請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81919完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃耀輝(Yaw-Huei Hwang) | |
| dc.contributor.author | Chia-Hsin Liu | en |
| dc.contributor.author | 劉佳欣 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:06:37Z | - |
| dc.date.available | 2024-12-25 | |
| dc.date.copyright | 2021-11-09 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-09-26 | |
| dc.identifier.citation | Al-Kattan A, Wichser A, Zuin S, Arroyo Y, Golanski L, Ulrich A, Nowack B. Behavior of TiO2 released from nano-TiO2-containing paint and comparison to pristine nano-TiO2. Environ Sci Technol 2014;48:6710-8. doi: 10.1021/es5006219. Azimzada A, Farner JM, Jreije I, Hadioui M, Liu-Kang C, Tufenkji N, Shaw P, Wilkinson KJ. Single-and multi-element quantification and characterization of TiO2 nanoparticles released from outdoor stains and paints. Frontiers in Environmental Science 2020;8:91. doi: 10.3389/fenvs.2020.00091. Azimzada A, Jreije I, Hadioui M, Shaw P, Farner JM, Wilkinson KJ. Quantification and characterization of Ti-, Ce-, and Ag-nanoparticles in global surface waters and precipitation. Environ Sci Technol 2021;55:9836-44. doi: 10.1021/acs.est.1c00488. Baalousha M, Wang J, Erfani M, Goharian E. Elemental fingerprints in natural nanomaterials determined using SP-ICP-TOF-MS and clustering analysis. Sci Total Environ 2021;792:148426. doi: 10.1016/j.scitotenv.2021.148426. Bolyard SC, Reinhart DR, Santra S. Behavior of engineered nanoparticles in landfill leachate. Environ Sci Technol 2013;47:8114-22. doi: 10.1021/es305175e. Brito P, Prego R, Mil-Homens M, Caçador I, Caetano M. Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus estuary, Portugal. Sci Total Environ 2018;621:317-25. doi: 10.1016/j.scitotenv.2017.11.245. Bruinink A, Wang J, Wick P. Effect of particle agglomeration in nanotoxicology. Archives of Toxicology 2015;89:659-75. doi: 10.1007/s00204-015-1460-6. Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S. Nanoparticles in the environment: where do we come from, where do we go to? Environmental Sciences Europe 2018;30:1-17. doi: 10.1186/s12302-018-0132-6. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007;2:MR17-MR71. doi: 10.1116/1.2815690. Carling GT, Tingey DG, Fernandez DP, Nelson ST, Aanderud ZT, Goodsell TH, Chapman TR. Evaluating natural and anthropogenic trace element inputs along an alpine to urban gradient in the Provo River, Utah, USA. Applied Geochemistry 2015;63:398-412. doi: 10.1016/j.apgeochem.2015.10.005. Chen C-H. Geological series of Taiwan: Central Geological Survey, MOEA, Taiwan, 1990;68-69. Chen J, Dong X, Xin Y, Zhao M. Effects of titanium dioxide nano-particles on growth and some histological parameters of zebrafish (Danio rerio) after a long-term exposure. Aquatic Toxicology 2011;101:493-9. doi: 10.1016/j.aquatox.2010.12.004. Coll C, Notter D, Gottschalk F, Sun T, Som C, Nowack B. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 2016;10:436-44. doi: 10.3109/17435390.2015.1073812. Colvin VL. The potential environmental impact of engineered nanomaterials. Nature Biotechnology 2003;21:1166-70. doi: 10.1038/nbt875. Craigie N. Production of chemostratigraphic correlation schemes. Principles of Elemental Chemostratigraphy: A Practical User Guide: Springer, 2018;85-129. Cui Y, Liu H, Ze Y, Zengli Z, Hu Y, Cheng Z, Cheng J, Hu R, Gao G, Wang L. Gene expression in liver injury caused by long-term exposure to titanium dioxide nanoparticles in mice. Toxicological Sciences 2012;128:171-85. doi: 10.1093/toxsci/kfs153. De Laeter JR, Böhlke JK, De Bievre P, Hidaka H, Peiser H, Rosman K, Taylor P. Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry 2003;75:683-800. doi: 10.1351/pac200375060683. Donovan AR, Adams CD, Ma YF, Stephan C, Eichholz T, Shi HL. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere 2016;144:148-53. doi: 10.1016/j.chemosphere.2015.07.081. Duan Y, Liu J, Ma L, Li N, Liu H, Wang J, Zheng L, Liu C, Wang X, Zhao X. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 2010;31:894-9. doi: 10.1016/j.biomaterials.2009.10.003. Emmett S, Craig J, Mark K. Rapid multielement nanoparticle analysis using single-particle ICP-MS/MS. Spectroscopy 2019;34:10-20. Erdem A, Metzler D, Cha DK, Huang C. The short-term toxic effects of TiO2 nanoparticles toward bacteria through viability, cellular respiration, and lipid peroxidation. Environmental Science and Pollution Research 2015;22:17917-24. doi: 10.1007/s11356-015-5018-1. Erhayem M, Sohn M. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles. Sci Total Environ 2014;470:92-8. doi: 10.1016/j.scitotenv.2013.09.063. Farré M, Pérez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barceló D. First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. Journal of Hydrology 2010;383:44-51. doi: 10.1016/j.jhydrol.2009.08.016. Freyre-Fonseca V, Delgado-Buenrostro NL, Gutiérrez-Cirlos EB, Calderón-Torres CM, Cabellos-Avelar T, Sánchez-Pérez Y, Pinzón E, Torres I, Molina-Jijón E, Zazueta C. Titanium dioxide nanoparticles impair lung mitochondrial function. Toxicology Letters 2011;202:111-9. doi: 10.1016/j.toxlet.2011.01.025. Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M, Verharen HW, Brandon EF, de Jong WH. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and Fibre Toxicology 2014;11:1-21. doi: 10.1186/1743-8977-11-30. Gázquez MJ, Bolívar JP, García-Tenorio García-Balmaseda R, Vaca F. A review of the production cycle of titanium dioxide pigment. Materials Sciences and Applications 2014;5:441-58. doi: 10.4236/msa.2014.57048. Gondikas A, von der Kammer F, Kaegi R, Borovinskaya O, Neubauer E, Navratilova J, Praetorius A, Cornelis G, Hofmann T. Where is the nano? Analytical approaches for the detection and quantification of TiO 2 engineered nanoparticles in surface waters. Environmental Science: Nano 2018;5:313-26. doi: 10.1039/C7EN00952F. Gondikas AP, Kammer Fvd, Reed RB, Wagner S, Ranville JF, Hofmann T. Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. Environ Sci Technol 2014;48:5415-22. doi: 10.1021/es405596y. Gottschalk F, Sonderer T, Scholz RW, Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 2009;43:9216-22. doi: 10.1021/es9015553. Hampel CA. The encyclopedia of the chemical elements: Reinhold Book Corporation, New York, 1968;732-733. Hochella MF, Mogk DW, Ranville J, Allen IC, Luther GW, Marr LC, McGrail BP, Murayama M, Qafoku NP, Rosso KM. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019;363:eaau8299. doi: 10.1126/science.aau8299. Hong F, Yu X, Wu N, Zhang Y-Q. Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicology Research 2017;6:115-33. doi: 10.1039/c6tx00338a. Hong H, Adam V, Nowack B. Form‐specific and probabilistic environmental risk assessment of three engineered nanomaterials (nano‐Ag, nano‐TiO2 and nano‐ZnO) in European freshwaters. Environmental Toxicology and Chemistry 2021;00:1-11. doi: 10.1002/etc.5146. Hope BK. A dynamic model for the global cycling of anthropogenic vanadium. Global Biogeochemical Cycles 2008;22. doi: 10.1029/2008GB003283. Huang J-H, Huang F, Evans L, Glasauer S. Vanadium: Global (bio) geochemistry. Chemical Geology 2015;417:68-89. doi: 10.1016/j.chemgeo.2015.09.019. Huang