Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81914
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺(Pai-Chi Li)
dc.contributor.authorShi-Hao Lien
dc.contributor.author黎世豪zh_TW
dc.date.accessioned2022-11-25T03:06:30Z-
dc.date.available2026-09-30
dc.date.copyright2021-10-23
dc.date.issued2021
dc.date.submitted2021-10-03
dc.identifier.citation[1] A. Fenster et al., '3-D ultrasound imaging: a review', IEEE Engineering in Medicine and Biology Magazine, vol. 15, no. 6, pp. 41-51, 1996. Available: 10.1109/51.544511. [2] A. Moskalik et al., 'Registration of three-dimensional compound ultrasound scans of the breast for refraction and motion correction', Ultrasound in Medicine Biology, vol. 21, no. 6, pp. 769-778, 1995. Available: 10.1016/0301-5629(95)00018-m. [3] C. Palombo et al., 'Ultrafast Three-Dimensional Ultrasound', Stroke, vol. 29, no. 8, pp. 1631-1637, 1998. Available: 10.1161/01.str.29.8.1631. [4] A. Fenster et al., '3D Ultrasound Imaging of the Carotid Arteries', Current Drug Target -Cardiovascular Hematological Disorders, vol. 4, no. 2, pp. 161-175, 2004. Available: 10.2174/156800604333631. [5] R. Raišutis et al., 'Application of Dual Focused Ultrasonic Phased Array Transducer in Two Orthogonal Cross-Sections for Inspection of Multi-Layered Composite Components of the Aircraft Fuselage', Materials, vol. 13, no. 7, p. 1689, 2020. Available: 10.3390/ma13071689. [6] D. G. Wildes et al., 'Elevation performance of 1.25D and 1.5D transducer arrays', IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 44, no. 5, pp. 1027-1037, 1997. Available: 10.1109/58.655628. [7] F. Lindseth et al., 'Ultrasound-Based Guidance and Therapy', Advancements and Breakthroughs in Ultrasound Imaging, 2013. Available: 10.5772/55884. [8] J. D. Larson et al., '2-D phased array ultrasound imaging system with distributed phasing', U.S. Patent, 5229933, Jul. 20, 1993. [9] U. W. Lok et al., 'Microbeamforming With Error Compensation', IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 7, pp. 1153-1165, 2018. Available: 10.1109/tuffc.2018.2834411. [10] H. G. Kang et al., 'Column-based micro-beamformer for improved 2D beamforming using a matrix array transducer', 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1-4, 2015. Available: 10.1109/biocas.2015.7348450. [11] J. T. Yen et al., 'Sparse 2-D array design for real time rectilinear volumetric imaging', IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, no. 1, pp. 93-110, 2000. Available: 10.1109/58.818752. [12] J. T. Yen et al., 'Real-time curvilinear and improved rectilinear volumetric imaging', 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.01CH37263), vol. 2, pp. 1117-1122, 2001. Available: 10.1109/ultsym.2001.991915. [13] J. T. Yen et al., 'Real-time rectilinear 3-D ultrasound with 4:1 receive mode multiplexing', IEEE Symposium on Ultrasonics, 2003, vol. 1, pp. 954-959, 2003. Available: 10.1109/ultsym.2003.1293557. [14] C. E. Morton et al., 'Theoretical assessment of a crossed electrode 2-D array for 3-D imaging', IEEE Symposium on Ultrasonics, 2003, vol. 1, pp. 968-971, 2003. Available: 10.1109/ultsym.2003.1293560. [15] M. F. Rasmussen et al., '3-D imaging using row-column-addressed arrays with integrated apodization - part i: apodization design and line element beamforming', IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, no. 5, pp. 947-958, 2015. Available: 10.1109/tuffc.2014.006531. [16] N. M. Daher et al., 'Rectilinear 3-D ultrasound imaging using synthetic aperture techniques', IEEE Ultrasonics Symposium, 2004, vol. 2, pp. 1270-1273, 2004. Available: 10.1109/ultsym.2004.1418020. [17] N. M. Daher et al., '2-D array for 3-D ultrasound imaging using synthetic aperture techniques', IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, no. 5, pp. 912-924, 2006. Available: 10.1109/tuffc.2006.1632682. [18] T. L. Christiansen et al., '3-D imaging using row–column-addressed arrays with integrated apodization— part ii: transducer fabrication and experimental results', IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, no. 5, pp. 959-971, 2015. Available: 10.1109/tuffc.2014.006819. [19] T. L. Christiansen et al., 'Row-column addressed 2-D CMUT arrays with integrated apodization', 2014 IEEE International Ultrasonics Symposium, pp. 600-603, 2014. Available: 10.1109/ultsym.2014.0147. [20] C. Seo et al., '5A-5 64x64 2-D Array Transducer with Row-Column Addressing', 2006 IEEE Ultrasonics Symposium, pp. 74-77, 2006. Available: 10.1109/ultsym.2006.32. [21] C. Seo et al., 'P5J-4 256x256 2-D Array Transducer with Row-Column Addressing for 3-D Imaging', 2007 IEEE Ultrasonics Symposium Proceedings, pp. 2381-2384, 2007. Available: 10.1109/ultsym.2007.599. [22] C. Seo et al., 'A 256x256 2-D array transducer with row-column addressing for 3-D rectilinear imaging', IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 56, no. 4, pp. 837-847, 2009. Available: 10.1109/tuffc.2009.1107. [23] C. Seo et al., 'Recent results using a 256x256 2-D array transducer for 3-D rectilinear imaging', 2008 IEEE Ultrasonics Symposium, pp. 1146-1149, 2008. Available: 10.1109/ultsym.2008.0276. [24] A. S. Logan et al., 'A 32x32 element row-column addressed capacitive micromachined ultrasonic transducer', IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 58, no. 6, pp. 1266-1271, 2011. Available: 10.1109/tuffc.2011.193. [25] L. Wong et al., 'A row–column addressed micromachined ultrasonic transducer array for surface scanning applications', Ultrasonics, vol. 54, no. 8, pp. 2072-2080, 2014. Available: 10.1016/j.ultras.2014.07.002. [26] H. Bouzari et al., 'Imaging Performance for Two Row–Column Arrays', IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 66, no. 7, pp. 1209-1221, 2019. Available: 10.1109/tuffc.2019.2914348. [27] J. Synnevag et al., 'Benefits of minimum-variance beamforming in medical ultrasound imaging', IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 56, no. 9, pp. 1868-1879, 2009. Available: 10.1109/tuffc.2009.1263. [28] P. C. Li et al., 'Adaptive imaging using the generalized coherence factor,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, no. 2, pp. 128-141, Feb. 2003. Available: 10.1109/TUFFC.2003.1182117. [29] M. Flesch et al., '4D in vivo ultrafast ultrasound imaging using a row-column addressed matrix and coherently-compounded orthogonal plane waves', Physics in Medicine and Biology, vol. 62, no. 11, pp. 4571-4588, 2017. Available: 10.1088/1361-6560/aa63d9. [30] J. Sauvage et al., 'A large aperture row column addressed probe for in vivo 4D ultrafast doppler ultrasound imaging', Physics in Medicine Biology, vol. 63, no. 21, p. 215012, 2018. Available: 10.1088/1361-6560/aae427. [31] K. Chetverikova et al., '3D Volumetric Tensor Velocity Imaging with Low Computational Complexity Using a Row-Column Addressed Array', Applied Sciences, vol. 11, no. 12, p. 5757, 2021. Available: 10.3390/app11125757. [32] S. Holbek et al., '3-D vector velocity estimation with row-column addressed arrays,' 2015 IEEE International Ultrasonics Symposium (IUS), 2015, pp. 1-4. Available: 10.1109/ULTSYM.2015.0425. [33] M. Gasse et al., 'High-Quality Plane Wave Compounding Using Convolutional Neural Networks,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, no. 10, pp. 1637-1639, 2017. Available: 10.1109/TUFFC.2017.2736890. [34] Y. H. Yoon et al., 'Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning', IEEE Transactions on Medical Imaging, vol. 38, no. 2, pp. 325-336, 2019. Available: 10.1109/tmi.2018.2864821. [35] S. Vedula et al., 'High Quality Ultrasonic Multi-line Transmission Through Deep Learning', Machine Learning for Medical Image Reconstruction, pp. 147-155, 2018. Available: 10.1007/978-3-030-00129-2_17. [36] M. Feigin et al., 'A Deep Learning Framework for Single-Sided Sound Speed Inversion in Medical Ultrasound', IEEE Transactions on Biomedical Engineering, vol. 67, no. 4, pp. 1142-1151, 2020. Available: 10.1109/tbme.2019.2931195. [37] 李百祺, 醫用超音波原理, 2000. Available: https://sites.google.com/view/pai-chilislab/courses?authuser=0 [38] H. Gao