請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81932完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許富鈞(Fu-Chiun Hsu) | |
| dc.contributor.author | Tze-Ching Chan | en |
| dc.contributor.author | 詹子慶 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:06:54Z | - |
| dc.date.available | 2026-09-11 | |
| dc.date.copyright | 2021-11-12 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-11 | |
| dc.identifier.citation | 1.吳竺郡. 2016. 耐高溫淹水甘藍苗期生理指標研究. 國立臺灣大學園藝學研究所論文. 臺北. doi: 10.6342/ntu201602738. 2.洪志良. 2016. 甘藍高溫淹水耐受性之 RNA-seq 轉錄體分析. 國立臺灣大學. 2016年. doi: 10.6342/ntu201603060. 3.陳姵華、謝明憲、羅筱鳳. 2014. 甘藍對高溫淹水之生理反應. 臺灣園藝 60:265-286. 4.蕭政弘、郭俊毅. 2007. 甘藍育種成果及未來育種方向. 臺中區農業改良場特刊:36-56. doi: 10.29563/zhwhgx.200712.0025. 5.蕭政弘. 2017. 甘藍產業特性與品種類型. 臺中區農業專訊:3-5. 6.Abel, S. and Theologis, A. 1994. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J. 5:421-7. 7.Akman, M., Bhikharie, A.V., McLean, E.H., Boonman, A., Visser, E.J.W., Schranz, M.E., and van Tienderen, P.H. 2012. Wait or escape? Contrasting submergence tolerance strategies of Rorippa amphibia, Rorippa sylvestris and their hybrid. Ann. Bot. 109:1263-1276. 8.Ayano, M., Kani, T., Kojima, M., Sakakibara, H., Kitaoka, T., Kuroha, T., Angeles-Shim, R.B., Kitano, H., Nagai, K., and Ashikari, M. 2014. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ. 37:2313-24. 9.Büttner, M. and Singh, K.B. 1997. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. U.S.A. 94:5961-5966. 10.Bailey-Serres, J., Fukao, T., Gibbs, D.J., Holdsworth, M.J., Lee, S.C., Licausi, F., Perata, P., Voesenek, L.A., and van Dongen, J.T. 2012a. Making sense of low oxygen sensing. Trends Plant Sci. 17:129-38. 11.Bailey-Serres, J., Lee, S.C., and Brinton, E. 2012b. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 160:1698-709. 12.Bailey-Serres, J. and Voesenek, L.A. 2008. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Physiol. 59:313-39. 13.Banga, M., Bögemann, G.M., Cornelis, W.P.M.B., and Laurentius, A.C.J.V. 1997. Flooding resistance of Rumex species strongly depends on their response to ethylene: Rapid shoot elongation or foliar senescence. Physiol. Plant. 99:415-422. 14.Benschop, J.J., Bou, J., Peeters, A.J.M., Wagemaker, N., Gühl, K., Ward, D., Hedden, P., Moritz, T., and Voesenek, L.A.C.J. 2006. Long-Term Submergence-Induced Elongation in Rumex palustris Requires Abscisic Acid-Dependent Biosynthesis of Gibberellin 1. Plant Physiol. 141:1644-1652. 15.Benschop, J.J., Jackson, M.B., Gühl, K., Vreeburg, R.A., Croker, S.J., Peeters, A.J., and Voesenek, L.A. 2005. Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance. Plant J. 44:756-68. 16.Bruce, W.B., Christensen, A.H., Klein, T., Fromm, M., and Quail, P.H. 1989. Photoregulation of a phytochrome gene promoter from oat transferred into rice by particle bombardment. Proc. Natl. Acad. Sci. U.S.A. 86:9692-6. 17.Bui, L.T., Giuntoli, B., Kosmacz, M., Parlanti, S., and Licausi, F. 2015. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Sci. 236:37-43. 18.Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W., and Ecker, J.R. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133-44. 19.Chau, V.N., Cassells, S., and Holland, J. 2015. Economic impact upon agricultural production from extreme flood events in Quang Nam, central Vietnam. Nat. Hazards 75:1747-1765. 20.Dekeyser, R.A., Claes, B., De Rycke, R., Habets, M.E., Van Montagu, M.C., and Caplan, A.B. 1990. Transient Gene Expression in Intact and Organized Rice Tissues. Plant Cell 2:591-602. 21.Drew, M.C., Jackson, M.B., and Giffard, S. 1979. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta 147:83-88. 22.Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393-404. 23.Fukao, T. and Bailey-Serres, J. 2008. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl. Acad. Sci. U.S.A. 105:16814-16819. 24.Fukao, T., Xu, K., Ronald, P.C., and Bailey-Serres, J. 2006. A Variable Cluster of Ethylene Response Factor–Like Genes Regulates Metabolic and Developmental Acclimation Responses to Submergence in Rice. Plant Cell 18:2021-2034. 25.Gibbs, D.J., Bacardit, J., Bachmair, A., and Holdsworth, M.J. 2014a. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol. 24:603-11. 26.Gibbs, D.J., Conde, J.V., Berckhan, S., Prasad, G., Mendiondo, G.M., and Holdsworth, M.J. 2015. Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants. Plant Physiol. 169:23-31. 27.Gibbs, D.J., Lee, S.C., Isa, N.M., Gramuglia, S., Fukao, T., Bassel, G.W., Correia, C.S., Corbineau, F., Theodoulou, F.L., Bailey-Serres, J., and Holdsworth, M.J. 2011. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415-8. 28.Gibbs, D.J., Md Isa, N., Movahedi, M., Lozano-Juste, J., Mendiondo, G.M., Berckhan, S., Marín-de la Rosa, N., Vicente Conde, J., Sousa Correia, C., Pearce, S.P., Bassel, G.W., Hamali, B., Talloji, P., Tomé, D.F., Coego, A., Beynon, J., Alabadí, D., Bachmair, A., León, J., Gray, J.E., Theodoulou, F.L., and Holdsworth, M.J. 2014b. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell 53:369-79. 29.Gibbs, J. and Greenway, H. 2003. Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30:353-353. 30.Graciet, E., Mesiti, F., and Wellmer, F. 2010. Structure and evolutionary conservation of the plant N-end rule pathway. Plant J. 61:741-51. 31.Gunawardena, A.H.L.A.N., Pearce, D.M., Jackson, M.B., Hawes, C.R., and Evans, D.E. 2001. Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize(Zea mays L.). Planta 212:205-214. 32.Hao, X.Y., Han, X., Ju, H., and Lin, E.D. 2010. Impact of climatic change on soybean production: a review. Ying Yong Sheng Tai Xue Bao 21:2697-706. 33.Hartman, S., Liu, Z., van Veen, H., Vicente, J., Reinen, E., Martopawiro, S., Zhang, H., van Dongen, N., Bosman, F., Bassel, G.W., Visser, E.J.W., Bailey-Serres, J., Theodoulou, F.L., Hebelstrup, K.H., Gibbs, D.J., Holdsworth, M.J., Sasidharan, R., and Voesenek, L.A.C.J. 2019. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat. Commun. 10:4020. 34.Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., Kitano, H., Matsuoka, M., Mori, H., and Ashikari, M. 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026-30. 35.He, C.J., Morgan, P.W., and Drew, M.C. 1996. Transduction of an Ethylene Signal Is Required for Cell Death and Lysis in the Root Cortex of Maize during Aerenchyma Formation Induced by Hypoxia. Plant Physiol. 112:463-472. 36.Hebelstrup, K.H., van Zanten, M., Mandon, J., Voesenek, L.A.C.J., Harren, F.J.M., Cristescu, S.M., Møller, I.M., and Mur, L.A.J. 2012. Haemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. J. Exp. Bot. 63:5581-5591. 37.Helliwell, E.E., Wang, Q., and Yang, Y. 2016. Ethylene biosynthesis and signaling is required for rice immune response and basal resistance against Magnaporthe oryzae infection. Mol. Plant Microbe Interact. 29:831-843. 38.Hess, N., Klode, M., Anders, M., and Sauter, M. 2011. The hypoxia responsive transcription factor genes ERF71/HRE2 and ERF73/HRE1 of Arabidopsis are differentially regulated by ethylene. Physiol. Plant. 143:41-9. 39.Hinz, M., Wilson, I.W., Yang, J., Buerstenbinder, K., Llewellyn, D., Dennis, E.S., Sauter, M., and Dolferus, R. 2010. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 153:757-72. 40.Holzberg, S., Brosio, P., Gross, C., and Pogue, G.P. 2002. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J. 30:315-27. 41.Hsu, F.C. and Wu, Y.L. 2019. Performance of three cabbage (Brassica oleracea var. capitate) genotypes in flooding tolerance. Acta Hortic. 1257:139-142. 42.Irfan, M., Hayat, S., Hayat, Q., Afroz, S., and Ahmad, A. 2010. Physiological and biochemical changes in plants under waterlogging. Protoplasma 241:3-17. 43.Ismond, K.P., Dolferus, R., de Pauw, M., Dennis, E.S., and Good, A.G. 2003. Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol. 132:1292-302. 44.Jackson, M.B. 1985. Ethylene and responses of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. 36:145-174. 45. Jackson, M.B. 2007. Ethylene-promoted elongation: an adaptation to submergence Stress. Ann. Bot. 101:229-248. 46.Jackson, M.B. and Colmer, T.D. 2005. Response and adaptation by plants to flooding stress. Ann. Bot. 96:501-505. 47.Jia, Z., Liu, Y., Hwang, C.-A., and Huang, L. 2020. Effect of combination of Oxyrase and sodium thioglycolate on growth of Clostridium perfringens from spores under aerobic incubation. Food Microbiol. 89:103413. 48.Ju, C. and Chang, C. 2015. Mechanistic Insights in Ethylene Perception and Signal Transduction. Plant Physiol. 169:85-95. 49.Kapila, J., De Rycke, R., Van Montagu, M., and Angenon, G. 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122:101-108. 50.Kovtun, Y., Chiu, W.L., Tena, G., and Sheen, J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. U.S.A. 97:2940-5. 51.Leike, H. 1988. Cabbage (Brassica oleracea var. capitata L.), p. 226-251. In: Y. P. S. Bajaj (eds.). Crops II. Springer Berlin Heidelberg, Berlin, Heidelberg. 52.Licausi, F., Kosmacz, M., Weits, D.A., Giuntoli, B., Giorgi, F.M., Voesenek, L.A., Perata, P., and van Dongen, J.T. 2011. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419-22. 53.Licausi, F., Ohme-Takagi, M., and Perata, P. 2013. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 199:639-49. 54.Licausi, F., van Dongen, J.T., Giuntoli, B., Novi, G., Santaniello, A., Geigenberger, P., and Perata, P. 2010. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 62:302-15. 55.Lin, C.C., Chao, Y.T., Chen, W.C., Ho, H.Y., Chou, M.Y., Li, Y.R., Wu, Y.L., Yang, H.A., Hsieh, H., Lin, C.S., Wu, F.H., Chou, S.J., Jen, H.C., Huang, Y.H., Irene, D., Wu, W.J., Wu, J.L., Gibbs, D.J., Ho, M.C., and Shih, M.C. 2019. Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proc. Natl. Acad. Sci. U.S.A. 116:3300-3309. 56.Lin, C.S., Hsu, C.T., Yang, L.H., Lee, L.Y., Fu, J.Y., Cheng, Q.W., Wu, F.H., Hsiao, H.C., Zhang, Y., Zhang, R., Chang, W.J., Yu, C.T., Wang, W., Liao, L.J., Gelvin, S.B., and Shih, M.C. 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol. J. 16:1295-1310. 57.Liu, Y., Schiff, M., and Dinesh-Kumar, S.P. 2002. Virus-induced gene silencing in tomato. Plant J. 31:777-86. 58.Müller, M. and Munné-Bosch, S. 2015. Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling. Plant Physiol. 169:32-41. 59.Magnani, E., Sjölander, K., and Hake, S. 2004. From Endonucleases to Transcription Factors: Evolution of the AP2 DNA Binding Domain in Plants. Plant Cell 16:2265-2277. 60.Mano, Y. and Omori, F. 2007. Breeding for flooding tolerant maize using 'teosinte' as a germplasm resource. Plant Root 1:17-21. 61.Manzur, M.E., Grimoldi, A.A., Insausti, P., and Striker, G.G. 2009. Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence. Ann. Bot. 104:1163-1169. 62.Mohanty, B., Krishnan, S.P., Swarup, S., and Bajic, V.B. 2005. Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Ann. Bot. 96:669-81. 63.Morrell, S. and Greenway, H. 1989. Evidence Does Not Support Ethylene as a Cue for Synthesis of Alcohol Dehydrogenase and Pyruvate Decarboxylase During Exposure to Hypoxia. Funct. Plant Biol. 16:469-475. 64.Mustroph, A., Lee, S.C., Oosumi, T., Zanetti, M.E., Yang, H., Ma, K., Yaghoubi-Masihi, A., Fukao, T., and Bailey-Serres, J. 2010. Cross-Kingdom Comparison of Transcriptomic Adjustments to Low-Oxygen Stress Highlights Conserved and Plant-Specific Responses. Plant Physiol. 152:1484-1500. 65.Nagai, K., Hattori, Y., and Ashikari, M. 2010. Stunt or elongate? Two opposite strategies by which rice adapts to floods. J. Plant Res. 123:303-309. 66.Nakano, T., Suzuki, K., Fujimura, T., and Shinshi, H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140:411-32. 67.Ohme-Takagi, M. and Shinshi, H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173-82. 