請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81918完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李士傑(Shyh-Jye Lee) | |
| dc.contributor.author | Jin-Jie Liao | en |
| dc.contributor.author | 廖晉頡 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:06:36Z | - |
| dc.date.available | 2026-09-30 | |
| dc.date.copyright | 2021-10-16 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-04 | |
| dc.identifier.citation | Ai, F., Zhang, Y. and Peng, B. (2016). Restoration of miR-98 relieves the inhibitory effect of nicotine on the differentiation of P19 cells into cardiomyocytes. Biotechnol Lett 38, 579-587. Akerberg, A. A., Stewart, S. and Stankunas, K. (2014). Spatial and temporal control of transgene expression in zebrafish. PLoS One 9, e92217. Alberti, C., Manzenreither, R. A., Sowemimo, I., Burkard, T. R., Wang, J., Mahofsky, K., Ameres, S. L. and Cochella, L. (2018). Cell-type specific sequencing of microRNAs from complex animal tissues. Nat Methods 15, 283-289. Angers, S., Thorpe, C. J., Biechele, T. L., Goldenberg, S. J., Zheng, N., MacCoss, M. J. and Moon, R. T. (2006). The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8, 348-357. Baidyuk, E. V., Gudkova, A. Y., Sakuta, G. A., Semernin, E. N., Stepanov, A. V. and Kudryavtsev, B. N. (2015). Stem Cells Play No Considerable Role in Cardiomyocyte Repopulation of Adult Human Heart. Tsitologiia 57, 885-892. Bakkers, J. (2011). Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91, 279-288. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. Bouma, B. J. and Mulder, B. J. (2017). Changing Landscape of Congenital Heart Disease. Circ Res 120, 908-922. Brand, A. H. and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415. Brown, D. R., Samsa, L. A., Qian, L. and Liu, J. (2016). Advances in the Study of Heart Development and Disease Using Zebrafish. J Cardiovasc Dev Dis 3. Cao, Y., Zhao, J., Sun, Z., Zhao, Z., Postlethwait, J. and Meng, A. (2004). fgf17b, a novel member of Fgf family, helps patterning zebrafish embryos. Developmental Biology 271, 130-143. Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M. L., Segnalini, P., Gu, Y., Dalton, N. D., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nat Med 13, 613-618. Chakraborty, C., Bhattacharya, M. and Agoramoorthy, G. (2020). Single-cell sequencing of miRNAs: A modified technology. Cell Biol Int 44, 1773-1780. Chen, P. Y., Manninga, H., Slanchev, K., Chien, M., Russo, J. J., Ju, J., Sheridan, R., John, B., Marks, D. S., Gaidatzis, D., et al. (2005). The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 19, 1288-1293. Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K. and Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744. Ching, Y. H., Ghosh, T. K., Cross, S. J., Packham, E. A., Honeyman, L., Loughna, S., Robinson, T. E., Dearlove, A. M., Ribas, G., Bonser, A. J., et al. (2005). Mutation in myosin heavy chain 6 causes atrial septal defect. Nat Genet 37, 423-428. Cohen, A., Shmoish, M., Levi, L., Cheruti, U., Levavi-Sivan, B. and Lubzens, E. (2008). Alterations in micro-ribonucleic acid expression profiles reveal a novel pathway for estrogen regulation. Endocrinology 149, 1687-1696. Fei, X., Zhang, P., Pan, Y. and Liu, Y. (2020). MicroRNA-98-5p Inhibits Tumorigenesis of Hepatitis B Virus-Related Hepatocellular Carcinoma by Targeting NF-κB-Inducing Kinase. Yonsei Med J 61, 460-470. Feil, R., Wagner, J., Metzger, D. and Chambon, P. (1997). Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237, 752-757. Fink, M., Callol-Massot, C., Chu, A., Ruiz-Lozano, P., Izpisua Belmonte, J. C., Giles, W., Bodmer, R. and Ocorr, K. (2009). A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. Biotechniques 46, 101-113. Fischer, J. A., Giniger, E., Maniatis, T. and Ptashne, M. (1988). GAL4 activates transcription in Drosophila. Nature 332, 853-856. Garcia, D. M., Baek, D., Shin, C., Bell, G. W., Grimson, A. and Bartel, D. P. (2011). Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18, 1139-1146. Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A. and Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods 6, 343-345. Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P. and Bartel, D. P. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27, 91-105. Jarrell, D. K., Lennon, M. L. and Jacot, J. G. (2019). Epigenetics and Mechanobiology in Heart Development and Congenital Heart Disease. Diseases 7, 52. Jiang, F., Yu, Q., Chu, Y., Zhu, X., Lu, W., Liu, Q. and Wang, Q. (2019). MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1. Int J Oncol 54, 128-138. Kalayinia, S., Arjmand, F., Maleki, M., Malakootian, M. and Singh, C. P. (2021). MicroRNAs: roles in cardiovascular development and disease. Cardiovasc Pathol 50, 107296. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310. Kloosterman, W. P., Wienholds, E., Ketting, R. F. and Plasterk, R. H. (2004). Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res 32, 6284-6291. Kuppusamy, K. T., Jones, D. C., Sperber, H., Madan, A., Fischer, K. A., Rodriguez, M. L., Pabon, L., Zhu, W. Z., Tulloch, N. L., Yang, X., et al. (2015). Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci U S A 112, E2785-2794. Kwan, K. M., Fujimoto, E., Grabher, C., Mangum, B. D., Hardy, M. E., Campbell, D. S., Parant, J. M., Yost, H. J., Kanki, J. P. and Chien, C. B. (2007). The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236, 3088-3099. Lalani, S. R. and Belmont, J. W. (2014). Genetic basis of congenital cardiovascular malformations. Eur J Med Genet 57, 402-413. Lee, H., Han, S., Kwon, C. S. and Lee, D. (2016). Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 7, 100-113. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H. and Kim, V. N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051-4060. Lehrbach, N. J., Armisen, J., Lightfoot, H. L., Murfitt, K. J., Bugaut, A., Balasubramanian, S. and Miska, E. A. (2009). LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nature Structural Molecular Biology 16, 1016-1020. Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. Li, Y., Klena, N. T., Gabriel, G. C., Liu, X., Kim, A. J., Lemke, K., Chen, Y., Chatterjee, B., Devine, W., Damerla, R. R., et al. (2015). Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 521, 520-524. Liu, N., Bezprozvannaya, S., Williams, A. H., Qi, X., Richardson, J. A., Bassel-Duby, R. and Olson, E. N. (2008). microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22, 3242-3254. Liu, X., Yagi, H., Saeed, S., Bais, A. S., Gabriel, G. C., Chen, Z., Peterson, K. A., Li, Y., Schwartz, M. C., Reynolds, W. T., et al. (2017). The complex genetics of hypoplastic left heart syndrome. Nat Genet 49, 1152-1159. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95-98. Ma, W., He, F., Ding, F., Zhang, L., Huang, Q., Bi, C., Wang, X., Hua, B., Yang, F., Yuan, Y., et al. (2018). Pre-Treatment with Melatonin Enhances Therapeutic Efficacy of Cardiac Progenitor Cells for Myocardial Infarction. Cell Physiol Biochem 47, 1287-1298. Melton, C., Judson, R. L. and Blelloch, R. (2010). Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621-626. Metcalf, M. K. and Rychik, J. (2020). Outcomes in Hypoplastic Left Heart Syndrome. Pediatr Clin North Am 67, 945-962. Nagy, O., Barath, S. and Ujfalusi, A. (2019). The role of microRNAs in congenital heart disease. EJIFCC 30, 165-178. O'Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018). Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) 9, 402. Ouchi, Y., Yamamoto, J. and Iwamoto, T. (2014). The heterochronic genes lin-28a and lin-28b play an essential and evolutionarily conserved role in early zebrafish development. PLoS One 9, e88086. Samsa, L. A., Givens, C., Tzima, E., Stainier, D. Y., Qian, L. and Liu, J. (2015). Cardiac contraction activates endocardial Notch signaling to modulate chamber maturation in zebrafish. Development 142, 4080-4091. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676-682. Schott, J. J., Benson, D. W., Basson, C. T., Pease, W., Silberbach, G. M., Moak, J. P., Maron, B. J., Seidman, C. E. and Seidman, J. G. (1998). Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281, 108-111. Sheikh, M. S. A. (2021). Role of Plasma Soluble Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 and microRNA-98 in Severity and Risk of Coronary Artery Disease. Balkan Med J 38, 13-22. Shentu, H., Wen, H. J., Her, G. M., Huang, C. J., Wu, J. L. and Hwang, S. P. (2003). Proximal upstream region of zebrafish bone morphogenetic protein 4 promoter directs heart expression of green fluorescent protein. Genesis 37, 103-112. Siragam, V., Rutnam, Z. J., Yang, W., Fang, L., Luo, L., Yang, X., Li, M., Deng, Z., Qian, J., Peng, C., et al. (2012). MicroRNA miR-98 inhibits tumor angiogenesis and invasion by targeting activin receptor-like kinase-4 and matrix metalloproteinase-11. Oncotarget 3, 1370-1385. Smith, T., Rajakaruna, C., Caputo, M. and Emanueli, C. (2015). MicroRNAs in congenital heart disease. Ann Transl Med 3, 333. Song, J., Su, W., Chen, X., Zhao, Q., Zhang, N., Li, M. G., Yang, P. C. and Wang, L. (2017). Micro RNA-98 suppresses interleukin-10 in peripheral B cells in patient post-cardio transplantation. Oncotarget 8, 28237-28246. Sun, C., Liu, H., Guo, J., Yu, Y., Yang, D., He, F. and Du, Z. (2017). MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3. Sci Rep 7, 7460. Sun, H. H., Sun, P. F. and Liu, W. Y. (2018). MiR-98-5p regulates myocardial differentiation of mesenchymal stem cells by targeting TBX5. Eur Rev Med Pharmacol Sci 22, 7841-7848. Timmerman, L. A., Grego-Bessa, J., Raya, A., Bertrán, E., Pérez-Pomares, J. M., Díez, J., Aranda, S., Palomo, S., McCormick, F., Izpisúa-Belmonte, J. C., et al. (2004). Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18, 99-115. Tsialikas, J. and Romer-Seibert, J. (2015). LIN28: roles and regulation in development and beyond. Development 142, 2397-2404. Ulitsky, I., Shkumatava, A., Jan, C. H., Subtelny, A. O., Koppstein, D., Bell, G. W., Sive, H. and Bartel, D. P. (2012). Extensive alternative polyadenylation during zebrafish development. Genome Res 22, 2054-2066. van der Linde, D., Konings, E. E., Slager, M. A., Witsenburg, M., Helbing, W. A., Takkenberg, J. J. and Roos-Hesselink, J. W. (2011). Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58, 2241-2247. Viswanathan, S. R., Daley, G. Q. and Gregory, R. I. (2008). Selective Blockade of MicroRNA Processing by Lin28. Science 320, 97-100. Wang, C. Y., Zhang, J. J., Hua, L., Yao, K. H., Chen, J. T. and Ren, X. Q. (2016). MicroRNA-98 suppresses cell proliferation, migration and invasion by targeting collagen triple helix repeat containing 1 in hepatocellular carcinoma. Mol Med Rep 13, 2639-2644. Wang, Y., Chen, J., Song, W., Wang, Y., Chen, Y., Nie, Y., Ye, Z. and Hui, R. (2015). The Human Myotrophin Variant Attenuates MicroRNA-Let-7 Binding Ability but Not Risk of Left Ventricular Hypertrophy in Human Essential Hypertension. PLoS One 10, e0135526. Winter, J., Jung, S., Keller, S., Gregory, R. I. and Diederichs, S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11, 228-234. Wu, W., He, J. and Shao, X. (2020). Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990-2017. Medicine (Baltimore) 99, e20593. Xu, X., Song, Y., Li, Y., Chang, J., Zhang, H. and An, L. (2010). The tandem affinity purification method: an efficient system for protein complex purification and protein interaction identification. Protein Expr Purif 72, 149-156. Yagi, H., Liu, X., Gabriel, G. C., Wu, Y., Peterson, K., Murray, S. A., Aronow, B. J., Martin, L. J., Benson, D. W. and Lo, C. W. (2018). The Genetic Landscape of Hypoplastic Left Heart Syndrome. Pediatr Cardiol 39, 1069-1081. Yang, Q., Wu, F., Mi, Y., Wang, F., Cai, K., Yang, X., Zhang, R., Liu, L., Zhang, Y., Wang, Y., et al. (2020). Aberrant expression of miR-29b-3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2. Cell Prolif 53, e12764. Yang, Y., Ago, T., Zhai, P., Abdellatif, M. and Sadoshima, J. (2011). Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res 108, 305-313. Zhai, C. L., Tang, G. M., Qian, G., Hu, H. L., Wang, S. J., Yin, D. and Zhang, S. (2019). MicroRNA-98 attenuates cardiac ischemia-reperfusion injury through inhibiting DAPK1 expression. IUBMB Life 71, 166-176. Zhang, B. Y., Zhao, Z. and Jin, Z. (2016). Expression of miR-98 in myocarditis and its influence on transcription of the FAS/FASL gene pair. Genet Mol Res 15. Zhao, Y., Samal, E. and Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214-220. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81918 | - |
| dc.description.abstract | 先天性心臟病(CHD)是世界上最常見的新生兒缺陷,同時伴隨著異常的心臟發育過程以及形態。因此,更深入地了解潛在的致病調節機制對於精確診斷和開發潛在療法至關重要。微核糖核酸(MicroRNAs,miRNA)藉由轉錄後修飾進而調節基因表現以調控器官發育過程中不同的細胞訊息傳導路徑,其中也包括心臟發育。儘管已知某些miRNA會介導心臟發育過程,但許多其他miRNA的心臟相關功能仍然尚未明瞭。先前研究指出,Let-7 miRNA家族其中之一的miR-98在各種類型的心血管疾病皆發現到有表現失調的現象。然而,對於miR-98是否參與心臟發育過程知之甚少。Let-7 miRNA家族已知是早期胚胎發育過程中的關鍵因子,並且與心臟病相關。在斑馬魚中,let-7的過度表達已被證明會延遲胚胎發育並甚至導致死亡。我已經通過注射相似劑量的let-7h模擬物證實了先前報告的發現,而let-7h即是人類miR-98的斑馬魚同源基因。我們進一步發現到注入亞致死劑量的let-7h模擬物並不會導致明顯的早期胚胎缺陷,並且經過let-7h過量表達的胚胎可以在受精後存活長達 72 小時。在這種條件下,我們觀察到let-7h過量表達的斑馬魚胚胎的心室縮小了,但相反的,心房體積卻擴大了。而let-7h的過量表達也降低了各種心臟標誌基因的表現量。此外,通過共同注射幾種預測的let-7h目標基因的mRNA,包括wnt9b、bmp7a和fgf4,可以在某種程度上的挽救這種let-7h所引起的心臟發育缺陷。此外,我們發現let-7h誘導的心臟缺陷是經由lin28ab所調控,同時過量表達lin28ab也對let-7h所引起的心臟缺陷產生顯著的挽救效果。最後,為了闡明let-7h在心臟發生過程中的特定功能,我們建立並驗證了可以在特定時間點以及空間經由tamoxifen誘導的let-7h過量表達基因轉殖魚,以供後續在活體分析let-7h對心臟發育之影響。總結來說,適量的let-7h表現會通過調節許多下游心臟基因表現量維持正常心臟發育過程,同時此等調控機制是經由lin28ab的作用途徑進行調節。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:06:36Z (GMT). No. of bitstreams: 1 U0001-2909202115323800.pdf: 28295890 bytes, checksum: dfe645fccec3459e2cfc099c6e95a820 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "口試委員會審定書 i 致謝 ii 中文摘要 ix Abstract xi Introduction 1 Materials and Methods 7 Zebrafish maintenance 7 MicroRNA mimics and mRNA microinjection 7 Imaging 8 Analyses of cardiac functions 8 Total RNA extraction, cDNA preparation and quantitative polymerase chain reaction (qPCR) 9 Plasmid construction 9 Generation of transgenic fish 11 Statistical analysis 11 Results 12 Overexpression of let-7h causes abnormality, developmental delay and death in zebrafish embryos 12 Sub-lethal dosage of let-7h mimic leads to abnormal heart development 13 let-7h mimic disturbs chamber ballooning process and reduces ventricle shortening fraction but not heart rate 14 Down regulation of cardiac genes in the let-7h-overexpressing embryos 16 Partial rescue of let-7h mimic-induced heart defects by the combination of let-7h-target genes 17 let-7h induced heart defect is Lin-28 dependent 19 Generation and screening of transgenic line with tamoxifen-dependent GAL4-UAS expression system 20 Discussion 24 References 33 Table 1. Statistical analysis of the change of embryo morphologies at 24 hpf after sub-lethal dosage let-7h mimic injection. 45 Table 2. Statistical analysis of the change of heart morphologies of let-7h injected embryos at 48 hpf. 46 Table 3. Statistical analysis of the rescue effects of let-7h induced heart defects by co-injecting the mRNAs of different target genes individually. 48 Table 4. Statistical analysis of the rescue effects of let-7h induced heart defects by co-injecting a combination of mRNAs of multiple target genes. 50 Table 5. Statistical analysis of the rescue effects of let-7h-induced heart defects by co-injecting lin28ab mRNA. 53 Table 6. List of all members of Let-7 family in zebrafish 54 Table 7. List of primers 55 Figure 1. Overexpression of let-7h causes developmental defects. 56 Figure 2. Sub-lethal dosages of let-7h mimic interferes cardiac looping and development. 57 Figure 3. Sub-lethal dosages of let-7h mimic disturbs cardiac ballooning process. 58 Figure 4. let-7h mimic does not affect heart rate but reduces ventricle shortening fraction. 59 Figure 5. let-7h mimic induces changes in expression of cardiac-related genes. 61 Figure 6. let-7h mimic-induced heart defects can be partially rescued by co-injecting a combination of mRNAs of multiple target genes. 63 Figure 7. The heart defects induced by let-7h are lin28-dependent. 65 Figure 8. Establishment and validation of spatially and temporally controlled let-7h overexpression transgenic fish. 67 Figure 9. Maps of plasmids used to generate tamoxifen-inducible transgenic lines. 69 Figure 10. Establishments of two transgenic fish lines using the tamoxifen-dependent GAL4-UAS expressing system. 70" | |
| dc.language.iso | en | |
| dc.subject | lin28ab | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | 先天性心臟病 | zh_TW |
| dc.subject | let-7 | zh_TW |
| dc.subject | 心臟發育 | zh_TW |
| dc.subject | zebrafish | en |
| dc.subject | Congenital heart disease | en |
| dc.subject | let-7 | en |
| dc.subject | cardiogenesis | en |
| dc.subject | lin28ab | en |
| dc.title | 異位性表達微核糖核酸let-7h干擾斑馬魚心臟發育過程 | zh_TW |
| dc.title | Ectopic expression of let-7h disturbs heart development in zebrafish | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊鎧鍵(Hsin-Tsai Liu),詹世鵬(Chih-Yang Tseng),賴時磊,蔡素宜 | |
| dc.subject.keyword | 先天性心臟病,let-7,心臟發育,lin28ab,斑馬魚, | zh_TW |
| dc.subject.keyword | Congenital heart disease,let-7,cardiogenesis,lin28ab,zebrafish, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU202103457 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| dc.date.embargo-lift | 2026-09-30 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2909202115323800.pdf 此日期後於網路公開 2026-09-30 | 27.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
