請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81928完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊姍樺(Shan-Hua Yang) | |
| dc.contributor.author | Jia-Min Kao | en |
| dc.contributor.author | 高家敏 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:06:49Z | - |
| dc.date.available | 2025-01-14 | |
| dc.date.copyright | 2021-10-21 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-19 | |
| dc.identifier.citation | Armoza-Zvuloni, R., Shaked, Y. (2014). Release of hydrogen peroxide and antioxidants by the coral Stylophora pistillata to its external milieu. Biogeosciences, 11(17), 4587-4598. Baird, A. H., Morse, A. N. C. (2004). Induction of metamorphosis in larvae of the brooding corals Acropora palifera and Stylophora pistillata. Marine and Freshwater Research, 55(5), 469-472. Baker, A. C. (2003). Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics, 34(1), 661-689. Banin, E., Vassilakos, D., Orr, E., Martinez, R. J., Rosenberg, E. (2003). Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Current Microbiology, 46(6), 418-422. Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169-193. Barr, J. J., Auro, R., Furlan, M., Whiteson, K. L., Erb, M. L., Pogliano, J., Stotland, A., Wolkowicz, R., Cutting, A. S., Doran, K. S., Salamon, P., Youle, M., Rohwer, F. (2013). Bacteriophage adhering to mucus provide a non-host-derived immunity. Proceedings of the National Academy of Sciences of the United States of America, 110(26), 10771-10776. Barshis, D. J., Ladner, J. T., Oliver, T. A., Seneca, F. O., Traylor-Knowles, N., Palumbi, S. R. (2013). Genomic basis for coral resilience to climate change. Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1387-1392. Bay, R. A., Palumbi, S. R. (2015). Rapid acclimation ability mediated by transcriptome changes in reef-building corals. Genome Biology and Evolution, 7(6), 1602-1612. Bayer, T., Neave, M. J., Alsheikh-Hussain, A., Aranda, M., Yum, L. K., Mincer, T., Hughen, K., Apprill, A., Voolstra, C. R. (2013). The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Applied and Environmental Microbiology, 79(15), 4759-4762. Berkelmans, R., van Oppen, M. J. H. (2006). The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change. Proceedings of the Royal Society B: Biological Sciences, 273(1599), 2305-2312. Bernasconi, R., Stat, M., Koenders, A., Paparini, A., Bunce, M., Huggett, M. J. (2019). Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Frontiers in Microbiology, 10, 1529. Blackall, L. L., Wilson, B., van Oppen, M. J. H (2015). Coral-the world's most diverse symbiotic ecosystem. Molecular Ecology, 24(21), 5330-5347. Bolyen, E., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852-857. Bourne, D. G., Morrow, K. M., Webster, N. S. (2016). Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annual Review of Microbiology, 70, 317-340. Brown, B. E. (1997). Coral bleaching causes and consequences. Coral Reefs, 16, 129-138. Brown, B. E., Bythell, J. C. (2005). Perspectives on mucus secretion in reef corals. Marine Ecology Progress Series, 296, 291-309. Burke, L., Reytar, K., Spalding, M., Perry, A. (2011). Reefs at risk revisited. World Resources Institute. Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S., Thomas, T. (2011). Bacterial community assembly based on functional genes rather than species. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14288-14293. Bythell, J. C., Wild, C. (2011). Biology and ecology of coral mucus release. Journal of Experimental Marine Biology and Ecology, 408(1-2), 88-93. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods, 13, 581-583. Caughman, A. M., Pratte, Z. A., Patin, N. V., Stewart, F. J. (2021). Coral microbiome changes over the day–night cycle. Coral Reefs, 40(3), 921-935. Coles, S. L., Riegl, B. M. (2013). Thermal tolerances of reef corals in the Gulf: a review of the potential for increasing coral survival and adaptation to climate change through assisted translocation. Marine Pollution Bulletin, 72(2), 323-332. Daly, M., Brugler, M. R., Cartwright, P., Collins, A. G., Dawson, M. N., Fautin, D. G., France, S. C., Mcfadden, C. S., Opresko, D. M., Rodriguez, E., Romano, S. L., Stake, J. L. (2007). The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa, 1668, 127-182. Davy, S. K., Allemand, D., Weis, V. M. (2012). Cell biology of cnidarian-dinoflagellate symbiosis. Microbiology and Molecular Biology Reviews, 76(2), 229-261. Ding, J. Y., Shiu, J. H., Chen, W. M., Chiang, Y. R., Tang, S. L. (2016). Genomic insight into the host-endosymbiont relationship of Endozoicomonas montiporae CL-33(T) with its coral host. Frontiers in Microbiology, 7, 251. ElAhwany, A. M., Ghozlan, H. A., ElSharif, H. A., Sabry, S. A. (2015). Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum. Journal of Basic Microbiology, 55(1), 2-10. Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R., Barshis, D. J. (2021) Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnology and Oceanography, 66, 1718-1729. Everett, K. D. E. (2014). The family Simkaniaceae. In: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The prokaryotes. Springer. Rohwer, F., Breitbart, M., Jara, J., Azam, F., Knowlton, N. (2001). Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs, 20(1), 85-91. Ferrario, F., Beck, M. W., Storlazzi, C. D., Micheli, F., Shepard, C. C., Airoldi, L. (2014). The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature Communications, 5, 3794. Frydenborg, B. R., Krediet, C. J., Teplitski, M., Ritchie, K. B. (2014). Temperature-dependent inhibition of opportunistic Vibrio pathogens by native coral commensal bacteria. Microbial Ecology, 67(2), 392-401. Galloway, S.B., Work, T. M., Bochsler, V. S., Harley, R. A., Kramarsky-Winters, E., McLaughlin, S. M., Meteyer, C. U., Morado, J. F., Nicholson, J. H., Parnell, P. G., Garren, M., Son, K., Raina, J. B., Rusconi, R., Menolascina, F., Shapiro, O. H., Tout, J., Bourne, D. G., Seymour, J. R., Stocker, R. (2014). A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. The ISME Journal, 8(5), 999-1007. Glynn, P. W., Dcroz, L. (1990). Experimental evidence for high temperature stress as the cause of El-Nino-coincident coral mortality. Coral Reefs, 8(4), 181-191. Grottoli, A. G., Dalcin Martins, P., Wilkins, M. J., Johnston, M. D., Warner, M. E., Cai, W. J., Melman, T. F., Hoadley, K. D., Pettay, D. T., Levas, S., Schoepf, V. (2018). Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS One, 13(1), e0191156. Grottoli, A. G., Toonen, R. J., van Woesik, R., Thurber, R. V., Warner, M. E., McLachlan, R. H., Price, J. T., Baums, I. B., Castillo, K. D., Castillo, K. D., Coffroth, M. A., Dobson, K. L., Donahue, M. J., Hench, J. L., Iglesias-Prieto, R., Kemp, D. W., Kenkel, C. D., Kline, D. I., Kuffner, I. B., Matthews, J. L., Mayfield, A. B., Padilla-Gamino, J. L., Palumbi, S., Voolstra, C. R., Weis, V. M., Wu, H. C. (2021). Increasing comparability among coral bleaching experiments. Ecological Applications, 31, e02262. Hadaidi, G., Rothig, T., Yum, L. K., Ziegler, M., Arif, C., Roder, C., Burt, J., Voolstra, C. R. (2017). Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas. Scientific Reports, 7, 45362. Harris, D. L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., Pomeroy, A., Webster, J. M., Parravicini, V. (2018). Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Science Advances, 4, 4350. Hernandez-Agreda, A., Gates, R. D., Ainsworth, T. D. (2017). Defining the core microbiome in corals' microbial soup. Trends in Microbiology, 25(2), 125-140. Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B. C., Kleypas, J., van de Leemput, I. A., Lough, J. M., Morrison, T. H., Palumbi, S. R., van Nes, E. H., Scheffer, M. (2017a). Coral reefs in the Anthropocene. Nature, 546(7656), 82-90. Hughes, T. P., Kerry, J. T., Alvarez-Noriega, M., Alvarez-Romero, J. G., Anderson, K. D., Baird, A. H., Babcock, R. C., Beger, M., Bellwood, D. R., Berkelmans, R., Bridge, T. C., Butler, I. R., Byrne, M., Cantin, N. E., Comeau, S., Connolly, S. R., Cumming, G. S., Dalton, S. J., Diaz-Pulido, G., Eakin, C. M., Figueira, W. F., Gilmour, J. P., Harrison, H. B., Heron, S. F., Hoey, A. S., Hobbs, J. A., Hoogenboom, M. O., Kennedy, E. V., Kuo, C. Y., Lough, J. M., Lowe, R. J., Liu, G., McCulloch, M. T., Malcolm, H. A., McWilliam, M. J., Pandolfi, J. M., Pears, R. J., Pratchett, M. S., Schoepf, V., Simpson, T., Skirving, W. J., Sommer, B., Torda, G., Wachenfeld, D. R., Willis, B. L., Wilson, S. K. (2017b). Global warming and recurrent mass bleaching of corals. Nature, 543(7645), 373-377. International Union for Conservation of Nature. (1980). World conservation strategy: living resource conservation for sustainable development. Jokiel, P. L. Coles., S. L. (1977). Effects of temperature on the mortality and growth of Hawaiian reef corals. Marine Biology, 43, 201-208. Keshavmurthy, S., Hsu, C. M., Kuo, C. Y., Meng, P. J., Wang, J. T., Chen, C. A. (2012). Symbiont communities and host genetic structure of the brain coral Platygyra verweyi, at the outlet of a nuclear power plant and adjacent areas. Molecular Ecology, 21(17), 4393-4407. Krueger, T., Hawkins, T. D., Becker, S., Pontasch, S., Dove, S., Hoegh-Guldberg, O., Leggat, W., Fisher, P. L., Davy, S. K. (2015). Differential coral bleaching—contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comparative Biochemistry and Physiology, Part A, 190, 15-25. LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R., Santos, S. R. (2018). Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology, 28(16), 2570-2580. Lee, S. T., Davy, S. K., Tang, S. L., Fan, T. Y., Kench, P. S. (2015). Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiology Ecology, 91(12), fiv142. Leite, D. C., Leao, P., Garrido, A. G., Lins, U., Santos, H. F., Pires, D. O., Castro, C. B., van Elsas, J. D., Zilberberg, C., Rosado, A. S., Peixoto, R. S. (2017). Broadcast spawning coral Mussismilia hispida can vertically transfer its associated bacterial core. Frontiers in Microbiology, 8, 176. Lesser, M. P., Morrow, K. M., Pankey, S. M., Noonan, S. H. C. (2018). Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. The ISME Journal, 12(3), 813-824. Littman, R., Willis, B. L., Bourne, D. G. (2011). Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environmental Microbiology Reports, 3(6), 651-660. Littman, R. A., Willis, B. L., Pfeffer, C., Bourne, D. G. (2009). Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiology Ecology, 68(2), 152-163. Liu, G., Strong, A., Skirving, W., Arzayus, F. (2005). Overview of NOAA Coral Reef Watch program's near real-time satellite global coral bleaching monitoring activities. Proceedings of the Tenth International Coral Reef Symposium, 1, 1783-1793. Marcelino, V. R., van Oppen, M. J. H., Verbruggen, H. (2018). Highly structured prokaryote communities exist within the skeleton of coral colonies. The ISME Journal, 12(1), 300-303. McDevitt-Irwin, J. M., Baum, J. K., Garren, M., Vega Thurber, R. L. (2017). Responses of coral-associated bacterial communities to local and global stressors. Frontiers in Marine Science, 4, 262. McGinley, M. P., Aschaffenburg, M. D., Pettay, D. T., Smith, R. T., LaJeunesse, T. C., Warner, M. E. (2012). Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Marine Ecology Progress Series, 462, 1-7. McLachlan, R. H., Price, J. T., Solomon, S. L., Grottoli, A. G. (2020). Thirty years of coral heat-stress experiments: a review of methods. Coral Reefs, 39(4), 885-902. Miller, A. W., Blackwelder, P., Al-Sayegh, H., Richardson, L. L. (2011). Fine-structural analysis of black band disease-infected coral reveals boring cyanobacteria and novel bacteria. Diseases of Aquatic Organisms, 93(3), 179-190. Morrow, K. M., Muller, E., Lesser, M. P. (2018). How does the coral microbiome cause, respond to, or modulate the bleaching process. In: van Oppen, M. J. H., Lough, J. (Eds.), Coral bleaching. Springer. Myers, J. L., Sekar, R., Richardson, L. L. (2007). Molecular detection and ecological significance of the cyanobacterial genera Geitlerinema and Leptolyngbya in black band disease of corals. Applied and Environmental Microbiology, 73(16), 5173-5182. Neave, M. J., Apprill, A., Ferrier-Pages, C., Voolstra, C. R. (2016). Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Applied Microbiology and Biotechnology, 100(19), 8315-8324. Oakley, C. A., Davy, S. K. (2018). Cell biology of coral bleaching. In: van Oppen, M. J. H., Lough, J. (Eds.), Coral bleaching. Springer. Oliver, T. A., Palumbi, S. R. (2011). Do fluctuating temperature environments elevate coral thermal tolerance. Coral Reefs, 30(2), 429-440. Oren, A., Xu, X. W. (2014). The family Hyphomicrobiaceae. In: Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), The prokaryotes. Springer. Osman, E. O., Suggett, D. J., Voolstra, C. R., Pettay, D. T., Clark, D. R., Pogoreutz, C., Sampayo, E. M., Warner, M. E., Smith, D. J. (2020). Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome, 8(1), 8. Peixoto, R. S., Rosado, P. M., Leite, D. C., Rosado, A. S., Bourne, D. G. (2017). Beneficial microorganisms for corals (bmc): proposed mechanisms for coral health and resilience. Frontiers in Microbiology, 8, 341. Pernice, M., Raina, J. B., Radecker, N., Cardenas, A., Pogoreutz, C., Voolstra, C. R. (2020). Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. The ISME Journal, 14(2), 325-334. Peters, E. C. (1984). A survey of cellular reactions to environmental stress and disease in Caribbean scleractinian corals. Helgolander Meeresunters, 37, 113-37. Peters, E. C., Reynolds, T. L., Rotstein, D. S., Sileo, L, Woodley, C. M. (2007) Coral disease and health workshop: coral histopathology II. NOAA Technical Memorandum NOS NCCOS 56 and NOAA Technical Memorandum CRCP 4. Pettay, D. T., Wham, D. C., Pinzon, J. H., LaJeunesse, T. C. (2011). Genotypic diversity and spatial-temporal distribution of Symbiodinium clones in an abundant reef coral. Molecular Ecology, 20(24), 5197-5212. Pineda, J., Starczak, V., Tarrant, A., Blythe, J., Davis, K., Farrar, T., Berumen, M., da Silva, J. C. B. (2013). Two spatial scales in a bleaching event: corals from the mildest and the most extreme thermal environments escape mortality. Limnology and Oceanography, 58(5), 1531-1545. Pochon, X., Montoya-Burgos, J. I., Stadelmann, B., Pawlowski, J. (2006). Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Molecular Phylogenetics and Evolution, 38(1), 20-30. Pogoreutz, C., Radecker, N., Cardenas, A., Gardes, A., Voolstra, C. R., Wild, C. (2017). Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Global Change Biology, 23(9), 3838-3848. Pollock, F. J., McMinds, R., Smith, S., Bourne, D. G., Willis, B. L., Medina, M., Thurber, R. V., Zaneveld, J. R. (2018). Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nature Communications, 9(1), 4921. Pootakham, W., Mhuantong, W., Putchim, L., Yoocha, T., Sonthirod, C., Kongkachana, W., Sangsrakru, D., Naktang, C., Jomchai, N., Thongtham, N., Tangphatsornruang, S. (2018). Dynamics of coral-associated microbiomes during a thermal bleaching event. MicrobiologyOpen, 7(5), e00604. Pratchett, M. S., Thompson, C. A., Hoey, A. S., Cowman, P. F., Wilson, S. K. (2018). Effects of coral bleaching and coral loss on the structure and function of reef fish assemblages. In: van Oppen, M. J. H., Lough, J. (Eds.), Coral bleaching. Springer. R Core Team. (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Austria. Reisch, C. R., Moran, M. A., Whitman, W. B. (2011). Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Frontiers in Microbiology, 2, 172. Ricci, F., Marcelino, V. R., Blackall, L. L., Kuhl, M., Medina, M., Verbruggen, H. (2019). Beneath the surface: community assembly and functions of the coral skeleton microbiome. Microbiome, 7(1), 159. Roder, C., Arif, C., Bayer, T., Aranda, M., Daniels, C., Shibl, A., Chavanich, S., Voolstra, C. R. (2014). Bacterial profiling of White Plague Disease in a comparative coral species framework. The ISME Journal, 8(1), 31-39. Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahe, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. Rohwer, F., Seguritan, V., Azam, F., Knowlton, N. (2002). Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1-10. Safaie, A., Silbiger, N. J., McClanahan, T. R., Pawlak, G., Barshis, D. J., Hench, J. L., Rogers, J. S., Williams, G. J., Davis, K. A. (2018). High frequency temperature variability reduces the risk of coral bleaching. Nature Communications, 9(1), 1671. Sawall, Y., Al-Sofyani, A., Banguera-Hinestroza, E., Voolstra, C. R. (2014). Spatio-temporal analyses of Symbiodinium physiology of the coral Pocillopora verrucosa along large-scale nutrient and temperature gradients in the Red Sea. PLoS One, 9(8), e103179. Schoepf, V., Grottoli, A. G., Levas, S. J., Aschaffenburg, M. D., Baumann, J. H., Matsui, Y., Warner, M. E. (2015a). Annual coral bleaching and the long-term recovery capacity of coral. Proceedings of the Royal Society B: Biological Sciences, 282(1819), 20151887. Schoepf, V., Stat, M., Falter, J. L., McCulloch, M. T. (2015b). Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Scientific Reports, 5, 17639. Sharp, K. H., Distel, D., Paul, V. J. (2012). Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. The ISME Journal, 6(4), 790-801. Sharp, K. H., Pratte, Z. A., Kerwin, A. H., Rotjan, R. D., Stewart, F. J. (2017). Season, but not symbiont state, drives microbiome structure in the temperate coral Astrangia poculata. Microbiome, 5(1), 120. Shiu, J. H., Yu, S. P., Fong, C. L., Ding, J. Y., Tan, C. J., Fan, T. Y., Lu, C. Y., Tang, S. L. (2020). Shifting in the dominant bacterial group Endozoicomonas is independent of the dissociation with coral symbiont algae. Frontiers in Microbiology, 11, 1791. Shnit-Orland, M., Kushmaro, A. (2009). Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiology Ecology, 67(3), 371-380. Siboni, N., Ben-Dov, E., Sivan, A., Kushmaro, A. (2008). Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environmental Microbiology, 10(11), 2979-2990. Silverstein, R. N., Cunning, R., Baker, A. C. (2017). Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment. Journal of Experimental Biology, 220(7), 1192-1196. Sinden, A., Sinang, S. C. (2016). Cyanobacteria in aquaculture systems: linking the occurrence, abundance and toxicity with rising temperatures. International Journal of Environmental Science and Technology, 13(12), 2855-2862. Skirving, W., Marsh, B., De La Cour, J., Liu, G., Harris, A., Maturi, E., Geiger, E., Eakin, C. M. (2020). CoralTemp and the Coral Reef Watch Coral Bleaching Heat Stress Product Suite Version 3.1. Remote Sensing, 12(23), 3856. Soffer, N., Brandt, M. E., Correa, A. M., Smith, T. B., Thurber, R. V. (2014). Potential role of viruses in white plague coral disease. The ISME Journal, 8(2), 271-283. Spalding, M. D., Ravilious, C. Green, E. P. (2001). World Atlas of Coral Reefs. University California Press. Strong, A. E., Liu, G., Meyer, J., Hendee, J. C., Sasko, D. (2004). Coral Reef Watch 2002. Bulletin of Marine Science, 75, 259-268. Sunagawa, S., Woodley, C. M., Medina, M. (2010). Threatened corals provide underexplored microbial habitats. PLoS One, 5(3), e9554. Sweet, M. J., Croquer, A., Bythell, J. C. (2010). Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs, 30(1), 39-52. Tandon, K., Lu, C. Y., Chiang, P. W., Wada, N., Yang, S. H., Chan, Y. F., Chen, P. Y., Chang, H. Y., Chiou, Y. J., Chou, M. S., Chen, W. M., Tang, S. L. (2020). Comparative genomics: dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). The ISME Journal, 14(5), 1290-1303. van Oppen, M. J. H., Blackall, L. L. (2019). Coral microbiome dynamics, functions and design in a changing world. Nature Reviews Microbiology, 17(9), 557-567. van Oppen, M. J. H., Leong, J. A., Gates, R. D. (2009) Coral-virus interactions: a double-edged sword. Symbiosis, 47, 1-8. Voolstra, C. R., Buitrago-Lopez, C., Perna, G., Cardenas, A., Hume, B. C. C., Radecker, N., Barshis, D. J. (2020). Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Global Change Biology, 26(8), 4328-4343. Wada, N., Ishimochi, M., Matsui, T., Pollock, F. J., Tang, S. L., Ainsworth, T. D., Willis, B. L., Mano, N., Bourne, D. G. (2019). Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. Scientific Reports, 9(1), 14662. Wang, X. Y., Quinn, P. J., Yan, A. X. (2015). Kdo2-lipid A: structural diversity and impact on immunopharmacology. Biological Reviews, 90(2), 408-427. Ward, J. R., Kim, K., Harvell, C. D. (2007). Temperature affects coral disease resistance and pathogen growth. Marine Ecology Progress Series, 329, 115-121. Wegley, L., Edwards, R., Rodriguez-Brito, B., Liu, H., Rohwer, F. (2007). Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environmental Microbiology, 9(11), 2707-2719. Weis, V. M. (2008). Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. Journal of Experimental Biology, 211(19), 3059-3066. Work, T. M., Aeby, G. S. (2014). Microbial aggregates within tissues infect a diversity of corals throughout the Indo-Pacific. Marine Ecology Progress Series, 500, 1-9. Yagi, T. (1991). Bacterial NADH-quinone oxidoreductases. Journal of Bioenergetics and Biomembranes, 23, 211-225. Yakovleva, I., Bhagooli, R., Takemura, A., Hidaka, M. (2004). Differential susceptibility to oxidative stress of two scleractinian corals: antioxidant functioning of mycosporine-glycine. Comparative Biochemistry and Physiology, Part B, 139(4), 721-730. Yang, S. H., Tandon, K., Lu, C. Y., Wada, N., Shih, C. J., Hsiao, S. S., Jane, W. N., Lee, T. C., Yang, C. M., Liu, C. T., Denis, V., Wu, Y. T., Wang, L. T., Huang, L., Lee, D. C., Wu, Y. W., Yamashiro, H., Tang, S. L. (2019). Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome, 7(1), 3. Yang, S. H., Tseng, C. H., Huang, C. R., Chen, C. P., Tandon, K., Lee, S. T. M., Chiang, P. W., Shiu, J. H., Chen, C. A., Tang, S. L. (2017). Long-term survey is necessary to reveal various shifts of microbial composition in corals. Frontiers in Microbiology, 8, 1094. Zapata, F., Goetz, F. E., Smith, S. A., Howison, M., Siebert, S., Church, S. H., Sanders, S. M., Ames, C. L., McFadden, C. S., France, S. C., Daly, M., Collins, A. G., Haddock, S. H., Dunn, C. W., Cartwright, P. (2015). Phylogenomic analyses support traditional relationships within Cnidaria. PLoS One, 10(10), e0139068. Zhou, G., Cai, L., Yuan, T., Tian, R., Tong, H., Zhang, W., Jiang, L., Guo, M., Liu, S., Qian, P. Y., Huang, H. (2017). Microbiome dynamics in early life stages of the scleractinian coral Acropora gemmifera in response to elevated pCO2. Environmental Microbiology, 19(8), 3342-3352. Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R., Voolstra, C. R. (2017). Bacterial community dynamics are linked to patterns of coral heat tolerance. Nature Communications, 8, 14213. 戴昌鳳、鄭有容(2020),台灣珊瑚全圖鑑(上):石珊瑚,貓頭鷹。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81928 | - |