Y, Keller AA, Cervantes-Avilés P, Nelson J. Fast multielement quantification of nanoparticles in wastewater and sludge using single-particle ICP-MS. ACS ES T Water 2021;1:205-13. doi: 10.1021/acsestwater.0c00083. Hunter DA, Bartel LK, Byrd I, Bogan B, Yau W, Wu J, Gato WE. Short-term effects of titanium dioxide nanofiber on the renal function of male Sprague Dawley rats. Journal of Environmental Pathology, Toxicology and Oncology 2018;37:127-38. doi: 10.1615/JEnvironPatholToxicolOncol.2018025351. Husain M, Wu D, Saber AT, Decan N, Jacobsen NR, Williams A, Yauk CL, Wallin H, Vogel U, Halappanavar S. Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicology 2015;9:1013-22. doi: 10.3109/17435390.2014.996192. Institute IRS. The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report. Inhalation Toxicology 2000;12:1-17. doi: 10.1080/08958370050029725. Jaroenworaluck A, Sunsaneeyametha W, Kosachan N, Stevens R. Characteristics of silica‐coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 2006;38:473-7. doi: 10.1002/sia.2313. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology 2018;9:1050-74. doi: 10.3762/bjnano.9.98. Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 2010;44:1962-7. doi: 10.1021/es902987d. Kendall M, Ding P, Kendall K. Particle and nanoparticle interactions with fibrinogen: the importance of aggregation in nanotoxicology. Nanotoxicology 2011;5:55-65. doi: 10.3109/17435390.2010.489724. Khan WS, Asmatulu R. Nanotechnology emerging trends, markets, and concerns. Nanotechnology safety: Elsevier, 2013;1-16. Kim W, Yeom C, Lee H, Sung H, Jo E, Eom I-c, Kim Y. Feasibility study on the differentiation between engineered and natural nanoparticles based on the elemental ratios. Korean Journal of Chemical Engineering 2017;34:3208-13. doi: 10.1007/s11814-017-0223-x. Kiser MA, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K. Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 2009;43:6757-63. doi: 10.1021/es901102n. Kägi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution 2008;156:233-9. doi: 10.1016/j.envpol.2008.08.004. Labille J, Feng J, Botta C, Borschneck D, Sammut M, Cabie M, Auffan M, Rose J, Bottero J-Y. Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environmental Pollution 2010;158:3482-9. doi: 10.1016/j.envpol.2010.02.012. Labille J, Harns C, Bottero J-Y, Brant J. Heteroaggregation of titanium dioxide nanoparticles with natural clay colloids. Environ Sci Technol 2015;49:6608-16. doi: 10.1021/acs.est.5b00357. Laborda F, Jiménez-Lamana J, Bolea E, Castillo JR. Selective identification, characterization and determination of dissolved silver (I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J Anal At Spectrom 2011;26:1362-71. doi: 10.1039/C0JA00098A. Lee S, Bi X, Reed RB, Ranville JF, Herckes P, Westerhoff P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol 2014;48:10291-300. doi: 10.1021/es502422v. Li F, Jinxu Y, Shao L, Zhang G, Wang J, Jin Z. Delineating the origin of Pb and Cd in the urban dust through elemental and stable isotopic ratio: a study from Hangzhou City, China. Chemosphere 2018;211:674-83. doi: 10.1016/j.chemosphere.2018.07.199. Liao Y, Que W, Jia Q, He Y, Zhang J, Zhong P. Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. Journal of Materials Chemistry 2012;22:7937-44. doi: 10.1039/C2JM16628C. Limbach LK, Bereiter R, Müller E, Krebs R, Gälli R, Stark WJ. Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 2008;42:5828-33. doi: 10.1021/es800091f. Lin PC, Wei CH, Ho LS. 2013 Field investigation of sediment transport in the shore vicinity of harbors (1/4). Institute of Transportation, Ministry of Transportation and Communications, Taiwan, 2014. Linnik PN, Zhezherya VA. Titanium in natural surface waters: The content and coexisting forms. Russ J Gen Chem 2015;85:2908-20. doi: 10.1134/S107036321513006X. Liu X, Chen G, Erwin JG, Adam NK, Su C. Release of phosphorous impurity from TiO2 anatase and rutile nanoparticles in aquatic environments and its implications. Water Research 2013;47:6149-56. doi: 10.1016/j.watres.2013.07.034. Lo HH. Compositions of Tatun andesites, northern Taiwan. Journal of Volcanology and Geothermal Research 1982;13:173-87. doi: 10.1016/0377-0273(82)90026-9. Loosli F, Le Coustumer P, Stoll S. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. Water Research 2013;47:6052-63. doi: 10.1016/j.watres.2013.07.021. Loosli F, Wang JJ, Rothenberg S, Bizimis M, Winkler C, Borovinskaya O, Flamigni L, Baalousha M. Sewage spills are a major source of titanium dioxide engineered (nano)-particle release into the environment. Environ-Sci Nano 2019;6:763-77. doi: 10.1039/C8EN01376D. Luo M, Huang Y, Zhu M, Tang Y-n, Ren T, Ren J, Wang H, Li F. Properties of different natural organic matter influence the adsorption and aggregation behavior of TiO2 nanoparticles. Journal of Saudi Chemical Society 2018;22:146-54. doi: 10.1016/j.jscs.2016.01.007. Markus A, Krystek P, Tromp P, Parsons J, Roex E, De Voogt P, Laane R. Determination of metal-based nanoparticles in the river Dommel in the Netherlands via ultrafiltration, HR-ICP-MS and SEM. Sci Total Environ 2018;631:485-95. doi: 10.1016/j.scitotenv.2018.03.007. Meinhold G. Rutile and its applications in earth sciences. Earth-Science Reviews 2010;102:1-28. doi: 10.1016/j.earscirev.2010.06.001. Moskalyk R, Alfantazi A. Processing of vanadium: a review. Minerals Engineering 2003;16:793-805. doi: 10.1016/S0892-6875(03)00213-9. Mueller NC, Buha J, Wang J, Ulrich A, Nowack B. Modeling the flows of engineered nanomaterials during waste handling. Environmental Science: Processes Impacts 2013;15:251-9. doi: 10.1039/C2EM30761H Nabi MM, Wang JJ, Baalousha M. Episodic surges in titanium dioxide engineered particle concentrations in surface waters following rainfall events. Chemosphere 2021;263:128261. doi: 10.1016/j.chemosphere.2020.128261. Nabi MM, Wang JJ, Meyer M, Croteau MN, Ismail N, Baalousha M. Concentrations and size distribution of TiO2 and Ag engineered particles in five wastewater treatment plants in the United States. Sci Total Environ 2021;753:142017. doi: 10.1016/j.scitotenv.2020.142017. Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2012;13:169-89. doi: 10.1016/j.jphotochemrev.2012.06.001. Neal C, Jarvie H, Rowland P, Lawler A, Sleep D, Scholefield P. Titanium in UK rural, agricultural and urban/industrial rivers: Geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention. Sci Total Environ 2011;409:1843-53. doi: 10.1016/j.scitotenv.2010.12.021. Nowack B, Ranville JF, Diamond S, Gallego‐Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environmental Toxicology and Chemistry 2012;31:50-9. doi: 10.1002/etc.726. Othman SH, Abd Salam NR, Zainal N, Kadir Basha R, Talib RA. Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. International Journal of Photoenergy 2014;2014:945930. doi: 10.1155/2014/945930. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Analytical Chemistry 2011;83:9361-9. doi: 10.1021/ac201952t. Paul R, Bautista L, De la Varga M, Botet JM, Casals E, Puntes V, Marsal F. Nano-cotton fabrics with high ultraviolet protection. Textile Research Journal 2010;80:454-62. doi: 10.1177/0040517509342316. Peters RJB, van Bemmel G, Milani NBL, den Hertog GCT, Undas AK, van der Lee M, Bouwmeester H. Detection of nanoparticles in Dutch surface waters. Sci Total Environ 2018;621:210-8. doi: 10.1016/j.scitotenv.2017.11.238. Pettibone JM, Cwiertny DM, Scherer M, Grassian VH. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 2008;24:6659-67. doi: 10.1021/la7039916. Phalyvong K, Sivry Y, Pauwels H, Gélabert A, Tharaud M, Wille G, Bourrat X, Ranville JF, Benedetti MF. Assessing CeO2 and TiO2 Nanoparticle concentrations in the Seine River and its tributaries near Paris. Frontiers in Environmental Science 2021;8. doi: 10.3389/fenvs.2020.549896. Phalyvong K, Sivry Y, Pauwels H, Gelabert A, Tharaud M, Wille G, Bourrat X, Benedetti MF. Occurrence and origins of cerium dioxide and titanium dioxide nanoparticles in the Loire River (France) by single particle ICP-MS and FEG-SEM imaging. Frontiers in Environmental Science 2020;8:14. doi: 10.3389/fenvs.2020.00141. Piccinno F, Gottschalk F, Seeger S, Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 2012;14:1-11. doi: 10.1007/s11051-012-1109-9. Potocnik J. Commission recommendation of 18 October 2011 on the definition of nanomaterial. Official Journal of the European Union 2011;275:38-40. Praetorius A, Gundlach-Graham A, Goldberg E, Fabienke W, Navratilova J, Gondikas A, Kaegi R, Günther D, Hofmann T, von der Kammer F. Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano 2017;4:307-14. doi: 10.1039/C6EN00455E. Praetorius A, Scheringer M, Hungerbuhler K. Development of environmental fate models for engineered nanoparticles-A case study of TiO2 nanoparticles in the Rhine River. Environ Sci Technol 2012;46:6705-13. doi: 10.1021/es204530n. Quik JT, Velzeboer I, Wouterse M, Koelmans AA, Van de Meent D. Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Research 2014;48:269-79. doi: 10.1016/j.watres.2013.09.036. Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, Schiffmann D. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environmental Health Perspectives 2002;110:797-800. doi: 10.1289/ehp.02110797. Ramos-Delgado NA, Gracia-Pinilla MÁ, Mangalaraja RV, O’Shea K, Dionysiou DD. Industrial synthesis and characterization of nanophotocatalysts materials: titania. Nanotechnology Reviews 2016;5:467-79. doi: 10.1515/ntrev-2016-0007. Rand LN, Bi YQ, Poustie A, Bednar AJ, Hanigan DJ, Westerhoff P, Ranville JF. Quantifying temporal and geographic variation in sunscreen and mineralogic titanium-containing nanoparticles in three recreational rivers. Sci Total Environ 2020;743:9. doi: 10.1016/j.scitotenv.2020.140845. Reed R, Martin D, Bednar A, Montaño M, Westerhoff P, Ranville J. Multi-day diurnal measurements of Ti-containing nanoparticle and organic sunscreen chemical release during recreational use of a natural surface water. Environmental Science: Nano 2017;4:69-77. doi: 10.1039/C6EN00283H Rudnick R, Gao S, Holland H, Turekian K. Composition of the continental crust. The Crust 2003;3:1-64. Sanchis J, Jimenez-Lamana J, Abad E, Szpunar J, Farre M. Occurrence of cerium-, titanium-, and silver-bearing nanoparticles in the Besos and Ebro Rivers. Environ Sci Technol 2020;54:3969-78. doi: 10.1021/acs.est.9b05996. Sang X, Zheng L, Sun Q, Li N, Cui Y, Hu R, Gao G, Cheng Z, Cheng J, Gui S. The chronic spleen injury of mice following long‐term exposure to titanium dioxide nanoparticles. Journal of Biomedical Materials Research Part A 2012;100:894-902. doi: 10.1002/jbm.a.34024. Sani-Kast N, Scheringer M, Slomberg D, Labille J, Praetorius A, Ollivier P, Hungerbühler K. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles. Sci Total Environ 2015;535:150-9. doi: 10.1016/j.scitotenv.2014.12.025. Schmidt J, Vogelsberger W. Aqueous long-term solubility of titania nanoparticles and titanium (IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. Journal of solution chemistry 2009;38:1267-82. doi: 10.1007/s10953-009-9445-9. She YW, Song XY, Yu SY, He HL. Variations of trace element concentration of magnetite and ilmenite from the Taihe layered intrusion, Emeishan large igneous province, SW China: Implications for magmatic fractionation and origin of Fe–Ti–V oxide ore deposits. Journal of Asian Earth Sciences 2015;113:1117-31. doi: 10.1016/j.jseaes.2015.03.029. Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fibre Toxicology 2013;10:1-33. doi: 10.1186/1743-8977-10-15. Shi X, Li Z, Chen W, Qiang L, Xia J, Chen M, Zhu L, Alvarez PJ. Fate of TiO2 nanoparticles entering sewage treatment plants and bioaccumulation in fish in the receiving streams. NanoImpact 2016;3:96-103. doi: 10.1016/j.impact.2016.09.002. Sial AN, Gaucher C, Ferreira VP, Pereira NS, Cezario WS, Chiglino L, Lima HM. Isotope and elemental chemostratigraphy. In: Ramkumar M, ed. Chemostratigraphy: Elsevier, 2015;23-64. Slomberg DL, Auffan M, Gueniche N, Angeletti B, Campos A, Borschneck D, Aguerre-Chariol O, Rose J. Anthropogenic release and distribution of titanium dioxide particles in a river downstream of a nanomaterial manufacturer industrial site. Frontiers in Environmental Science 2020;8:12. doi: 10.3389/fenvs.2020.00076. Song B, Zhou T, Yang W, Liu J, Shao L. Contribution of oxidative stress to TiO2 nanoparticle-induced toxicity. Environmental Toxicology and Pharmacology 2016;48:130-40. doi: 10.1016/j.etap.2016.10.013. Sun TY, Bornhöft NA, Hungerbühler K, Nowack B. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ Sci Technol 2016;50:4701-11. doi: 10.1021/acs.est.5b05828. Taipei Water Department T, ROC Taipei Water Department Statistical Yearbook. Taipei Water Department Republic of China, 2019. Taiwan Water Corporation T, ROC. Taiwan Water Corporation Statistical Yearbook. Taiwan Water Corporation, Taiwan, ROC, 2019. Talamini L, Gimondi S, Violatto MB, Fiordaliso F, Pedica F, Tran NL, Sitia G, Aureli F, Raggi A, Nelissen I. Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status. Nanotoxicology 2019;13:1087-101. doi: 10.1080/17435390.2019.1640910. USFDA. Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology. Available at: https://www.fda.gov/RegulatoryInformation/Guidances/ucm257698.htm. Accessed March, 31, 2021. Venkatesan AK, Reed RB, Lee S, Bi XY, Hanigan D, Yang Y, Ranville JF, Herckes P, Westerhoff P. Detection and sizing of Ti-containing particles in recreational waters using single particle ICP-MS. Bull Environ Contam Toxicol 2018;100:120-6. doi: 10.1007/s00128-017-2216-1. Virkutyte J, Al-Abed SR, Dionysiou DD. Depletion of the protective aluminum hydroxide coating in TiO2-based sunscreens by swimming pool water ingredients. Chem Eng J 2012;191:95-103. doi: 10.1016/j.cej.2012.02.074. Von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ, Koelmans AA, Horne N, Unrine JM. Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environmental Toxicology and Chemistry 2012;31:32-49. doi: 10.1002/etc.723. Wang JJ, Nabi MM, Mohanty SK, Afrooz A, Cantando E, Aich N, Baalousha M. Detection and quantification of engineered particles in urban runoff. Chemosphere 2020;248:11. doi: 10.1016/j.chemosphere.2020.126070. Water Resource Agency MoEA, Taiwan, R.O.C. Hydrological Yearbook of Taiwan of Republic of China. Water Resource Agency, Ministry of Economic Affair, Taiwan, R.O.C., 2019. Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 2012;46:2242-50. doi: 10.1021/es204168d. Westerhoff P, Song G, Hristovski K, Kiser MA. Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. Journal of Environmental Monitoring 2011;13:1195-203. doi: 10.1039/C1EM10017C Wilbur S, Yamanaka M, Sannac S. Characterization of nanoparticles in aqueous samples by ICP-MS. Available at: https://www.agilent.com/cs/library/whitepaper/public/ICP-MS_5991-5516EN-nanoparticles.pdf. Accessed May 20, 2020. Windler L, Lorenz C, von Goetz N, Hungerbuhler K, Amberg M, Heuberger M, Nowack B. Release of titanium dioxide from textiles during washing. Environ Sci Technol 2012;46:8181-8. doi: 10.1021/es301633b. Wu P-C, Huang K-F. Tracing local sources and long-range transport of PM10 in central Taiwan by using chemical characteristics and Pb isotope ratios. Scientific Reports 2021;11:1-15. doi: 10.1038/s41598-021-87051-y. Wu SM, Zhang SH, Gong Y, Shi L, Zhou BS. Identification and quantification of titanium nanoparticles in surface water: A case study in Lake Taihu, China. J Hazard Mater 2020;382:11. doi: 10.1016/j.jhazmat.2019.121045. Yang Y, Chen B, Hower J, Schindler M, Winkler C, Brandt J, Di Giulio R, Ge J, Liu M, Fu Y. Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burning. Nature Communications 2017;8:1-11. doi: 10.1038/s41467-017-00276-2. Yang Y, Westerhoff P. Presence in, and release of, nanomaterials from consumer products. In: Capco DG, Chen Y, eds. Nanomaterial: Impacts on Cell Biology and Medicine. Dordrecht: Springer Netherlands, 2014;1-17. Zack T, Kronz A, Foley SF, Rivers T. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology 2002;184:97-122. doi: 10.1016/S0009-2541(01)00357-6. Ze Y, Zheng L, Zhao X, Gui S, Sang X, Su J, Guan N, Zhu L, Sheng L, Hu R. Molecular mechanism of titanium dioxide nanoparticles-induced oxidative injury in the brain of mice. Chemosphere 2013;92:1183-9. doi: 10.1016/j.chemosphere.2013.01.094. Zhang C, Lohwacharin J, Takizawa S. Properties of residual titanium dioxide nanoparticles after extended periods of mixing and settling in synthetic and natural waters. Scientific Reports 2017;7:1-11. doi: 10.1038/s41598-017-09699-9. Zhang XQ, Yin LH, Meng T, Pu YP. ZnO, TiO2, SiO2, and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomedical and Environmental Sciences 2011;24:661-9. doi: 10.3967/0895-3988.2011.06.011. Zhou D, Ji Z, Jiang X, Dunphy DR, Brinker J, Keller AA. Influence of material properties on TiO2 nanoparticle agglomeration. Plos One 2013;8:e81239. doi: 10.1371/journal.pone.0081239. Zhou Y, Gao L, Xu D, Gao B. Geochemical baseline establishment, environmental impact and health risk assessment of vanadium in lake sediments, China. Sci Total Environ 2019;660:1338-45. doi: 10.1016/j.scitotenv.2019.01.093. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81919 | - |
| dc.description.abstract | "鑒於人工奈米二氧化鈦(TiO2-ENPs)在各種消費性產品中的使用量日益增加,可能會對環境和人類造成未知的風險,因此對環境中的TiO2-ENPs量化有其必要性。為了正確量化TiO2-ENPs的質量濃度,TiO2-ENPs與天然含鈦奈米微粒之間不同的顆粒組成是區分彼此的關鍵。當在研究環境中測得的鈦與天然追蹤劑(如釩和釔)的元素比高於天然背景的元素比時,則表明有TiO2-ENPs排放的可能。本研究使用多元素單粒子感應耦合電漿質譜儀探討臺灣北部和南部的主要河川水源新店溪流域和高屏溪流域中TiO2-ENPs的分布和含鈦奈米微粒的特徵。 結果顯示,相較於鈦/釩元素比,從臺灣地質條件和不受人為活動干擾的角度來看,釔具有更穩定的特性,因此鈦/釔元素比更適合用來識別含鈦奈米微粒的來源。在兩個流域中普遍檢測到含鈦奈米微粒,其中高屏溪的含鈦奈米微粒主要歸因於人為活動的貢獻。另一方面,新店溪在高河川流量季節時,顯示含鈦奈米微粒來源與天然貢獻有較大關聯,但是,在低河川流量季節時,新店溪侵蝕岩石的能力下降,導致天然來源的含鈦奈米微粒減少,進而增加TiO2-ENPs的貢獻比例。 高屏溪中,經量測推算的TiO2-ENPs質量濃度、含鈦奈米微粒的數目濃度和最常見粒徑範圍分別為0.03-7.43 ng/mL、8.63×10^3-1,643×10^3 part./mL和46-60 nm; 而新店溪中,在高河川流量季節,它們分布範圍分別在 ND-0.325 ng/mL、11.2×10^3-134×10^3 part./mL和 32-52 nm 之間變化,在低河川流量季節,它們分別在 ND-0.268 ng/mL、7.33×10^3-76.4×10^3 part./mL 和 38-58 nm 之間波動。