et al., 'A fast convolution-based methodology to simulate 2-Dd/3-D cardiac ultrasound images', IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 56, no. 2, pp. 404-409, 2009. Available: 10.1109/tuffc.2009.1051. [39] H. Gao et al., 'P5C-2 A New Convolution-Based Methodology to Simulate Ultrasound Images in a 2D/3D Sector Format', 2007 IEEE Ultrasonics Symposium Proceedings, pp. 2243-2246, 2007. Available: 10.1109/ultsym.2007.564. [40] A. Rodriguez-Molares et al., 'The Generalized Contrast-to-Noise Ratio', 2018 IEEE International Ultrasonics Symposium (IUS), 2018. Available: 10.1109/ultsym.2018.8580101. [41] Y. Lou et al., 'A K-space-based Approach to Coherence Estimation', 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1-4, 2020. Available: 10.1109/ius46767.2020.9251744. [42] T. Hergum et al., 'Fast ultrasound imaging simulation in K-space', IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 56, no. 6, pp. 1159-1167, 2009. Available: 10.1109/tuffc.2009.1158. [43] Sun Nuclear, 'Doppler Ultrasound Phantoms (Gammex™ Technologies) SonoTE,' [Online]. Available: https://www.sunnuclear.com/products/doppler-ultrasound-phantoms. [44] S. Wang et al., 'Performance Evaluation of Coherence-Based Adaptive Imaging Using Clinical Breast Data', IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 54, no. 8, pp. 1669-1679, 2007. Available: 10.1109/tuffc.2007.438.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81914-
dc.description.abstract在三維超音波影像中,行列式二維陣列相較於全採樣二維陣列大幅地降低了所需要的硬體以及計算複雜度。然而,當可控制的傳感器元件從N^2減少至2N以及較長孔徑造成的邊界效應,將導致成像品質受到影響。因此本論文提出從行列式二維陣列的三維影像重建出全採樣二維陣列的全資料集的方法,藉由重建的全資料集不僅可以改善行列式二維陣列的成像品質,也可能適用於其他被全採樣陣列發展的成像方法,預期能達到更廣泛的應用。本論文所提出方法之核心為透過空間濾波來重建全採樣空間資料,為達到較佳之效果,本方法首先使用端對端的深度學習框架,將行列式二維陣列的三維影像增強至全採樣二維陣列的雙向動態聚焦影像,接著應用N^2組K空間濾波器至增強後的影像,以估計出全採樣二維陣列各個發射事件所獲得的低解析度影像,最後藉由波束和分解方法,計算各張低解析度影像對於原始通道資料中每一個取樣點的貢獻量,再將該貢獻量加總以重建出全採樣二維陣列的全資料集。在Field II模擬實驗中,使用128行與128列、11MHz、通道間隔為一倍波長的行列式二維陣列,將線仿體於-6dB與-20dB的側向波束寬度從0.42mm及0.64mm改善至0.35mm及0.57mm,旁瓣等級也從-15.92dB降低至-24.78dB。在囊腫仿體中,將對比與對比雜訊比從5.09dB及2.59dB改善至19.10dB與4.85dB,廣義對比雜訊比也從0.71提高至0.99。提出的方法預期也能拓展至其他不能存取全資料集的超音波系統上,且無關於陣列的發射方式。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:06:30Z (GMT). No. of bitstreams: 1
U0001-0310202115543800.pdf: 8937006 bytes, checksum: 88c645c6697aa4fb1e9ccd8c4eabf9f7 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i 摘要 iii ABSTRACT iv 目錄 v 圖目錄 viii 表目錄 xv 第一章 緒論 1 1.1 三維超音波影像 1 1.1.1 一維陣列成像系統 1 1.1.2 二維陣列成像系統 2 1.2 行列式二維陣列 6 1.2.1 硬體架構 7 1.2.2 成像解析度 9 1.2.3 成像方法的限制 10 1.3 研究目標 11 1.4 論文架構 12 第二章 基於深度學習之影像增強方法 13 2.1 三維影像模擬方法 14 2.1.1 全採樣二維陣列的成像方法 15 2.1.2 行列式二維陣列的成像方法 16 2.1.3 點擴散函數分析 17 2.1.4 模擬時間分析 19 2.1.5 基於卷積之快速模擬方法 20 2.2 資料集 24 2.2.1 成像物件的設計 24 2.2.2 三維影像區塊切割方法 27 2.3 深度神經網路架構 28 2.3.1 訓練方式 30 2.3.2 評估指標 31 2.4 模擬結果與討論 32 第三章 K空間濾波方法 38 3.1 K空間介紹 39 3.2 反濾波器設計方法 40 3.2.1 K空間響應分析 41 3.2.2 濾波結果分析 42 3.3 維納濾波器設計方法 43 3.3.1 濾波結果分析 43 3.3.2 限制重建範圍 44 3.3 模擬結果與討論 46 第四章 從影像重建通道資料的方法 49 4.1 波束和分解方法 50 4.2 重建通道資料分析 51 4.2.1 相位分析 53 4.2.2 影像分析 57 4.3 模擬結果與討論 58 第五章 分析與討論 63 5.1 執行階段討論 63 5.2 使用神經網路增強影像之必要性討論 63 5.3 使用K空間濾波方法之必要性討論 66 第六章 結論與未來展望 68 6.1 結論 68 6.2 未來展望 68 6.2.1 一維陣列之線仿體實驗資料測試 69 6.2.2 一維陣列之臨床乳房資料測試 73 參考文獻 81
dc.language.isozh-TW
dc.subjectK空間濾波方法zh_TW
dc.subject行列式二維陣列zh_TW
dc.subject深度神經網路zh_TW
dc.subjectrow-column addressed 2-D arrayen
dc.subjectdeep neural networken
dc.subjectk-space filteringen
dc.title使用K空間濾波重建全採樣陣列資料的行列式陣列波束成型改善方法zh_TW
dc.titleImproved Row-Column Addressed Array Beamforming with Reconstruction of Fully Sampled Array Data Using K-Space Filteringen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee#VALUE!
dc.subject.keyword行列式二維陣列,深度神經網路,K空間濾波方法,zh_TW
dc.subject.keywordrow-column addressed 2-D array,deep neural network,k-space filtering,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202103515
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
dc.date.embargo-lift2026-09-30-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-0310202115543800.pdf
  此日期後於網路公開 2026-09-30
8.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved