請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李士傑(Shyh-Jye Lee) | |
| dc.contributor.author | Wei-Lin Hsu | en |
| dc.contributor.author | 許維麟 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:06:29Z | - |
| dc.date.available | 2026-09-30 | |
| dc.date.copyright | 2021-10-16 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-04 | |
| dc.identifier.citation | Bai, S., Thummel, R., Godwin, A. R., Nagase, H., Itoh, Y., Li, L., Evans, R., McDermott, J., Seiki, M. and Sarras, M. P., Jr. (2005). Matrix metalloproteinase expression and function during fin regeneration in zebrafish: analysis of MT1-MMP, MMP2 and TIMP2. Matrix Biol 24, 247-260. Bensimon-Brito, A., Ramkumar, S., Boezio, G. L. M., Guenther, S., Kuenne, C., Helker, C. S. M., Sánchez-Iranzo, H., Iloska, D., Piesker, J., Pullamsetti, S., et al. (2020). TGF-β Signaling Promotes Tissue Formation during Cardiac Valve Regeneration in Adult Zebrafish. Developmental cell 52, 9-20.e27. Bobadilla, M., Sáinz, N., Rodriguez, J. A., Abizanda, G., Orbe, J., de Martino, A., García Verdugo, J. M., Páramo, J. A., Prósper, F. and Pérez-Ruiz, A. (2014). MMP-10 Is Required for Efficient Muscle Regeneration in Mouse Models of Injury and Muscular Dystrophy. STEM CELLS 32, 447-461. Boulter, L., Govaere, O., Bird, T. G., Radulescu, S., Ramachandran, P., Pellicoro, A., Ridgway, R. A., Seo, S. S., Spee, B., Van Rooijen, N., et al. (2012). Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nature medicine 18, 572-579. Callahan, J. F., Burgess, J. L., Fornwald, J. A., Gaster, L. M., Harling, J. D., Harrington, F. P., Heer, J., Kwon, C., Lehr, R., Mathur, A., et al. (2002). Identification of Novel Inhibitors of the Transforming Growth Factor β1 (TGF-β1) Type 1 Receptor (ALK5). Journal of Medicinal Chemistry 45, 999-1001. Carrillo, S. A., Anguita-Salinas, C., Peña, O. A., Morales, R. A., Muñoz-Sánchez, S., Muñoz-Montecinos, C., Paredes-Zúñiga, S., Tapia, K. and Allende, M. L. (2016). Macrophage Recruitment Contributes to Regeneration of Mechanosensory Hair Cells in the Zebrafish Lateral Line. Journal of cellular biochemistry 117, 1880-1889. Chablais, F. and Jaźwińska, A. (2012). The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling. Development 139, 1921. Chitnis, A. B., Nogare, D. D. and Matsuda, M. (2012). Building the posterior lateral line system in zebrafish. Dev Neurobiol 72, 234-255. David, C. J. and Massagué, J. (2018). Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 19, 419-435. Davies, L. C., Jenkins, S. J., Allen, J. E. and Taylor, P. R. (2013). Tissue-resident macrophages. Nature Immunology 14, 986-995. Ellett, F., Pase, L., Hayman, J. W., Andrianopoulos, A. and Lieschke, G. J. (2011). mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117, e49-56. Eming, S. A., Wynn, T. A. and Martin, P. (2017). Inflammation and metabolism in tissue repair and regeneration. Science (New York, N.Y.) 356, 1026-1030. Fu, H., Zhou, D., Zhu, H., Liao, J., Lin, L., Hong, X., Hou, F. F. and Liu, Y. (2019). Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney International 95, 1167-1180. Gemberling, M., Bailey, T. J., Hyde, D. R. and Poss, K. D. (2013). The zebrafish as a model for complex tissue regeneration. Trends Genet 29, 611-620. Ghysen, A. and Dambly-Chaudiere, C. (2007). The lateral line microcosmos. Genes development 21, 2118-2130. Godwin, J. W., Pinto, A. R. and Rosenthal, N. A. (2013). Macrophages are required for adult salamander limb regeneration. 110, 9415-9420. Han, S., Kim, D. H., Sung, J., Yang, H., Park, J. W. and Youn, I. (2019). Electrical stimulation accelerates neurite regeneration in axotomized dorsal root ganglion neurons by increasing MMP-2 expression. Biochem Biophys Res Commun 508, 348-353. Hernández, P. P., Olivari, F. A., Sarrazin, A. F., Sandoval, P. C. and Allende, M. L. (2007). Regeneration in zebrafish lateral line neuromasts: expression of the neural progenitor cell marker sox2 and proliferation-dependent and-independent mechanisms of hair cell renewal. Dev Neurobiol 67, 637-654. Hong, S. S., Choi, J. H., Lee, S. Y., Park, Y. H., Park, K. Y., Lee, J. Y., Kim, J., Gajulapati, V., Goo, J. I., Singh, S., et al. (2015). A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor β Subunit, Glycoprotein 130. Journal of immunology (Baltimore, Md. : 1950) 195, 237-245. Inman, G. J., Nicolás, F. J., Callahan, J. F., Harling, J. D., Gaster, L. M., Reith, A. D., Laping, N. J. and Hill, C. S. (2002). SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Molecular pharmacology 62, 65-74. Ji, T., Li, G., Chen, J., Zhao, J., Li, X., Lin, H., Cai, X. and Cang, Y. (2016). Distinct role of interleukin-6 and tumor necrosis factor receptor-1 in oval cell- mediated liver regeneration and inflammation-associated hepatocarcinogenesis. Oncotarget 7, 66635-66646. Juban, G., Saclier, M., Yacoub-Youssef, H., Kernou, A., Arnold, L., Boisson, C., Ben Larbi, S., Magnan, M., Cuvellier, S., Théret, M., et al. (2018). AMPK Activation Regulates LTBP4-Dependent TGF-β1 Secretion by Pro-inflammatory Macrophages and Controls Fibrosis in Duchenne Muscular Dystrophy. Cell Rep 25, 2163-2176.e2166. Keightley, M. C., Wang, C. H., Pazhakh, V. and Lieschke, G. J. (2014). Delineating the roles of neutrophils and macrophages in zebrafish regeneration models. Int J Biochem Cell Biol 56, 92-106. Kelley, M. W. and Meyers, J. R. (2019). Chapter 49 - Hair Cell Regeneration in the Inner Ear and Lateral Line. In Principles of Regenerative Medicine (Third Edition) (ed. A. Atala, R. Lanza, A. G. Mikos R. Nerem), pp. 867-885. Boston: Academic Press. Khalil, N., Bereznay, O., Sporn, M. and Greenberg, A. H. (1989). Macrophage production of transforming growth factor beta and fibroblast collagen synthesis in chronic pulmonary inflammation. J Exp Med 170, 727-737. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310. Lai, S. L., Marin-Juez, R., Moura, P. L., Kuenne, C., Lai, J. K. H., Tsedeke, A. T., Guenther, S., Looso, M. and Stainier, D. Y. (2017). Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. Elife 6. Lavine, K. J., Epelman, S., Uchida, K., Weber, K. J., Nichols, C. G., Schilling, J. D., Ornitz, D. M., Randolph, G. J. and Mann, D. L. (2014). Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America 111, 16029-16034. Li, H., Liu, H. and Heller, S. (2003). Pluripotent stem cells from the adult mouse inner ear. Nature medicine 9, 1293-1299. Liang, J., Wang, D., Renaud, G., Wolfsberg, T. G., Wilson, A. F. and Burgess, S. M. (2012). The stat3/socs3a pathway is a key regulator of hair cell regeneration in zebrafish. [corrected]. J Neurosci 32, 10662-10673. Lin, L. Y., Yeh, Y. H., Hung, G. Y., Lin, C. H., Hwang, P. P. and Horng, J. L. (2018). Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca(2+) Influx in Hair Cells of Zebrafish Larvae. Front Physiol 9, 649. Lin, S. L., Li, B., Rao, S., Yeo, E. J., Hudson, T. E., Nowlin, B. T., Pei, H., Chen, L., Zheng, J. J., Carroll, T. J., et al. (2010). Macrophage Wnt7b is critical for kidney repair and regeneration. Proceedings of the National Academy of Sciences of the United States of America 107, 4194-4199. Liu, C., Wu, C., Yang, Q., Gao, J., Li, L., Yang, D. and Luo, L. (2016). Macrophages Mediate the Repair of Brain Vascular Rupture through Direct Physical Adhesion and Mechanical Traction. Immunity 44, 1162-1176. Lush, M. E. and Piotrowski, T. (2014). ErbB expressing Schwann cells control lateral line progenitor cells via non-cell-autonomous regulation of Wnt/beta-catenin. Elife 3, e01832. Marques, L. J., Zheng, L., Poulakis, N., Guzman, J. and Costabel, U. (1999). Pentoxifylline inhibits TNF-alpha production from human alveolar macrophages. Am J Respir Crit Care Med 159, 508-511. Minutti, C. M., Knipper, J. A., Allen, J. E. and Zaiss, D. M. (2017). Tissue-specific contribution of macrophages to wound healing. Seminars in cell developmental biology 61, 3-11. Montgomery, J. C., Baker, C. F. and Carton, A. G. (1997). The lateral line can mediate rheotaxis in fish. Nature 389, 960-963. Morikawa, M., Derynck, R. and Miyazono, K. (2016). TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb Perspect Biol 8. Mu, X., Bellayr, I., Pan, H., Choi, Y. and Li, Y. (2013). Regeneration of Soft Tissues Is Promoted by MMP1 Treatment after Digit Amputation in Mice. PLOS ONE 8, e59105. Nevers, T., Salvador, A. M., Velazquez, F., Ngwenyama, N., Carrillo-Salinas, F. J., Aronovitz, M., Blanton, R. M. and Alcaide, P. (2017). Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J Exp Med 214, 3311-3329. Nguyen-Chi, M., Laplace-Builhé, B., Travnickova, J., Luz-Crawford, P., Tejedor, G., Lutfalla, G., Kissa, K., Jorgensen, C. and Djouad, F. (2017a). TNF signaling and macrophages govern fin regeneration in zebrafish larvae. Cell Death Disease 8, e2979-e2979. Nguyen-Chi, M., Laplace-Builhé, B., Travnickova, J., Luz-Crawford, P., Tejedor, G., Lutfalla, G., Kissa, K., Jorgensen, C. and Djouad, F. (2017b). TNF signaling and macrophages govern fin regeneration in zebrafish larvae. Cell Death Dis 8, e2979. Nguyen-Chi, M., Laplace-Builhe, B., Travnickova, J., Luz-Crawford, P., Tejedor, G., Phan, Q. T., Duroux-Richard, I., Levraud, J. P., Kissa, K., Lutfalla, G., et al. (2015). Identification of polarized macrophage subsets in zebrafish. Elife 4, e07288. Pfefferli, C. and Jaźwińska, A. (2015). The art of fin regeneration in zebrafish. Regeneration (Oxf) 2, 72-83. Renshaw, S. A., Loynes, C. A., Trushell, D. M. I., Elworthy, S., Ingham, P. W. and Whyte, M. K. B. (2006). A transgenic zebrafish model of neutrophilic inflammation. Blood 108, 3976-3978. Saclier, M., Yacoub-Youssef, H., Mackey, A. L., Arnold, L., Ardjoune, H., Magnan, M., Sailhan, F., Chelly, J., Pavlath, G. K., Mounier, R., et al. (2013a). Differentially Activated Macrophages Orchestrate Myogenic Precursor Cell Fate During Human Skeletal Muscle Regeneration. 