Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81912
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳穎練(Ying-Lien Chen)
dc.contributor.authorTzu-Ying Chuangen
dc.contributor.author莊姿瑩zh_TW
dc.date.accessioned2022-11-25T03:06:27Z-
dc.date.available2026-10-06
dc.date.copyright2021-10-15
dc.date.issued2021
dc.date.submitted2021-10-08
dc.identifier.citation1. 王瑞章、江汶錦、吳雅芳, 林棟樑、孫文章、陳昇寬、彭瑞菊、鄭安秀、謝明憲、鍾瑞永。2011。馬鈴薯栽培管理技術。臺南區農業改良場技術專刊 1-25。 2. 林上湖、楊佐琦、鍾文全。2010。台灣馬鈴薯產業 80 年之回顧與展望。植物種苗 12:1-23。 3. 林芝、馮如瑩、蔡佳欣、陳穎練。2017。殺真菌劑得克利能抑制馬鈴薯瘡痂病原細菌。植物醫學 59:31-37。 4. 曹幸之。1993。馬鈴薯的產業與研究。臺灣蔬菜產業演進四十年專集 139-164。 5. 莊雅蓉。2010。馬鈴薯瘡痂病—病原菌於水稻田中殘存之可能性與可行之病害管理策略. 國立中興大學植物病理學系所學位碩士論文。60頁。 6. 馮如瑩。2019。利用剔除液化澱粉芽孢桿菌 Ba01 之 srf 基因簇證明表面素為抑制馬鈴薯瘡痂病菌之重要二次代謝物。國立臺灣大學植物醫學碩士學位學程碩士論文。73頁。 7. 黃巧雯。2008。台灣由 Streptomyces scabies 所引起之馬鈴薯瘡痂病-病原菌生物特性及應用拮抗性枯草桿菌於其生物防治之初探。國立中興大學植物病理學系所學位碩士論文。92頁。 8. Al-Mughrabi, K. I., Vikram, A., Poirier, R., Jayasuriya, K., and Moreau, G. 2016. Management of common scab of potato in the field using biopesticides, fungicides, soil additives, or soil fumigants. Biocontrol science and Technology 26:125-135. 9. Arseneault, T., Goyer, C., and Filion, M. 2013. Phenazine production by Pseudomonas sp. LBUM223 contributes to the biological control of potato common scab. Phytopathology 103:995-1000. 10. Arseneault, T., Goyer, C., and Filion, M. 2015. Pseudomonas fluorescens LBUM223 increases potato yield and reduces common scab symptoms in the field. Phytopathology 105:1311-1317. 11. Arseneault, T., Goyer, C., and Filion, M. 2016. Biocontrol of potato common scab is associated with high Pseudomonas fluorescens LBUM223 populations and phenazine-1-carboxylic acid biosynthetic transcript accumulation in the potato geocaulosphere. Phytopathology 106:963-970. 12. Arseneault, T., Pieterse, C. M., Gérin-Ouellet, M., Goyer, C., and Filion, M. 2014. Long-term induction of defense gene expression in potato by Pseudomonas sp. LBUM223 and Streptomyces scabies. Phytopathology 104:926-932. 13. Beauséjour, J., Clermont, N., and Beaulieu, C. 2003. Effect of Streptomyces melanosporofaciens strain EF-76 and of chitosan on common scab of potato. Plant and Soil 256:463-468. 14. Bignell, D., Fyans, J., and Cheng, Z. 2014. Phytotoxins produced by plant pathogenic Streptomyces species. Journal of applied microbiology 116:223-235. 15. Bobek, J., Šmídová, K., and Čihák, M. 2017. A waking review: old and novel insights into the spore germination in Streptomyces. Frontiers in microbiology 8:2205. 16. Bradshaw, J. E., and Ramsay, G. 2009. Potato origin and production. Pages 1-26 in: Advances in potato chemistry and technology. Elsevier. 17. Braun, S., Gevens, A., Charkowski, A., Allen, C., and Jansky, S. 2017. Potato common scab: A review of the causal pathogens, management practices, varietal resistance screening methods, and host resistance. American journal of potato research 94:283-296. 18. Chowdhury, S. P., Hartmann, A., Gao, X., and Borriss, R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in microbiology 6:780. 