2005. H. Kawai, 'The Piezoelectricity of Poly (vinylidene Fluoride),' Japanese Journal of Applied Physics, vol. 8, no. 7, pp. 975-976, 1969. R. Atif, J. Khaliq, M. Combrinck, A. H. Hassanin, N. Shehata, E. Elnabawy and I. Shyha, 'Solution Blow Spinning of Polyvinylidene Fluoride Based Fibers for Energy Harvesting Applications: A Review,' Polymers, vol. 12(6), p. 1304, 2020. Q. M. Zhang, V. Bharti and X. Zhao, 'Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-Irradiated Poly(vinylidene fluoride-trifluoroethylene) Copolyme,' Science, vol. 280, no. 5372, pp. 2101-2104, Jun. 1998. 'IEEE Standard on Piezoelectricity,' ANSI/IEEE Std 176-1987, 1988. R. S. Dahiya and M. Valle, Robotic Tactile Sensing, 2013. Y. Altintas, Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, CAMBRIDGE UNIVERSITY PRESS, 2001. V. Nguyen, 'Dynamic PVDF Sensor Based Monitoring of Single Point Cutting Processes,' in M.S. thesis, Georgia Institute of Technology, USA, 2016. J. Karki, 'Signal Conditioning Piezoelectric Sensors,' Texas Instruments, 2020. C.-K. Lee, 'Piezoelectric Laminates,' Intelligent Structural Systems in Solid Mechanics and Its Applications, vol. 13, pp. 75-167, 1992. S. Gaponenko and A. Kondratiev, 'Device for Calibration of Piezoelectric Sensors,' in International Conference on Industrial Engineering(ICIE), Chelyabinsk, Russia, May 15-18, 2017. D. V. Nuffel, J. Peirs, I. D. Baere, P. Verleysen, J. Degrieck and W. V. Paepegem, 'CALIBRATION OF DYNAMIC PIEZOELECTRIC FORCE TRANSDUCERS USING THE HOPKINSON BAR TECHNIQUE,' in 15th International Conference on Experimental Mechanics (ICEM), Porto, Portugal, Jul. 22-27, 2012. K. Kim, J. Kim, X. Jiang and T. Kim, 'Static Force Measurement Using Piezoelectric Sensors,' Journal of Sensors, vol. 2021, 2021. C. Gehin, C. Barthod and Y. Teisseyre, 'Design and characterisation of a new force resonant sensor,' Sensors and Actuators A: Physical, Vols. 84(1-2), pp. 65-69, Aug 2000. C.-H. Lin, M.-C. Tsai and S.-W. Hsiao, 'Static force measurement for automation assembly systems,' Sensors and Actuators A: Physical, vol. 187, pp. 147-153, Nov. 2012. S. Ozeri and D. Shmilovitz, 'Static Force Measurement by Piezoelectric Sensors,' in 2006 IEEE International Symposium on Circuits and Systems, Kos, Greece, May 21-24, 2006. P. Sekalski, A. Napieralski, M. Fouaidy, A. Bosotti and R. Paparella, 'Measurement of static force at liquid helium temperature,' Measurement Science and Technology, vol. 18, p. 2356, 2007. Y. Yang, H. Pan, G. Xie, Y. Jiang, C. Chen, Y. Su, Y. Wang and H. Tai, 'Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring,' Sensors and Actuators A: Physical, vol. 301, p. 111789, Jan. 2020. W. Lin, B. Wang, G. Peng, Y. Shan and H. Hu, 'Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli,' Advanced Science, vol. 8, p. 2002817, Jan. 2021. R. Wang and X. Zhang, 'Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning platform,' Frontiers of Mechanical Engineering, vol. 10, pp. 20-36, 2015. Noliac. [Online]. Available: http://www.noliac.com/products/sensors/. T. Inc.. [Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=11059. H. Wang and X. Zhang, 'Input coupling analysis and optimal design of a 3-DOF compliant micro-positioning stage,' Mechanism and Machine Theory, vol. 43(4), pp. 400-410, Apr. 2008. D. DeAngelis, G. Schulze and K. Wong, 'Optimizing Piezoelectric Stack Preload Bolts in Ultrasonic Transducers,' Physics Procedia, vol. 63, pp. 11-20, 2015. S. P. Wadikhaye, Y. K. Yong and S. O. R. Moheimani, 'A serial-kinematic nanopositioner for high-speed atomic force microscopy,' Review of Scientific Instruments, vol. 85, p. 105104, 2014. J.-C. Yu and C.-B. Lan, 'System modeling of microaccelerometer using piezoelectric thin films,' Sensors and Actuators A, vol. 88, pp. 176-186, 2001. H. Z. Li, H. Zeng and X. Q. Chen, 'An experimental study of tool wear and cutting force variation inthe end milling of Inconel 718 with coated carbide inserts,' Journal of Materials Processing Technology, Vols. 180(1-3), pp. 296-304, 2006. R. Behera, S. Das, D. Chatterjee and G. Sutradhar, 'Forgeability and Machinability of Stir Cast Aluminum Alloy Metal Matrix Composites,' Journal of Minerals Materials Characterization Engineering, vol. 10, no. 10, pp. 923-939, 2011. B. J. Kim and E. Meng, 'Micromachining of Parylene C for bioMEMS,' Polymer Advanced Technologies, vol. 27, pp. 564-576, 2016. B. J. Raos, C. P. Unsworth, J. L. Costa, C. A. Rohde, C. S. Doyle, A. S. Bunting, E. Delivopoulos, A. F. Murray, M. E. Dickinson, M. C. Simpson and E. S. Graham, 'Infra-red laser ablative micromachining of parylene-C on SiO2 substrates for rapid prototyping, high yield, human neuronal cell patterning,' Biofabrication, vol. 5, p. 025006, 2013. O. R. Musaev, P. Scott, J. M. Wrobel, J. A. Wolf and M. B. Kruger, 'UV laser ablation of parylene films from gold substrates,' Journal of Materials Science, vol. 46, pp. 183-187, 2011. C. Porneala, J. Schoenly, X. Song, R. Sarrafi, D. Sercel, S. Dennigan and M. Mendes, 'Selective Removal of Conformal Coatings by Pulsed Ultraviolet Lasers,' in Proceedings of SMTA International, Rosemont, IL, USA, Sep. 25-29, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81936 | - |
| dc.description.abstract | 近年來工具機技術愈發成熟,在加工應用上也越來越廣泛。然而,由於一直以來沒有精確可靠的切削數學模型能夠預測刀具磨耗、表面質量等,尤其是近幾年高精度加工應用具有很大的需求,因此開發加工過程中的監控系統便顯得格外重要。過去大多數研究中常用動力計來測量切削力,但其價格昂貴且占工作空間,使加工受到諸多限制。為了解決這個問題,已有許多文獻提出了幾種基於壓電、壓阻材料和電容換能器的切削力感測器。然而,高速加工時切削力極小且上述大部分文獻提出的感測器都只是模型,很少提及感測器元件和電路前端之間的集成,這是決定感測信號完整性和信噪比的關鍵。因此,本研究旨在提出一種可行的解決方案,在不破壞刀具的結構下嵌入信號線並使用性能佳的壓電感測元件。使用聚偏二氟乙烯 (PVDF) 感測元件與其連接的調節電路集成在一起,以實現量測車刀即時切削力之目的。感測器的動態特性透過脈衝試驗進行評估,且同時也在不同的切削條件下進行了切削試驗。研究結果表顯示,所設計的感測器在不同切削條件下會量測到不同的切削力,因此是一可行且有效的方法,並可推展應用至其他切削加工。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:06:59Z (GMT). No. of bitstreams: 1 U0001-0709202112401400.pdf: 7742029 bytes, checksum: 844336371bde949925c7091b10db37f7 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 i Chapter 1 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.2.1 壓阻式感測器 3 1.2.2 電容式換能器 5 1.2.3 壓電式感測器 6 1.3 研究目標 8 1.4 論文架構 9 Chapter 2 鐵電與壓電材料理論 10 2.1 壓電研究背景 10 2.2 壓電材料特性 10 2.2.1 介電質 (Dielectrics) 11 2.2.2 壓電效應 (Piezoelectric Effect) 12 2.2.3 焦電效應 (Pyroelectric Effect) 13 2.2.4 鐵電效應 (Ferroelectric Effect) 13 2.3 壓電材料種類 14 2.4 PVDF 15 2.5 壓電本構方程式 (Piezoelectric Constitutive Equations) 16 Chapter 3 有限元素數值模擬法 20 3.1 車削刀具之有限元素模擬 20 3.1.1 模擬步驟 20 3.1.2 幾何結構、材料參數以及邊界條件設置 21 3.2 切削力學模型 24 3.3 模擬結果與分析 25 Chapter 4 壓電感測器之設計製作與實驗架設 27 4.1 感測器設計與製作 27 4.1.1 感測器設計 27 4.1.2 感測器製程 28 4.1.3 印刷電路板設計與接線 29 4.2 介面電路設置 31 4.3 量測感測器性質之實驗架設 34 4.3.1 頻率響應 34 4.3.2 敲擊測試 34 4.3.3 車削加工流程 36 4.3.4 遲滯曲線量測流程 37 Chapter 5 實驗結果與討論 40 5.1 壓電感測薄膜性質 40 5.2 遲滯曲線量測結果 42 5.3 切削參數與輸出電壓關係 45 Chapter 6 結論與未來展望 51 6.1 結論 51 6.2 未來展望 51 附錄:以雷射方式整合壓電感測元件製程說明 52 參考文獻 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 車削加工 | zh_TW |
| dc.subject | 動態切削力 | zh_TW |
| dc.subject | 聚偏二氟乙烯 | zh_TW |
| dc.subject | 動力計 | zh_TW |
| dc.subject | Dynamic Cutting Force | en |
| dc.subject | Turning | en |
| dc.subject | Dynamometer | en |
| dc.subject | PVDF | en |
| dc.title | 以壓電感測器量測車刀切削力之製程整合 | zh_TW |
| dc.title | An Integrated Piezoelectric Cutting Force Sensor for Turning Tools | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡毓忠(Hsin-Tsai Liu),蔡燿全(Chih-Yang Tseng) | |
| dc.subject.keyword | 動態切削力,聚偏二氟乙烯,動力計,車削加工, | zh_TW |
| dc.subject.keyword | Dynamic Cutting Force,PVDF,Dynamometer,Turning, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU202103026 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-09-06 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0709202112401400.pdf 此日期後於網路公開 2026-09-06 | 7.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