31, 384-396. Saclier, M., Yacoub-Youssef, H., Mackey, A. L., Arnold, L., Ardjoune, H., Magnan, M., Sailhan, F., Chelly, J., Pavlath, G. K., Mounier, R., et al. (2013b). Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells 31, 384-396. Sánchez, M., Ceci, M. L., Gutiérrez, D., Anguita-Salinas, C. and Allende, M. L. (2016). Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells. BMC Biology 14, 27. Santiskulvong, C. and Rozengurt, E. (2003). Galardin (GM 6001), a broad-spectrum matrix metalloproteinase inhibitor, blocks bombesin- and LPA-induced EGF receptor transactivation and DNA synthesis in rat-1 cells. Exp Cell Res 290, 437-446. Sharma, P., Gupta, S., Chaudhary, M., Mitra, S., Chawla, B., Khursheed, M. A., Saran, N. K. and Ramachandran, R. (2020). Biphasic Role of Tgf-β Signaling during Müller Glia Reprogramming and Retinal Regeneration in Zebrafish. iScience 23, 100817. Sica, A. and Mantovani, A. (2012). Macrophage plasticity and polarization: in vivo veritas. The Journal of clinical investigation 122, 787-795. Sinkkonen, S. T., Chai, R., Jan, T. A., Hartman, B. H., Laske, R. D., Gahlen, F., Sinkkonen, W., Cheng, A. G., Oshima, K. and Heller, S. (2011). Intrinsic regenerative potential of murine cochlear supporting cells. Scientific Reports 1, 26. Stewart, W. J., Cardenas, G. S. and McHenry, M. J. (2013). Zebrafish larvae evade predators by sensing water flow. 216, 388-398. Tomlinson, M. L., Garcia-Morales, C., Abu-Elmagd, M. and Wheeler, G. N. (2008). Three matrix metalloproteinases are required in vivo for macrophage migration during embryonic development. Mech Dev 125, 1059-1070. van Rooijen, N. and Hendrikx, E. (2010). Liposomes for specific depletion of macrophages from organs and tissues. Methods in molecular biology (Clifton, N.J.) 605, 189-203. Verduzco, D. and Amatruda, J. F. (2011). Analysis of cell proliferation, senescence, and cell death in zebrafish embryos. Methods Cell Biol 101, 19-38. Warchol, M. E. (2011). Sensory regeneration in the vertebrate inner ear: Differences at the levels of cells and species. Hearing Research 273, 72-79. Warchol, M. E., Schrader, A. and Sheets, L. (2020). Macrophages Respond Rapidly to Ototoxic Injury of Lateral Line Hair Cells but Are Not Required for Hair Cell Regeneration. Front Cell Neurosci 14, 613246. Warchol, M. E., Schwendener, R. A. and Hirose, K. (2012). Depletion of resident macrophages does not alter sensory regeneration in the avian cochlea. PLoS One 7, e51574. Watanabe, S., Alexander, M., Misharin, A. V. and Budinger, G. R. S. (2019). The role of macrophages in the resolution of inflammation. The Journal of clinical investigation 129, 2619-2628. White, P. M., Doetzlhofer, A., Lee, Y. S., Groves, A. K. and Segil, N. (2006). Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441, 984-987. Wynn, T. A., Chawla, A. and Pollard, J. W. (2013). Macrophage biology in development, homeostasis and disease. Nature 496, 445-455. Wynn, T. A. and Vannella, K. M. (2016). Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 44, 450-462. Xu, S., Webb, S. E., Lau, T. C. K. and Cheng, S. H. (2018). Matrix metalloproteinases (MMPs) mediate leukocyte recruitment during the inflammatory phase of zebrafish heart regeneration. Scientific Reports 8, 7199. Zhang, C., Li, Y., Wu, Y., Wang, L., Wang, X. and Du, J. (2013). Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. The Journal of biological chemistry 288, 1489-1499. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81913 | - |
| dc.description.abstract | "組織修復和再生對於生物體的生存至關重要。哺乳動物再生能力的缺失,使得斑馬魚等保留強大再生能力的動物成為研究再生調節機制的珍貴模式。巨噬細胞對損傷反應非常重要,近期的研究更發現它們會參與組織修復和再生,而其調節機制仍然未明。在斑馬魚中,側線系統是快速再生的器官之一,且其位於體表易於觀察。側線的感覺器官是神經丘(neuromast),以神經丘間細胞(interneuromast cells)相連。此等神經丘間細胞通常被位於下方的許旺氏細胞(Schwann cells)及側線神經(lateral line nerve)抑制而無法分化。目前已知道可以通過抑制許旺氏細胞以活化神經丘間細胞分化為神經丘,但神經丘間細胞是如何脫離許旺氏細胞的抑制仍然未知。為了回答這個問題,實驗室的前成員林孟儒博士以甲硝唑(metronidazole)處理側線特異性表達硝基還原酶(nitroreductase)的轉基因斑馬魚以專一性殺死神經丘,而此方法應不會干擾側線下方之神經與許旺氏細胞的抑制作用。然而他意外的觀察到仍有不到5%的個體再生了神經丘。此外,更發現巨噬細胞會在受損的神經丘周圍巡邏並穿梭於側線神經丘間細胞與下方神經及許旺氏細胞之間,且這少數的再生在巨噬細胞抑制劑的處理下顯著減少。因此,林孟儒博士假設巨噬細胞可能會介入神經丘間細胞和許旺氏細胞之間的空間並打破神經丘間細胞的休眠狀態(quiescence)以促使神經丘的再生。而在此狀態下由於其再生的比例過低,他並沒有發現任一巨噬細胞介入神經丘間細胞與下方神經及許旺氏細胞之間的,爾後再生神經丘的個體。為了克服這個困難,我原計劃使用刺激發炎藥物poly(I:C)來增強斑馬魚巨噬細胞的活性,然而不管是靜脈注射或浸泡方式都無增強效果。因此我改用具有高再生比例的鰭截肢方法來進行進一步的研究。結果顯示,超過一半鰭截肢的個體在截肢後 4 天內可以再生出新的神經丘,並且在抑制巨噬細胞和乙型轉化生長因子(transforming growth factor beta, TGF-β)時顯著的延遲了神經丘的再生。此外,抑制白血球介素-6 (interleukin-6, IL-6)、腫瘤壞死因子-α (tumor necrosis factor alpha, TNFα) 和基質金屬蛋白酶 (matrix metalloproteinases, MMP) 對於再生僅有輕微影響。總體而言,此研究證明巨噬細胞可能會藉由TGF-β訊息傳遞的方式活化神經丘間細胞以再生神經丘。而巨噬細胞介入神經丘間細胞與下方神經及許旺氏細胞之間的個體是否會再生神經丘因技術上的問題則有待進一步研究。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:06:29Z (GMT). No. of bitstreams: 1 U0001-3009202114483200.pdf: 6914169 bytes, checksum: a2fffae009b36f34a8c509c88255eba6 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | Table of Contents 口試委員會審定書 i 致謝 ii 中文摘要 iv Abstract vi Table of Contents viii List of Abbreviations xiii Introduction 1 Materials and Methods 7 Zebrafish maintenance and strains 7 Image and microscopy 8 Fin-amputation 8 NTR/Metronidazole-mediated neuromast ablation 8 Liposome injection for macrophage ablation 9 Poly(I:C) injection 9 Immunohistochemistry 10 Rhodamine 123 labeling 11 Pharmacological inhibition 11 Statistical analysis 12 Results 13 Intravenous injection of poly(I:C) fails to enhance macrophage infiltration upon fin amputation 13 Macrophage is the main leukocyte participating in neuromast regeneration post fin amputation 14 Macrophages engage in neuromast regeneration by facilitating the proliferation of progenitor cells 17 Effects of cytokine inhibitors on neuromast regeneration 20 Discussion 24 References 32 Tables 44 Figure 52 Supplementary Figures 65 List of Tables Table 1. Chi-Square analysis of the change of neuromast regeneration by inhibiting macrophages (χ2 values). 44 Table 2. Chi-Square analysis of the change of neuromast regeneration by inhibiting macrophages(p values). 45 Table 3. Chi-Square analysis of the change of neuromast regeneration under LMT-28 treatment (χ2 values). 