19. Coffin, R. H., Borza, T., Alam, M. Z., Liu, Y., Desai, F., Xi, Y., Zhang, Z., Beaton, B., Goyer, C., and Coffin, J. 2020. Assessing the suppressive effects of biopesticides and phosphite on common scab development in potatoes. Biocontrol science and Technology 30:1133-1149. 20. Cui, L., Yang, C., Wei, L., Li, T., and Chen, X. 2020. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biological control 141:104156. 21. Dees, M. W., and Wanner, L. A. 2012. In search of better management of potato common scab. Potato research 55:249-268. 22. Devaux, A., Goffart, J.-P., Petsakos, A., Kromann, P., Gatto, M., Okello, J., Suarez, V., and Hareau, G. 2020. Global food security, contributions from sustainable potato agri-food systems. Pages 3-35 in: The Potato Crop. Springer, Cham. 23. Enciso-Rodriguez, F., Douches, D., Lopez-Cruz, M., Coombs, J., and de Los Campos, G. 2018. Genomic selection for late blight and common scab resistance in tetraploid potato (Solanum tuberosum). G3- Genes, Genomes, Genetics 8:2471-2481. 24. Fan, B., Li, L., Chao, Y., Förstner, K., Vogel, J., Borriss, R., and Wu, X.-Q. 2015. dRNA-Seq reveals genomewide TSSs and noncoding RNAs of plant beneficial rhizobacterium Bacillus amyloliquefaciens FZB42. PloS One 10:e0142002. 25. Fiers, M., Edel-Hermann, V., Chatot, C., Le Hingrat, Y., Alabouvette, C., and Steinberg, C. 2012. Potato soil-borne diseases. A review. Agronomy for sustainable development 32:93-132. 26. Fisher, S. H. 1999. Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Molecular microbiology 32:223-232. 27. Goyer, C. 2005. Isolation and characterization of phages Stsc1 and Stsc3 infecting Streptomyces scabiei and their potential as biocontrol agents. Canadian journal of plant pathology 27:210-216. 28. Han, J., Cheng, J., Yoon, T., Song, J., Rajkarnikar, A., Kim, W. G., Yoo, I. D., Yang, Y., and Suh, J. 2005. Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. Journal of applied microbiology 99:213-221. 29. Hayashida, S., Choi, M.-Y., Nanri, N., Yokoyama, M., and Uematsu, T. 1989. Control of potato common scab with an antibiotic biofertilizer produced from swine feces containing Streptomyces albidoflavus CH-33. Agricultural and biological chemistry 53:349-354. 30. Hill, J., and Lazarovits, G. 2005. A mail survey of growers to estimate potato common scab prevalence and economic loss in Canada. Canadian journal of plant pathology 27:46-52. 31. Hiltunen, L. H., Kelloniemi, J., and Valkonen, J. P. 2017. Repeated applications of a nonpathogenic Streptomyces strain enhance development of suppressiveness to potato common scab. Plant disease 101:224-232. 32. Hiltunen, L. H., Ojanperä, T., Kortemaa, H., Richter, E., Lehtonen, M., and Valkonen, J. 2009. Interactions and biocontrol of pathogenic Streptomyces strains co‐occurring in potato scab lesions. Journal of applied microbiology 106:199-212. 33. Hosny, M., Abo-Elyousr, K. A., Asran, M. R., and Saead, F. A. 2014. Chemical control of potato common scab disease under field conditions. Archives of phytopathology and plant protection 47:2193-2199. 