本研究提供了一種可靠的奈米微粒檢測方法,透過顆粒形式含鈦奈米微粒量測來量化TiO2-ENPs的質量濃度,同時可以提供含鈦奈米微粒的數目濃度和顆粒大小的特徵。此外,這些數據對於未來的TiO2-ENPs暴露風險評估甚至是水質控制都是至關重要的。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:06:37Z (GMT). No. of bitstreams: 1 U0001-2509202118074100.pdf: 3547850 bytes, checksum: 071d7590c397d5b4373f8ba75183ed21 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 中文摘要 i ABSTRACT ii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Study objectives 2 Chapter 2 Literature Review 4 2.1 Information on nanoparticles 4 2.1.1 Definition 4 2.1.2 Classification 4 2.1.3 TiO2-ENPs 5 2.2 Environmental release pathways and the fate of TiO2-ENPs 6 2.3 Concentrations of Ti-containing NPs/TiO2-NPs in the surface water 9 2.3.1 Ti-containing NPs/TiO2-NPs 9 2.3.2 Anthropogenic vs natural origin of Ti-containing NPs 13 2.4 Toxicity of TiO2-ENPs 18 Chapter 3 Materials and Methods 21 3.1 Description of the study area 21 3.1.1 Gaoping River 21 3.1.2 Xindian River 24 3.2 Sample collections 25 3.2.1 Materials and equipment 25 3.2.2 Sampling strategy 25 3.3 Multi-element sp-ICPMS measurement 28 3.3.1 Nanomaterials and reagents 28 3.3.2 Sample pretreatment 28 3.3.3 sp-ICPMS analysis 29 3.3.4 Calibration curve 32 3.3.5 QA/QC and detection limits 34 3.4 Particle composition 36 3.4.1 Ti/V and Ti/Y 36 3.4.2 Calculation of TiO2-ENPs mass concentration 36 3.5 Statistical analysis: R 37 Chapter 4 Results 38 4.1 Evolution of water chemistry along the rivers 38 4.2 Elemental ratios of Ti with V and Y 45 4.2.1 Gaoping River 45 4.2.2 Xindian River 54 4.3 Spatial distributions of TiO2-ENPs mass concentration along the rivers 61 4.3.1 Gaoping River 61 4.3.2 Xindian River 67 4.4 Number concentrations and size distributions of Ti-containing NPs 72 4.4.1 Gaoping River 72 4.4.2 Xindian River 77 Chapter 5 Discussion 79 5.1 Contributing sources of Ti-NNPs and TiO2-ENPs along the rivers 79 5.1.1 Discerning Ti-containing NPs sources with the elemental ratio 79 5.1.2 Occurrence of TiO2-ENPs and their origins 81 5.1.3 Seasonal changes in mass concentration of Ti-NNPs 85 5.1.4 Comparison of TiO2-ENP mass concentrations in the present work with previous studies 86 5.2 Possible factors governing particle size 91 5.3 Environmental implications 98 5.4 Limitations and analytical perspectives 101 Chapter 6 Conclusions 104 REFERENCES 106 APPENDICES 117 | |
| dc.language.iso | en | |
| dc.subject | 元素比 | zh_TW |
| dc.subject | 多元素單粒子感應耦合電漿質譜儀 | zh_TW |
| dc.subject | 人工奈米二氧化鈦 | zh_TW |
| dc.subject | 天然來源 | zh_TW |
| dc.subject | 地表水 | zh_TW |
| dc.subject | multi-element sp-ICPMS | en |
| dc.subject | TiO2 engineered nanoparticle | en |
| dc.subject | natural source | en |
| dc.subject | elemental ratio | en |
| dc.subject | surface water | en |
| dc.title | 利用元素比區分新店溪和高屏溪流域中含鈦奈米微粒來源 | zh_TW |
| dc.title | Differentiation of Ti-containing Engineered Nanoparticles from Natural Sources in the Xindian River and the Gaoping River Basins with Elemental Ratios | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳章甫(Hsin-Tsai Liu),陳美蓮(Chih-Yang Tseng) | |
| dc.subject.keyword | 人工奈米二氧化鈦,天然來源,元素比,地表水,多元素單粒子感應耦合電漿質譜儀, | zh_TW |
| dc.subject.keyword | TiO2 engineered nanoparticle,natural source,elemental ratio,surface water,multi-element sp-ICPMS, | en |
| dc.relation.page | 121 | |
| dc.identifier.doi | 10.6342/NTU202103359 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-09-27 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-12-25 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2509202118074100.pdf | 3.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