46 Table 4. Chi-Square analysis of the change of neuromast regeneration under LMT-28 treatment (p value). 47 Table 5. Chi-Square analysis of the change of neuromast regeneration under GM6001 treatment (χ2 values). 48 Table 6. Chi-Square analysis of the change of neuromast regeneration under GM6001 treatment (p value). 49 Table 7. Chi-Square analysis of the change of neuromast regeneration under SB431542 treatment (χ2 values). 50 Table 8. Chi-Square analysis of the change of neuromast regeneration under SB431542 treatment (p value). 51 List of Figures Figure 1. Neuromast regeneration in lateral line of fin-amputated larval zebrafish. 52 Figure 2. Macrophage ablation retards the regeneration of neuromast. 53 Figure 3. Neuromast regeneration is not affected by inhibiting neutrophil recruitment. 55 Figure 4. Inhibition of macrophage reduces cell proliferation in lateral line. 56 Figure 5. Inhibition of macrophages shows no significant effect on the differentiation of regenerated neuromast. 58 Figure 6. Neuromast formation is promoted by inhibiting IL-6 signaling. 60 Figure 7. Neuromast formation is accelerated when inhibiting GM6001. 61 Figure 8. Neuromast progenitor cell proliferation is decreased by inhibiting TGF-β signaling. 62 Figure 9. Neuromast regeneration is not affected by inhibiting TNF- α signaling. 64 List of Supplementary Figures Figure S1. Chemical-genetic ablated neuromasts cannot regenerated with a few exceptions. 65 Figure S2. Macrophages patrol around ablated neuromasts during regeneration. 66 Figure S3. Macrophages were found in between interneuromast cells and Schwann cells during regeneration. 67 Figure S4. Poly(I:C) induces neutrophil recruitment to the yolk. 68 Figure S5. Poly(I:C) induces macrophage recruitment to the yolk. 69 Figure S6. Intravenous injection of poly(I:C) fails to enhance macrophage infiltration upon fin amputation. 70 Figure S7. Clodrosome effectively abolishes the recruitment of macrophages to the tail region. 71 Figure S8. Diclofenac sodium effectively abolishes neutrophil recruitment to the wound site. 72 | |
| dc.language.iso | en | |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | 再生 | zh_TW |
| dc.subject | 側線 | zh_TW |
| dc.subject | 神經丘間細胞 | zh_TW |
| dc.subject | 乙型轉化生長因子 | zh_TW |
| dc.subject | TGF-β | en |
| dc.subject | Macrophage | en |
| dc.subject | regeneration | en |
| dc.subject | lateral line | en |
| dc.subject | interneuromast cell | en |
| dc.title | 巨噬細胞藉由TGF-β增強斑馬魚的神經丘間細胞介導之側線神經丘再生 | zh_TW |
| dc.title | Macrophage enhances interneuromast cell-derived regeneration of lateral line neuromast via TGF-β in zebrafish | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林孟儒(Hsin-Tsai Liu),吳長益(Chih-Yang Tseng),陳振輝,賴時磊 | |
| dc.subject.keyword | 巨噬細胞,再生,側線,神經丘間細胞,乙型轉化生長因子, | zh_TW |
| dc.subject.keyword | Macrophage,regeneration,lateral line,interneuromast cell,TGF-β, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU202103471 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| dc.date.embargo-lift | 2026-09-30 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-3009202114483200.pdf 此日期後於網路公開 2026-09-30 | 6.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