34. Ji, X., Li, J., Meng, Z., Zhang, S., Dong, B., and Qiao, K. 2019. Synergistic effect of combined application of a new fungicide fluopimomide with a biocontrol agent Bacillus methylotrophicus TA-1 for management of gray mold in tomato. Plant disease 103:1991-1997. 35. Kalantar Zadeh, M., Shahidi Bonjar, G., Rashid Farrokhi, P., Ghasemi, A., Aghighi, S., and Mahdavi, M. 2006. Antagonistic potential of two native Streptomyces strains in biocontrol of the major causals of common scab of potato in Iran. Asian journal of plant sciences 5:5-8. 36. Katayama, A., Itou, T., and Ukai, T. 1997. Ubiquitous capability to substitute chlorine atoms of chlorothalonil in bacteria. Journal of pesticide science 22:12-16. 37. Kobayashi, Y. O., Kobayashi, A., Maeda, M., Someya, N., and Takenaka, S. 2015. Biological control of potato scab and antibiosis by antagonistic Streptomyces sp. WoRs-501. Journal of general plant pathology 81:439-448. 38. Kondoh, M., Hirai, M., and Shoda, M. 2001. Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil. Journal of bioscience and bioengineering 91:173-177. 39. Lai, Y.-R., Lin, P.-Y., Chen, C.-Y., and Huang, C.-J. 2016. Feasible management of southern corn leaf blight via induction of systemic resistance by Bacillus cereus C1L in combination with reduced use of dithiocarbamate fungicides. The plant pathology journal 32:481. 40. Lerat, S., Simao‐Beaunoir, A. M., and Beaulieu, C. 2009. Genetic and physiological determinants of Streptomyces scabies pathogenicity. Molecular plant pathology 10:579-585. 41. Li, Y., Liu, J., Adekunle, D., Bown, L., Tahlan, K., and Bignell, D. R. 2019. TxtH is a key component of the thaxtomin biosynthetic machinery in the potato common scab pathogen Streptomyces scabies. Molecular plant pathology 20:1379-1393. 42. Lin, C.-Y., Ni, H.-F., and Lin, H.-J. 2020. Identification and evaluation of antagonistic actinobacteria on controlling potato common scab. Journal of Taiwan agricultural research 69:122-131. 43. Lin, C., Tsai, C.-H., Chen, P.-Y., Wu, C.-Y., Chang, Y.-L., Yang, Y.-L., and Chen, Y.-L. 2018. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PloS One 13:e0196520. 44. Lin, R., Buijse, L., Dimitrov, M. R., Dohmen, P., Kosol, S., Maltby, L., Roessink, I., Sinkeldam, J. A., Smidt, H., and Van Wijngaarden, R. P. 2012. Effects of the fungicide metiram in outdoor freshwater microcosms: responses of invertebrates, primary producers and microbes. Ecotoxicology 21:1550-1569. 45. Liu, D., Anderson, N. A., and Kinkel, L. L. 1995. Biological control of potato scab in the field with antagonistic Streptomyces scabies. Phytopathology 85:827-831. 46. Liu, Q., Shen, Y., and Yin, K. 2020. The antimicrobial activity of protein elicitor AMEP412 against Streptomyces scabiei. World journal of microbiology and biotechnology 36:1-6. 47. Liu, Q., Shen, Y.-R., and Yin, K.-D. 2020. The degradation fragments of gamma-glutamyl transpeptidase from Bacillus subtilis BU108 have antimicrobial activity against Streptomyces scabiei. Journal of plant diseases and protection:1-7. 