| dc.description.abstract | "珊瑚是以珊瑚共生體的形式生存,包含珊瑚宿主、共生藻以及其他共棲微生物,彼此之間形成複雜的交互作用。珊瑚白化指的是珊瑚宿主因失去共生藻或其中的光合色素而呈現骨骼的白色。除了共生藻外,其他共棲微生物亦與珊瑚的生理密不可分,其中以數量最多的共棲菌尤為關鍵。過去與熱壓力造成珊瑚白化相關的研究多是設定短期的急速升溫或是中長期的緩慢升溫和穩定高溫,本研究將兩者結合設定不同程度的日間溫度變化結合緩慢升溫進行為期一個月的水缸實驗,並以溫度累積效應(degree heating week, DHW)量化珊瑚所承受的熱壓力及其耐熱性,研究在緩慢升溫的情況下,日間溫度變化對廣布種萼形柱珊瑚(Stylophora pistillata)之生理及其共棲菌群之影響。結果顯示相較於使用平均溫度或最高溫度,以DHW來評估珊瑚是否會白化顯得更為準確。在26℃緩慢升溫至29℃並未造成熱壓力的情況下,珊瑚宿主的抗氧化酶活性及珊瑚的光系統II光化學效率維持穩定;在結合日間溫度變化±5℃造成熱壓力的情況下,珊瑚宿主的過氧化氫酶活性逐漸升高,珊瑚的光系統II光化學效率維持穩定;而在結合日間溫度變化±7℃造成更大的熱壓力的情況下,珊瑚宿主的過氧化氫酶活性逐漸升高,珊瑚的光系統II光化學效率逐漸降低至歸零,珊瑚最終白化甚至死亡,顯示珊瑚宿主已無法透過抗氧化酶有效調節活性氧物質濃度,故形成氧化傷害。另一方面,珊瑚骨骼菌群組成相對穩定,珊瑚組織菌群組成則隨著熱壓力的累積而變動,其中潛在的益生菌Acinetobacter與Pseudomonas的相對豐度隨之下降,兩者皆曾被推測可能為珊瑚抵禦病原體的第一道防線;而潛在的伺機菌Rhodobacteraceae、Alteromonadaceae、Vibrio的相對豐度則隨之上升,三者皆曾被發現在珊瑚患病或白化時大量增生。儘管相關研究曾指出大幅度日間溫度變化可能促使珊瑚適應因而增加其耐熱性、提高珊瑚面臨異常高溫的存活率;但本研究亦發現大幅度日間溫度變化可能造成熱壓力的累積、導致珊瑚白化。隨著全球氣候變遷引起的海水升溫日益嚴重,大幅度日間溫度變化帶來的熱壓力不容忽視。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:06:49Z (GMT). No. of bitstreams: 1 U0001-1909202112084000.pdf: 4276801 bytes, checksum: 8810bec481b3b46c9bf0132227f312af (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 謝辭 i 摘要 ii Abstract iv 目錄 vi 圖目錄 viii 表目錄 x 壹、緒論 1 (一)珊瑚與珊瑚礁生態系 1 (二)珊瑚共生體 3 (三)珊瑚共棲菌 4 (四)珊瑚白化相關研究 7 (五)熱壓力下的珊瑚生理與共棲菌群變動 9 (六)研究動機與目的 10 貳、材料與方法 12 (一)樣本採集與水缸實驗設計 12 (二)珊瑚生理分析 13 1. 熱壓力評估 13 2. 外觀記錄與光系統II光化學效率測量 14 3. 珊瑚宿主之抗氧化酶活性測定 14 4. 統計分析 15 (三)珊瑚共棲菌群分析 16 1. 去氧核醣核酸萃取 16 2. 聚合酶連鎖反應、純化與擴增子定序 17 3. 序列資料處理與統計分析 18 參、結果 20 (一)珊瑚生理分析 20 1. 水缸實驗一 20 2. 水缸實驗二 20 (二)珊瑚共棲菌群分析 21 1. 水缸實驗一 21 2. 水缸實驗二 24 肆、討論 28 (一)大幅度日間溫度變化帶來的「雙面刃效應」 28 (二)珊瑚生理之變化 30 (三)珊瑚共棲菌群之變動 32 1. 水缸實驗一 32 2. 水缸實驗二 34 伍、結論 37 陸、展望 38 柒、圖與表 39 捌、參考文獻 102 附錄 112 | |
| dc.language.iso | zh-TW | |
| dc.subject | 珊瑚共棲菌 | zh_TW |
| dc.subject | 光化學效率 | zh_TW |
| dc.subject | 抗氧化酶活性 | zh_TW |
| dc.subject | 大幅度日溫差 | zh_TW |
| dc.subject | 珊瑚白化 | zh_TW |
| dc.subject | coral bleaching | en |
| dc.subject | coral symbiotic microbiome | en |
| dc.subject | antioxidant enzyme activity | en |
| dc.subject | photochemical efficiency | en |
| dc.subject | large daily temperature fluctuations | en |
| dc.title | 日間溫度變化對萼形柱珊瑚之生理及共棲菌群之影響 | zh_TW |
| dc.title | Effects of daily temperature fluctuations on physiology and microbial composition of Stylophora pistillata | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0002-1232-1085 | |
| dc.contributor.oralexamcommittee | 湯森林(Hsin-Tsai Liu),識名信也(Chih-Yang Tseng),王亮鈞,楊松穎 | |
| dc.subject.keyword | 珊瑚白化,大幅度日溫差,光化學效率,抗氧化酶活性,珊瑚共棲菌, | zh_TW |
| dc.subject.keyword | coral bleaching,large daily temperature fluctuations,photochemical efficiency,antioxidant enzyme activity,coral symbiotic microbiome, | en |
| dc.relation.page | 135 | |
| dc.identifier.doi | 10.6342/NTU202103247 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-23 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-01-14 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1909202112084000.pdf | 4.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