68.Pedersen, O., Colmer, T.D., Garcia-Robledo, E., and Revsbech, N.P. 2018. CO2 and O2 dynamics in leaves of aquatic plants with C3 or CAM photosynthesis - application of a novel CO2 microsensor. Ann. Bot. 122:605-615. 69.Peng, H.-P., Chan, C.-S., Shih, M.-C., and Yang, S.F. 2001. Signaling Events in the Hypoxic Induction of Alcohol Dehydrogenase Gene in Arabidopsis. Plant Physiol. 126:742-749. 70.Perata, P. and Voesenek, L.A.C.J. 2007. Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci. 12:43-46. 71.Pierik, R., van Aken, J.M., and Voesenek, L.A.C.J. 2008. Is elongation-induced leaf emergence beneficial for submerged Rumex species? Ann. Bot. 103:353-357. 72.Rashotte, A.M., Mason, M.G., Hutchison, C.E., Ferreira, F.J., Schaller, G.E., and Kieber, J.J. 2006. A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc. Natl. Acad. Sci. U.S.A. 103:11081-11085. 73.Ratcliff, F., Martin-Hernandez, A.M., and Baulcombe, D.C. 2001. Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 25:237-45. 74.Rehman, A., Jingdong, L., Du, Y., Khatoon, R., Wagan, S.A., and Nisar, S.K. 2016. Flood Disaster in Pakistan and its Impact on Agriculture Growth (A Review). Environ. Dev. Econ. 6:39-42. 75.Riechmann, J.L. and Meyerowitz, E.M. 1998. The AP2/EREBP family of plant transcription factors. Biol. Chem. 379:633-46. 76.Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290:998-1009. 77.Sasidharan, R. and Voesenek, L.A.C.J. 2015. Ethylene-Mediated Acclimations to Flooding Stress. Plant Physiol. 169:3-12. 78.Septiningsih, E.M. and Mackill, D.J. 2018. Genetics and Breeding of Flooding Tolerance in Rice, p. 275-295. In: T. Sasaki and M. Ashikari (eds.). Rice Genomics, Genetics and Breeding. Springer Singapore, Singapore. 79.Setter, T.L. and Laureles, E.V. 1996. The beneficial effect of reduced elongation growth on submergence tolerance of rice. J. Exp. Bot. 47:1551-1559. 80.Sheen, J. 2001. Signal Transduction in Maize and Arabidopsis Mesophyll Protoplasts. Plant Physiol. 127:1466-1475. 81.Singh, P. and Sinha, A.K. 2016. A Positive Feedback Loop Governed by SUB1A1 Interaction with MITOGEN-ACTIVATED PROTEIN KINASE3 Imparts Submergence Tolerance in Rice. Plant Cell 28:1127-1143. 82.Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. U.S.A. 94:1035-40. 83.Thomashow, M.F. 2001. So What's New in the Field of Plant Cold Acclimation? Lots! Plant Physiol. 125:89-93. 84.van Veen, H., Akman, M., Jamar, D.C., Vreugdenhil, D., Kooiker, M., van Tienderen, P., Voesenek, L.A., Schranz, M.E., and Sasidharan, R. 2014. Group VII ethylene response factor diversification and regulation in four species from flood-prone environments. Plant Cell Environ. 37:2421-32. 85.van Veen, H., Mustroph, A., Barding, G.A., Vergeer-van Eijk, M., Welschen-Evertman, R.A.M., Pedersen, O., Visser, E.J.W., Larive, C.K., Pierik, R., Bailey-Serres, J., Voesenek, L.A.C.J., and Sasidharan, R. 2013. Two rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. Plant Cell 25:4691-4707. 86.Visser, E.J.W., Bögemann, G.M., Blom, C.W.P.M., and Voesenek, L.A.C.J. 1996a. Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots. J. Exp. Bot. 47:403-410. 87.Visser, E.J.W., Cohen, J.D., Barendse, G., Blom, C., and Voesenek, L. 1996b. An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiol. 112:1687-1692. 88.Voesenek, L. and Bailey-Serres, J. 2015. Flood adaptive traits and processes: an overview. New Phytol. 206:57-73. 89.Voesenek, L., Rijnders, J.H.G.M., Peeters, A.J.M., van de Steeg, H.M., and de Kroon, H. 2004. Plant Hormones Regulate Fast Shoot Elongation under Water: From Genes to Communities. Ecology 85:16-27. 90.Voesenek, L.A. and Sasidharan, R. 2013. Ethylene--and oxygen signalling--drive plant survival during flooding. Plant Biol. 15:426-35. 91.Weits, D.A., Giuntoli, B., Kosmacz, M., Parlanti, S., Hubberten, H.-M., Riegler, H., Hoefgen, R., Perata, P., van Dongen, J.T., and Licausi, F. 2014. Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat. Commun. 5:3425. 92.White, M.D., Klecker, M., Hopkinson, R.J., Weits, D.A., Mueller, C., Naumann, C., O’Neill, R., Wickens, J., Yang, J., Brooks-Bartlett, J.C., Garman, E.F., Grossmann, T.N., Dissmeyer, N., and Flashman, E. 2017. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nat. Commun. 8:14690. 93.Wiggs, L.S., Cavallaro, J.J., and Miller, J.M. 2000. Evaluation of the oxyrase OxyPlate anaerobe incubation system. J. Clin. Microbiol. 38:499-507. 94.Winsemius, H.C., Aerts, Jeroen C.J.H., van Beek, Ludovicus P.H., Bierkens, Marc F.P., Bouwman, A., Jongman, B., Kwadijk, Jaap C.J., Ligtvoet, W., Lucas, Paul L., van Vuuren, Detlef P., and Ward, Philip J. 2016. Global drivers of future river flood risk. Nat. Clim. Change 6:381-385. 95.Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Bailey-Serres, J., Ronald, P.C., and Mackill, D.J. 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705-8. 96.Yamamoto, F., Sakata, T., and Terazawa, K. 1995. Physiological, morphological and anatomical responses of Fraxinus mandshurica seedlings to flooding. Tree Physiol. 15:713-719. 97.Yang, C.-M. 2010. The responsive strategies to agricultural meteorological disasters environ. Bioinformatics 7:63-71. 98.Yoo, S.D., Cho, Y.H., and Sheen, J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2:1565-72. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81932 | - |
| dc.description.abstract | 結球甘藍為台灣重要蔬菜,台灣每年夏秋季颱風及過度的強降雨常造成淹水,而淹水所伴隨之缺氧逆境嚴重影響甘藍的產量及品質。因此,培育出具淹水耐受性之甘藍,為台灣重要的課題。目前已知甘藍品種‘大蕊’之淹水耐受性較甘藍品種‘228’高,然而造成兩品種淹水耐受性差異之分子機制仍未被研究。水稻與阿拉伯芥之乙烯反應因子第七家族(ERF-VIIs)為調控淹水耐受性之關鍵轉錄因子。本研究利用阿拉伯芥和水稻ERF-VIIs序列相似度找尋甘藍之BoERF-VIIs,發現有八個基因具有N端之特殊保守性序列,再利用本實驗室既有的RNA-seq數據搭配qPCR檢測該八個基因於淹水逆境下之表現量,發現‘大蕊’有六個基因顯著較‘228’高,且其中之BoERF71、BoRAP2.3-Like1、 BoRAP2.3-Like2及BoERF73-Like受淹水逆境顯著誘導,BoRAP2.12及BoRAP2.2則較不受淹水逆境誘導。此外,本研究利用oxyrase建立原生質體瞬時基因表達系統之缺氧處理平台,並挑選出BoERF71及BoRAP2.12進行檢測,發現兩基因於缺氧狀態下蛋白質會積累於細胞中,並於復氧狀態下該積累顯著下降,且若利用定點突變更改N端之胺基酸,則可使其蛋白質於復氧狀態下繼續積累於細胞中,顯示BoERF71及BoRAP2.12受N-degron途徑調節。利用原生質體瞬時基因表達系統發現過表達BoERF71,可上調無氧呼吸核心基因之BoADH1及BoSUS1-Like啟動子,顯示ERF缺氧時的累積可誘導下游基因表現,進而調節甘藍淹水耐受性。本研究更進一步評估造成‘大蕊’之BoERF-VIIs表現量顯著較‘228’高之原因,是與其自身啟動子序列有關,或與其他調控機制有關。結果顯示於缺氧逆境下BoERF71蛋白質累積量,於‘大蕊’之細胞背景下可顯著較‘228’之細胞背景高,而利用‘大蕊’之BoERF71啟動子無法顯著使BoERF71蛋白質累積量較利用‘228’之啟動子高,顯示BoERF71之上游調節因子為造成‘大蕊’表現量顯著較‘228’高之主因。總結上述,甘藍之BoERF-VIIs與阿拉伯芥之AtERF-VII調控耐淹水之機制相當相似,更耐淹水之甘藍品種之BoERF-VIIs於淹水逆境下,具更高之表現量及蛋白質累積量,進而調節下游無氧呼吸核心基因調節淹水耐受性。因此,BoERF-VII可作為甘藍調節淹水耐受性之指標基因,有潛力應用於分子輔助篩選更具耐淹水之甘藍品種,以加速耐淹水甘藍之培育。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:06:54Z (GMT). No. of bitstreams: 1 U0001-1109202120051200.pdf: 3201684 bytes, checksum: 8958297c3ae6b7c9b6154d40d76f905a (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "誌謝 i 中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 ix 附錄目錄 x 前言 1 第一章 前人研究 2 第一節 淹水災害日趨嚴重 2 第二節 結球甘藍簡介 2 第三節 淹水逆境對植物之影響 3 (一) 植物於淹水逆境下之形態變化 4 (二) 植物於淹水逆境下分子層面之變化 4 (三) 乙烯調控植物生理及分子層面以應對淹水逆境 5 (四) 乙烯為植物耐淹水逆境之啟動訊號 6 (五) 乙烯反應因子 7 第四節 植物原生質體於基因表達分析之應用 9 第二章 材料與方法 11 第一節 甘藍淹水試驗 11 第二節 結球甘藍BoERF-VIIs基因家族序列取得與驗證 11 (一) 胺基酸多重序列比對(multiple sequence alignment) 11 (二) 親緣關係樹建立 12 第三節 甘藍之BoERF-VIIs基因表現 12 (一) 核糖核酸萃取(RNA extraction) 12 (二) RNA之去氧核醣核酸酶(DNase)處理 12 (三) 反轉錄(reverse transcription) 13 (四) 即時定量聚合酶連鎖反應(real-time quantitative polymerase chain reaction, qPCR) 13 第四節 BoERF-VIIs基因選殖與構築 13 (一) BoERF-VIIs DNA及無氧呼吸相關基因啟動子選殖 13 (二) BoERF-VIIs基因轉殖載體之構築 14 (三) 實驗方法 15 第五節 原生質體瞬時基因表達系統 18 (一) 甘藍原生質體製備 18 (二) 原生質體之質體DNA轉型(transfection) 18 (三) 利用原生質體瞬時基因表達系統建構缺氧處理平台 19 (四) 雙冷光報導基因系統 20 第三章 結果 21 第一節 結球甘藍ERF-VII基因家族取得與驗證 21 第二節 BoERF-VIIs於淹水逆境下之基因表現 22 第三節 利用甘藍原生質體瞬時基因表達系統建立缺氧處理平台 23 第四節 BoERF-VIIs受N-degron途徑調節 24 (一) 以oxyrase 建立缺氧處理平台 24 (二) BoERF71及BoRAP2.12受N-degron途徑調節 24 第五節 BoERF71調節下游無氧呼吸核心基因 25 第六節 ‘大蕊’及‘228’之BoERF71啟動子序列分析 26 第七節 ‘大蕊’與‘228’於分子層面淹水耐受性之差異原因 26 (一) ‘大蕊’BoERF71之啟動子影響淹水耐受性 26 (二) ‘大蕊’BoERF71之上游調節因子影響淹水耐受性 27 第四章 討論 29 第一節 BoERF-VIIs可做為判斷甘藍淹水耐受性之關鍵基因 29 第二節 甘藍原生質體瞬時基因表達系統缺氧處理平台之未來應用性 30 第三節 BoERF-VIIs受N-degron途徑調節進而調節淹水耐受性 31 第四節 BoERF-VIIs與甘藍淹水耐受性之關聯性 32 第五章 結論 34 第六章 結果圖表 35 附錄 49 參考文獻 51" | |
| dc.language.iso | zh-TW | |
| dc.subject | 乙烯反應因子 | zh_TW |
| dc.subject | 缺氧 | zh_TW |
| dc.subject | 淹水 | zh_TW |
| dc.subject | Submergence | en |
| dc.subject | Ethylene Response Factors | en |
| dc.subject | Hypoxic | en |
| dc.title | 乙烯反應因子對甘藍缺氧反應之調節 | zh_TW |
| dc.title | The Ethylene Response Factors Regulate Hypoxic Responses in Brassica oleracea L. var. capitata | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 官彥州(Hsin-Tsai Liu),鄭梅君(Chih-Yang Tseng) | |
| dc.subject.keyword | 淹水,缺氧,乙烯反應因子, | zh_TW |
| dc.subject.keyword | Submergence,Hypoxic,Ethylene Response Factors, | en |
| dc.relation.page | 59 | |
| dc.identifier.doi | 10.6342/NTU202103125 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| dc.date.embargo-lift | 2026-09-11 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1109202120051200.pdf 此日期後於網路公開 2026-09-11 | 3.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