48. Loria, R., Bukhalid, R. A., Creath, R., Leiner, R., Olivier, M., and Steffens, J. 1995. Differential production of thaxtomins by pathogenic Streptomyces species in vitro. Phytopathology 85:537-541. 49. Meng, Q., and Hao, J. J. 2017. Optimizing the application of Bacillus velezensis BAC03 in controlling the disease caused by Streptomyces scabies. Biocontrol 62:535-544. 50. Meng, Q., Jiang, H., Hanson, L., and Hao, J. 2012. Characterizing a novel strain of Bacillus amyloliquefaciens BAC 03 for potential biological control application. Journal of applied microbiology 113:1165-1175. 51. Meng, Q., Hanson, L. E., Douches, D., and Hao, J. J. 2013. Managing scab diseases of potato and radish caused by Streptomyces spp. using Bacillus amyloliquefaciens BAC03 and other biomaterials. Biological control 67:373-379. 52. Nanri, N., Gohda, Y., OHNo, M., Miyabe, K., Furukawa, K., and Hayashida, S. 1992. Growth promotion of fluorescent pseudomonads and control of potato common scab in field soil with non-antibiotic actinomycete-biofertilizer. Bioscience, biotechnology, and biochemistry 56:1289-1292. 53. Nicholson, W. 2002. Roles of Bacillus endospores in the environment. Cellular and molecular life sciences CMLS 59:410-416. 54. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and molecular biology reviews 64:548-572. 55. Ortiz, O., and Mares, V. 2017. The historical, social, and economic importance of the potato crop. Pages 1-10 in: The Potato Genome. Springer. 56. Peng, D., Li, S., Chen, C., and Zhou, M. 2014. Combined application of Bacillus subtilis NJ-18 with fungicides for control of sharp eyespot of wheat. Biological control 70:28-34. 57. Peng, D., Li, S., Wang, J., Chen, C., and Zhou, M. 2014. Integrated biological and chemical control of rice sheath blight by Bacillus subtilis NJ‐18 and jinggangmycin. Pest management science 70:258-263. 58. Peng, D., Luo, K., Jiang, H., Deng, Y., Bai, L., and Zhou, X. 2017. Combined use of Bacillus subtilis strain B‐001 and bactericide for the control of tomato bacterial wilt. Pest management science 73:1253-1257. 59. Roquigny, R., Novinscak, A., Léger, G., Marcoux, N., Joly, D. L., and Filion, M. 2018. Deciphering the rhizosphere and geocaulosphere microbiomes of potato following inoculation with the biocontrol agent Pseudomonas fluorescens strain LBUM223. Phytobiomes 2:92-99. 60. Sarwar, A., Latif, Z., Zhang, S., Hao, J., and Bechthold, A. 2019. A Potential Biocontrol Agent Streptomyces violaceusniger AC12AB for Managing Potato Common Scab. Frontiers in microbiology 10:202. 61. Sarwar, A., Latif, Z., Zhang, S., Zhu, J., Zechel, D. L., and Bechthold, A. 2018. Biological control of potato common scab with rare isatropolone C compound produced by plant growth promoting Streptomyces A1RT. Frontiers in microbiology 9:1126. 62. Secor, G. A., and Gudmestad, N. C. 1999. Managing fungal diseases of potato. Canadian journal of plant pathology 21:213-221. 63. Shoda, M. 2000. Bacterial control of plant diseases. Journal of bioscience and bioengineering 89:515-521. 64. Singhai, P., Sarma, B., and Srivastava, J. 2011. Biological management of common scab of potato through Pseudomonas species and vermicompost. Biological control 57:150-157. 65. Su, X., Wang, Y., Peng, G., and He, Q. 2020. Long-term effects of chlorothalonil on microbial denitrification and N2O emission in a tea field soil. Environmental science and pollution research 27:17370-17381. 66. Sun, P., Otto-Hanson, L. K., Arenz, B. E., Ma, Q., and Kinkel, L. L. 2015. Molecular and functional characteristics of streptomycete communities in relation to soil factors and potato common scab. European journal of soil biology 70:58-66. 67. Tagawa, M., Tamaki, H., Manome, A., Koyama, O., and Kamagata, Y. 2010. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils. FEMS microbiology letters 305:136-142. 68. Tegg, R. S., Corkrey, R., and Wilson, C. R. 2012. Relationship between the application of foliar chemicals to reduce common scab disease of potato and correlation with thaxtomin A toxicity. Plant disease 96:97-103. 69. Tomihama, T., Nishi, Y., Mori, K., Shirao, T., Iida, T., Uzuhashi, S., Ohkuma, M., and Ikeda, S. 2016. Rice bran amendment suppresses potato common scab by increasing antagonistic bacterial community levels in the rhizosphere. Phytopathology 106:719-728. 70. Velho, R. V., Caldas, D., Medina, L., Tsai, S., and Brandelli, A. 2011. Real‐time PCR investigation on the expression of sboA and ituD genes in Bacillus spp. Letters in applied microbiology 52:660-666. 71. Villa-Rodríguez, E., Ibarra-Gámez, C., and de Los Santos-Villalobos, S. 2018. Extraction of high-quality RNA from Bacillus subtilis with a lysozyme pre-treatment followed by the Trizol method. Journal of microbiological methods 147:14-16. 72. Vörös, M., Manczinger, L., Kredics, L., Szekeres, A., Shine, K., Alharbi, N. S., Khaled, J. M., and Vágvölgyi, C. 2019. Influence of agro‐environmental pollutants on a biocontrol strain of Bacillus velezensis. Microbiologyopen 8:e00660. 73. Wanner, L., Kirk, W., and Qu, X. 2014. Field efficacy of nonpathogenic Streptomyces species against potato common scab. Journal of applied microbiology 116:123-133. 74. Yang, C., Hamel, C., Vujanovic, V., and Gan, Y. 2011. Fungicide: modes of action and possible impact on nontarget microorganisms. International Scholarly research notices 2011: 1-8. 75. Zhang, Y., Lu, J., Wu, L., Chang, A., and Frankenberger Jr, W. T. 2007. Simultaneous removal of chlorothalonil and nitrate by Bacillus cereus strain NS1. Science of the total environment 382:383-387. 76. Zhang, X., Li, C., Hao, J., Li, Y., Li, D., Zhang, D., Xing, X., and Liang, Y. 2020. A novel Streptomyces sp. strain PBSH9 for controlling potato common scab caused by Streptomyces galilaeus. Plant disease 104: 1986-1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81912-
dc.description.abstract馬鈴薯瘡痂病主要由馬鈴薯瘡痂病菌 (Streptomyces scabies) 造成,侵染馬鈴薯表皮組織形成凸起或凹陷之木質化壞疽病斑,破壞馬鈴薯之外觀,並進而影響其經濟價值,是田間一重要病害,台灣目前尚未有推薦之化學藥劑或微生物製劑防治此病害。本實驗室先前研究發現,液化澱粉芽孢桿菌 (Bacillus amyloliquefaciens) Ba01以及馬鈴薯晚疫病之推薦藥劑:免得爛與四氯異苯腈,對於S. scabies PS07均具有抑制效果。由於單獨施用生物防治菌於田間之效率易受到環境之影響,故本研究欲結合化學藥劑與生物製劑共同防治馬鈴薯瘡痂病,期許能提升個別防治的效率,並探討藥劑對B. amyloliquefaciens Ba01重要基因表現之影響。研究首先以濾紙片擴散試驗與搖瓶培養測試出B. amyloliquefaciens Ba01對於免得爛和四氯異苯腈耐受性較S. scabies PS07高,推測可能與B. amyloliquefaciens Ba01產生內生孢子的特性有關。利用濾紙片擴散及馬鈴薯薯片試驗,發現免得爛250、125 ppm或四氯異苯腈200、100 ppm與B. amyloliquefaciens Ba01具有共同施用之潛力,且於S. scabies PS07接種1天前、後施用處理,均有好的抑制效果。而透過盆栽試驗觀察到B. amyloliquefaciens Ba01與免得爛125 ppm (罹病度為1.1 ± 1.5%)、四氯異苯腈200 ppm (罹病度為1.1 ± 1.5%) 或100 ppm (罹病度為2.9 ± 2.0%) 稀釋下混合處理相較於只接種 S.scabies PS07之正對照組罹病度較低,然在統計上沒有顯著差異。而兩藥劑並不顯著影響B. amyloliquefaciens Ba01重要二次代謝物表面素 (surfactin) 基因 srfAD以及部分參與在氮代謝相關基因 (tnrA、glnR、codY) 的表現。後續在盆栽試驗仍要調整,使S. scabies PS07有穩定之活性與毒力及族群量,並額外測試與脫氮作用相關基因的表現,以完整藥劑對於B. amyloliquefaciens Ba01氮循環相關基因的影響。研究期望能有更完整之盆栽及田間試驗進行,以期能提供農民防治馬鈴薯瘡痂病之參考。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:06:27Z (GMT). No. of bitstreams: 1
U0001-0610202117551200.pdf: 2957199 bytes, checksum: fde22da82bc1919e29c553872cbf16ef (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員審定書 i 致謝 ii 中文摘要 iv 英文摘要 vi 目錄 viii 表目錄 x 圖目錄 xi 1. 前言 1 1.1 馬鈴薯的介紹、常見病害及其重要性 1 1.2 馬鈴薯瘡痂病 2 1.3 現行馬鈴薯瘡痂病之防治方法 3 1.4 液化澱粉芽孢桿菌 5 1.5 化學藥劑結合生物防治菌Bacillus species之相關研究 6 1.6 實驗室前人研究及研究目的 7 2. 材料與方法 9 2.1 供試農藥成品及培養基 9 2.2 試驗細菌菌株與培養條件 9 2.3 測試免得爛與四氯異苯腈對於S. scabies PS07及B. amyloliquefaciens Ba01之影響 10 2.3.1 濾紙片擴散試驗 (Disk diffusion test) 10 2.3.2 搖瓶培養 (Shake flask assay) 10 2.4 探討免得爛與四氯異苯腈分別與B. amyloliquefaciens Ba01共同施用之合適濃度與施用方法 11 2.4.1 濾紙片擴散試驗 11 2.4.2 馬鈴薯薯片試驗 (Potato tuber slice assay) 12 2.4.3 盆栽試驗 (Pot assay) 13 2.5 藥劑對於B. amyloliquefaciens Ba01表面素 (surfactin) 及氮代謝生合成相關基因表現量之影響 14 2.5.1 B. amyloliquefaciens Ba01 RNA純化 14 2.5.2 cDNA合成 15 2.5.3 即時反轉錄聚合酶連鎖反應 (Quantitative reverse transcription PCR, RT-qPCR) 15 3. 結果 17 3.1 免得爛與四氯異苯腈對於B. amyloliquefaciens Ba01之影響小於S. scabies PS07 17 3.2 免得爛250 ppm或四氯異苯腈200 ppm與B. amyloliquefaciens Ba01混合對於S. scabies PS07均具有較好的抑制效果 18 3.3 於接種S. scabies PS07一天前或後施用免得爛250、125 ppm或四氯異苯腈200、100 ppm與B. amyloliquefaciens Ba01混合處理對於S. scabies PS07均有好的抑制效果 18 3.4 免得爛125 ppm或四氯異苯腈200及100 ppm與B. amyloliquefaciens Ba01混合施用能降低馬鈴薯瘡痂病罹病度 19 3.5 免得爛與四氯異苯腈不影響B. amyloliquefaciens Ba01在表面素生成及部分氮代謝基因的表現 19 4. 討論 21 5. 參考文獻 26 6. 圖表 35"
dc.language.isozh-TW
dc.subject表面素zh_TW
dc.subject免得爛zh_TW
dc.subject馬鈴薯瘡痂病zh_TW
dc.subject液化澱粉芽孢桿菌zh_TW
dc.subject四氯異苯腈zh_TW
dc.subject氮代謝zh_TW
dc.subjectBacillus amyloliquefaciensen
dc.subjectnitrogen metabolismen
dc.subjectsurfactinen
dc.subjectchlorothalonilen
dc.subjectmetiramen
dc.subjectPotato common scaben
dc.title防治馬鈴薯瘡痂病之化學藥劑及生物防治菌之應用zh_TW
dc.titleApplication of chemical and biocontrol agents in managing potato common scaben
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾敏南(Hsin-Tsai Liu),蔡佳欣(Chih-Yang Tseng)
dc.subject.keyword馬鈴薯瘡痂病,免得爛,四氯異苯腈,液化澱粉芽孢桿菌,表面素,氮代謝,zh_TW
dc.subject.keywordPotato common scab,metiram,chlorothalonil,Bacillus amyloliquefaciens,surfactin,nitrogen metabolism,en
dc.relation.page50
dc.identifier.doi10.6342/NTU202103590
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
dc.date.embargo-lift2026-10-06-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-0610202117551200.pdf
  此日期後於網路公開 2026-10-06
2.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved