請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81902完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐莞曾(Wan-Tseng Hsu) | |
| dc.contributor.author | Chao-Kai Chang | en |
| dc.contributor.author | 張朝凱 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:06:13Z | - |
| dc.date.available | 2026-10-26 | |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-27 | |
| dc.identifier.citation | Fernandez-Jimenez R, Hoit BD, Walsh RA, et al. Normal physiology of the cardiovascular system. In: Fuster V, Harrington RA, Narula J, eds. Hurst's The Heart, 14e. New York, NY: McGraw-Hill Education; 2017. Overview of the cardiovascular system. In: Mohrman DE and Heller LJ. Cardiovascular Physiology, 9e. New York, NY: McGraw-Hill Education; 2018. Thomas DL, Lythgoe MF, Pell GS, et al. The measurement of diffusion and perfusion in biological systems using magnetic resonance imaging. Physics in medicine and biology. 2000;45:R97. Parker RB, Nappi JM, and Cavallari LH. Chronic heart failure. In: DiPiro JT, Talbert RL, Yee GC, eds. Pharmacotherapy: A Pathophysiologic Approach, 10e. New York, NY: McGraw-Hill Education; 2017. Gaggin HK and Dec GW. Pathophysiology of heart failure. In: Fuster V, Harrington RA, Narula J, eds. Hurst's The Heart, 14e. New York, NY: McGraw-Hill Education; 2017. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA Guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129. Groenewegen A, Rutten FH, Mosterd A, et al. Epidemiology of heart failure. Eur J Heart Fail. 2020;22:1342. Chamberlain AM, Dunlay SM, Gerber Y, et al. Burden and timing of hospitalizations in heart failure: A community study. Mayo Clin Proc. 2017;92:184. Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347:1397. Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292:344. Jones NR, Roalfe AK, Adoki I, et al. Survival of patients with chronic heart failure in the community: A systematic review and meta-analysis. Eur J Heart Fail. 2019;21:1306. Shah KS, Xu H, Matsouaka RA, et al. Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol. 2017;70:2476. Wang TD, Huang ST, Wang CY, et al. Nationwide trends in incidence, healthcare utilization, and mortality in hospitalized heart failure patients in Taiwan. ESC Heart Fail. 2020;7:3653. Collaborators. GDaIIaP. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2018;392:1789. Urbich M, Globe G, Pantiri K, et al. A systematic review of medical costs associated with heart failure in the USA (2014-2020). PharmacoEconomics. 2020;38:1219. Reyes EB, Ha JW, Firdaus I, et al. Heart failure across Asia: Same healthcare burden but differences in organization of care. Int J Cardiol. 2016;223:163. Tang CH, Chuang PY, Chen CA, et al. Medical costs of cardiovascular diseases in Taiwan. Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research. 2014;17:A759. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2015;28:1. Mann DL and Chakinala M. Heart failure: Pathophysiology and diagnosis. In: Jameson JL, Fauci AS, Kasper DL, eds. Harrison's Principles of Internal Medicine, 20e. New York, NY: McGraw-Hill Education; 2018. Hilal-Dandan R. Renin and angiotensin. In: Brunton LL, Hilal-Dandan R, and Knollmann BC. Goodman amp; Gilman's: The Pharmacological Basis of Therapeutics, 13e. New York, NY: McGraw-Hill Education; 2017. Singh JSS, Burrell LM, Cherif M, et al. Sacubitril/valsartan: Beyond natriuretic peptides. Heart. 2017;103:1569. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137. Fox K, Komajda M, Ford I, et al. Effect of ivabradine in patients with left-ventricular systolic dysfunction: a pooled analysis of individual patient data from the BEAUTIFUL and SHIFT trials. Eur Heart J. 2013;34:2263. Dowling TC. Evaluation of kidney function. In: DiPiro JT, Yee GC, Posey LM, eds. Pharmacotherapy: A Pathophysiologic Approach, 11e. New York, NY: McGraw-Hill Education; 2020. Eaton DC and Pooler JP. Renal functions, basic processes, and anatomy. In: Vander’s Renal Physiology, 9e. New York, NY: McGraw-Hill Education; 2018. Eaton DC and Pooler JP. Renal blood flow and glomerular filtration. In: Vander’s Renal Physiology, 9e. New York, NY: McGraw-Hill Education; 2018. Heymsfield SB, Arteaga C, McManus C, et al. Measurement of muscle mass in humans: Validity of the 24-hour urinary creatinine method. The American journal of clinical nutrition. 1983;37:478. Mayersohn M, Conrad KA, and Achari R. The influence of a cooked meat meal on creatinine plasma concentration and creatinine clearance. Br J Clin Pharmacol. 1983;15:227. Bauer JH, Brooks CS, and Burch RN. Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. American journal of kidney diseases : the official journal of the National Kidney Foundation. 1982;2:337. Cockcroft DW and Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31. Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461. Levey AS, Greene T, Kusek JW, et al. A simplified equation to predict glomerular filtration rate from serum creatinine. J Am Soc Nephrol. 2000;11:155A. Levey AS, Coresh J, Greene T, et al. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clinical chemistry. 2007;53:766. Botev R, Mallié JP, Couchoud C, et al. Estimating glomerular filtration rate: Cockcroft-Gault and Modification of Diet in Renal Disease formulas compared to renal inulin clearance. Clinical journal of the American Society of Nephrology : CJASN. 2009;4:899. Eaton DC and Pooler JP. Renal handling of organic solutes. In: Vander’s Renal Physiology, 9e. New York, NY: McGraw-Hill Education; 2018. Kazory A. Emergence of blood urea nitrogen as a biomarker of neurohormonal activation in heart failure. The American journal of cardiology. 2010;106:694. DiBona GF. Physiology in perspective: The wisdom of the body. Neural control of the kidney. American journal of physiology. Regulatory, integrative and comparative physiology. 2005;289:R633. Halilovic J and Dager W. Acute kidney injury. In: DiPiro JT, Talbert RL, Yee GC, eds. Pharmacotherapy: A Pathophysiologic Approach, 10e. New York, NY: McGraw-Hill Education; 2017. Kumar NL, Claggett BL, Cohen AJ, et al. Association between an increase in blood urea nitrogen at 24 hours and worse outcomes in acute nonvariceal upper GI bleeding. Gastrointest Endosc. 2017;86:1022. Ernst AA, Haynes ML, Nick TG, et al. Usefulness of the blood urea nitrogen/creatinine ratio in gastrointestinal bleeding. The American Journal of Emergency Medicine. 1999;17:70. Richards RJ, Donica MB, and Grayer D. Can the blood urea nitrogen/creatinine ratio distinguish upper from lower gastrointestinal bleeding? Journal of clinical gastroenterology. 1990;12:500. Tomizawa M, Shinozaki F, Hasegawa R, et al. Patient characteristics with high or low blood urea nitrogen in upper gastrointestinal bleeding. World journal of gastroenterology. 2015;21:7500. Schrier RW. Decreased effective blood volume in edematous disorders: What does this mean? J Am Soc Nephrol. 2007;18:2028. Damman K, Tang WH, Testani JM, et al. Terminology and definition of changes renal function in heart failure. Eur Heart J. 2014;35:3413. Damman K and Testani JM. The kidney in heart failure: An update. Eur Heart J. 2015;36:1437. Schefold JC, Filippatos G, Hasenfuss G, et al. Heart failure and kidney dysfunction: Epidemiology, mechanisms and management. Nat Rev Nephrol. 2016;12:610. Kumar U, Wettersten N, and Garimella PS. Cardiorenal syndrome: Pathophysiology. Cardiology clinics. 2019;37:251. Ronco C, Bellasi A, and Di Lullo L. Cardiorenal syndrome: An overview. Advances in chronic kidney disease. 2018;25:382. Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527. Liang KV, Williams AW, Greene EL, et al. Acute decompensated heart failure and the cardiorenal syndrome. Critical care medicine. 2008;36:S75. Hudson JQ and Wazny LD. Chronic kidney disease. In: DiPiro JT, Talbert RL, Yee GC, eds. Pharmacotherapy: A Pathophysiologic Approach, 10e. New York, NY: McGraw-Hill Education; 2017. Nolin TD and Perazella MA. Drug-induced kidney disease. In: DiPiro JT, Yee GC, Posey LM, eds. Pharmacotherapy: A Pathophysiologic Approach, 11e. New York, NY: McGraw-Hill Education; 2020. Damman K, Valente MA, Voors AA, et al. Renal impairment, worsening renal function, and outcome in patients with heart failure: An updated meta-analysis. Eur Heart J. 2014;35:455. van Deursen VM, Urso R, Laroche C, et al. Co-morbidities in patients with heart failure: An analysis of the European Heart Failure Pilot Survey. Eur J Heart Fail. 2014;16:103. Damman K, Tang WH, Felker GM, et al. Current evidence on treatment of patients with chronic systolic heart failure and renal insufficiency: practical considerations from published data. J Am Coll Cardiol. 2014;63:853. Beldhuis IE, Streng KW, Ter Maaten JM, et al. Renin-angiotensin system inhibition, worsening renal function, and outcome in heart failure patients with reduced and preserved ejection fraction: A meta-analysis of published study data. Circ Heart Fail. 2017;10:e003588. Clark H, Krum H, and Hopper I. Worsening renal function during renin-angiotensin-aldosterone system inhibitor initiation and long-term outcomes in patients with left ventricular systolic dysfunction. Eur J Heart Fail. 2014;16:41. Testani JM, Chen J, McCauley BD, et al. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122:265. van der Meer P, Postmus D, Ponikowski P, et al. The predictive value of short-term changes in hemoglobin concentration in patients presenting with acute decompensated heart failure. J Am Coll Cardiol. 2013;61:1973. Jose P, Skali H, Anavekar N, et al. Increase in creatinine and cardiovascular risk in patients with systolic dysfunction after myocardial infarction. J Am Soc Nephrol. 2006;17:2886. Testani JM, Kimmel SE, Dries DL, et al. Prognostic importance of early worsening renal function after initiation of angiotensin-converting enzyme inhibitor therapy in patients with cardiac dysfunction. Circ Heart Fail. 2011;4:685. Vardeny O, Wu DH, Desai A, et al. Influence of baseline and worsening renal function on efficacy of spironolactone in patients With severe heart failure: Insights from RALES (Randomized Aldactone Evaluation Study). J Am Coll Cardiol. 2012;60:2082. Lesogor A, Cohn JN, Latini R, et al. Interaction between baseline and early worsening of renal function and efficacy of renin-angiotensin-aldosterone system blockade in patients with heart failure: Insights from the Val-HeFT study. Eur J Heart Fail. 2013;15:1236. Damman K, Solomon SD, Pfeffer MA, et al. Worsening renal function and outcome in heart failure patients with reduced and preserved ejection fraction and the impact of angiotensin receptor blocker treatment: data from the CHARM-study programme. Eur J Heart Fail. 2016;18:1508. Rossignol P, Cleland JG, Bhandari S, et al. Determinants and consequences of renal function variations with aldosterone blocker therapy in heart failure patients after myocardial infarction: Insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study. Circulation. 2012;125:271. Rossignol P, Dobre D, McMurray JJ, et al. Incidence, determinants, and prognostic significance of hyperkalemia and worsening renal function in patients with heart failure receiving the mineralocorticoid receptor antagonist eplerenone or placebo in addition to optimal medical therapy: Results from the Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF). Circ Heart Fail. 2014;7:51. Testani JM, Coca SG, Shannon RP, et al. Influence of renal dysfunction phenotype on mortality in the setting of cardiac dysfunction: Analysis of three randomized controlled trials. Eur J Heart Fail. 2011;13:1224. Aronson D, Mittleman MA, and Burger AJ. Elevated blood urea nitrogen level as a predictor of mortality in patients admitted for decompensated heart failure. Am J Med. 2004;116:466. Filippatos G, Rossi J, Lloyd-Jones DM, et al. Prognostic value of blood urea nitrogen in patients hospitalized with worsening heart failure: Insights from the Acute and Chronic Therapeutic Impact of a Vasopressin Antagonist in Chronic Heart Failure (ACTIV in CHF) study. J Card Fail. 2007;13:360. Gotsman I, Zwas D, Planer D, et al. The significance of serum urea and renal function in patients with heart failure. Medicine (Baltimore). 2010;89:197. Kajimoto K, Sato N, and Takano T. eGFR and outcomes in patients with acute decompensated heart failure with or without elevated BUN. Clinical journal of the American Society of Nephrology : CJASN. 2016;11:405. Jujo K, Minami Y, Haruki S, et al. Persistent high blood urea nitrogen level is associated with increased risk of cardiovascular events in patients with acute heart failure. ESC Heart Fail. 2017;4:545. Khoury J, Bahouth F, Stabholz Y, et al. Blood urea nitrogen variation upon admission and at discharge in patients with heart failure. ESC Heart Fail. 2019;6:809. Sujino Y, Nakano S, Tanno J, et al. Clinical implications of the blood urea nitrogen/creatinine ratio in heart failure and their association with haemoconcentration. ESC Heart Fail. 2019;6:1274. Lin HJ, Chao CL, Chien KL, et al. Elevated blood urea nitrogen-to-creatinine ratio increased the risk of hospitalization and all-cause death in patients with chronic heart failure. Clinical research in cardiology : official journal of the German Cardiac Society. 2009;98:487. Lombardi C, Carubelli V, Rovetta R, et al. Prognostic value of serial measurements of blood urea nitrogen in ambulatory patients with chronic heart failure. Panminerva medica. 2016;58:8. Volpe M, Carnovali M, and Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: From molecular basis to treatment. Clinical science (London, England : 1979). 2016;130:57. Kostis JB, Packer M, Black HR, et al. Omapatrilat and enalapril in patients with hypertension: The Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. American journal of hypertension. 2004;17:103. McMurray JJ, Packer M, Desai AS, et al. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: Rationale for and design of the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM-HF). Eur J Heart Fail. 2013;15:1062. McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993. Desai AS, Solomon SD, Shah AM, et al. Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction: A randomized clinical trial. JAMA. 2019;322:1077. Januzzi JL, Jr., Prescott MF, Butler J, et al. Association of change in N-terminal pro-B-type natriuretic peptide following initiation of sacubitril-valsartan treatment with cardiac structure and function in patients with heart failure with reduced ejection fraction. JAMA. 2019;322:1085. Velazquez EJ, Morrow DA, DeVore AD, et al. Angiotensin-neprilysin inhibition in acute decompensated heart failure. N Engl J Med. 2019;380:539. Wachter R, Senni M, Belohlavek J, et al. Initiation of sacubitril/valsartan in haemodynamically stabilised heart failure patients in hospital or early after discharge: Primary results of the randomised TRANSITION study. Eur J Heart Fail. 2019;21:998. Vicent L, Esteban-Fernández A, Gómez-Bueno M, et al. Clinical profile of a nonselected population treated with sacubitril/valsartan is different from PARADIGM-HF trial. J Cardiovasc Pharmacol. 2018;72:112. Moliner-Abos C, Rivas-Lasarte M, Pamies Besora J, et al. Sacubitril/valsartan in real-life practice: Experience in patients with advanced heart failure and systematic review. Cardiovasc Drugs Ther. 2019;33:307. De Vecchis R, Ariano C, Di Biase G, et al. Sacubitril/valsartan for heart failure with reduced left ventricular ejection fraction : A retrospective cohort study. Herz. 2019;44:425. Tan NY, Sangaralingham LR, Sangaralingham SJ, et al. Comparative effectiveness of sacubitril-valsartan versus ACE/ARB therapy in heart failure with reduced ejection fraction. JACC Heart Fail. 2020;8:43. Chang HY, Feng AN, Fong MC, et al. Sacubitril/valsartan in heart failure with reduced ejection fraction patients: Real world experience on advanced chronic kidney disease, hypotension, and dose escalation. J Cardiol. 2019;74:372. Hsiao FC, Wang CL, Chang PC, et al. Angiotensin receptor neprilysin inhibitor for patients with heart failure and reduced ejection fraction: Real-world experience from Taiwan. J Cardiovasc Pharmacol Ther. 2020;25:152. Damman K, Gori M, Claggett B, et al. Renal effects and associated outcomes during angiotensin-neprilysin inhibition in heart failure. JACC Heart Fail. 2018;6:489. Voors AA, Gori M, Liu LC, et al. Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2015;17:510. Ruggenenti P and Remuzzi G. Combined neprilysin and RAS inhibition for the failing heart: Straining the kidney to help the heart? Eur J Heart Fail. 2015;17:468. Mullens W and Martens P. Exploiting the natriuretic peptide pathway to preserve glomerular filtration in heart failure. JACC Heart Fail. 2018;6:499. Marin-Grez M, Fleming JT, and Steinhausen M. Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature. 1986;324:473. Loutzenhiser R, Hayashi K, and Epstein M. Atrial natriuretic peptide reverses afferent arteriolar vasoconstriction and potentiates efferent arteriolar vasoconstriction in the isolated perfused rat kidney. The Journal of pharmacology and experimental therapeutics. 1988;246:522. Lanese DM, Yuan BH, Falk SA, et al. Effects of atriopeptin III on isolated rat afferent and efferent arterioles. The American journal of physiology. 1991;261:F1102. Appel RG, Wang J, Simonson MS, et al. A mechanism by which atrial natriuretic factor mediates its glomerular actions. The American journal of physiology. 1986;251:F1036. Canaan-Kühl S, Ostendorf T, Zander K, et al. C-type natriuretic peptide inhibits mesangial cell proliferation and matrix accumulation in vivo. Kidney Int. 1998;53:1143. Schmitt F, Martinez F, Ikeni A, et al. Acute renal effects of neutral endopeptidase inhibition in humans. The American journal of physiology. 1994;267:F20. Morikawa S, Sone T, Tsuboi H, et al. Renal protective effects and the prevention of contrast-induced nephropathy by atrial natriuretic peptide. J Am Coll Cardiol. 2009;53:1040. Spannella F, Marini M, Giulietti F, et al. Renal effects of sacubitril/valsartan in heart failure with reduced ejection fraction: A real life 1-year follow-up study. Intern Emerg Med. 2019;14:1287. Masarone D, Melillo E, Errigo V, et al. Clinical relevance of transient worsening renal function after initiation of sacubitril/valsartan. Current medical research and opinion. 2021;37:9. Vardeny O, Claggett B, Packer M, et al. Efficacy of sacubitril/valsartan vs. enalapril at lower than target doses in heart failure with reduced ejection fraction: the PARADIGM-HF trial. Eur J Heart Fail. 2016;18:1228. Pharithi RB, Ferre-Vallverdu M, Maisel AS, et al. Sacubitril-valsartan in a routine community population: Attention to volume status critical to achieving target dose. ESC Heart Fail. 2020;7:158. Clark AL, Kalra PR, Petrie MC, et al. Change in renal function associated with drug treatment in heart failure: National guidance. Heart. 2019;105:904. Abdel-Qadir H, Fang J, Lee DS, et al. Importance of considering competing risks in time-to-event analyses. Circulation: Cardiovascular Quality and Outcomes. 2018;11:e004580. Vergaro G, Ghionzoli N, Innocenti L, et al. Noncardiac versus cardiac mortality in heart failure with preserved, midrange, and reduced ejection fraction. Journal of the American Heart Association. 2019;8:e013441. Cohen-Solal A, Jacobson AF, and Piña IL. Beta blocker dose and markers of sympathetic activation in heart failure patients: interrelationships and prognostic significance. ESC Heart Fail. 2017;4:499. Tang WH, Parameswaran AC, Maroo AP, et al. Aldosterone receptor antagonists in the medical management of chronic heart failure. Mayo Clin Proc. 2005;80:1623. Felker GM, Ellison DH, Mullens W, et al. Diuretic therapy for patients with heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75:1178. Tanaka S, Ninomiya T, Taniguchi M, et al. Impact of blood urea nitrogen to creatinine ratio on mortality and morbidity in hemodialysis patients: The Q-Cohort Study. Scientific reports. 2017;7:14901. Chen W, Liu Y, Li Y, et al. Sacubitril/valsartan improves cardiac function in Chinese patients with heart failure: a real-world study. ESC Heart Fail. 2021. Mullens W, Damman K, Testani JM, et al. Evaluation of kidney function throughout the heart failure trajectory - A position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22:584. Srisawasdi P, Vanavanan S, Charoenpanichkit C, et al. The effect of renal dysfunction on BNP, NT-proBNP, and their ratio. American journal of clinical pathology. 2010;133:14. Stevens PE and Levin A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158:825. Maddox TM, Januzzi JL, Jr., Allen LA, et al. 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for optimization of heart failure treatment: Answers to 10 pivotal issues about heart failure with reduced ejection fraction: A report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021;77:772. Madsen BK, Hansen JF, Stokholm KH, et al. Chronic congestive heart failure. Description and survival of 190 consecutive patients with a diagnosis of chronic congestive heart failure based on clinical signs and symptoms. Eur Heart J. 1994;15:303. Curtis JP, Sokol SI, Wang Y, et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol. 2003;42:736. Solomon SD, Claggett B, Desai AS, et al. Influence of Ejection Fraction on Outcomes and Efficacy of Sacubitril/Valsartan (LCZ696) in Heart Failure with Reduced Ejection Fraction: The Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) Trial. Circ Heart Fail. 2016;9:e002744. Konstam MA, Kramer DG, Patel AR, et al. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC. Cardiovascular imaging. 2011;4:98. O’Gara PT and Loscalzo J. Mitral regurgitation. In: Jameson JL, Fauci AS, Kasper DL, eds. Harrison's Principles of Internal Medicine, 20e. New York, NY: McGraw-Hill Education; 2018. Katzung BG. Vasodilators the treatment of angina pectoris. In: Katzung BG and Vanderah TW. Basic Clinical Pharmacology, 15e. New York, NY: McGraw-Hill; 2021. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71:e127. Xiong Q, Lau YC, Senoo K, et al. Non-vitamin K antagonist oral anticoagulants (NOACs) in patients with concomitant atrial fibrillation and heart failure: A systemic review and meta-analysis of randomized trials. Eur J Heart Fail. 2015;17:1192. Jackevicius CA, Lu L, Ghaznavi Z, et al. Bleeding risk of direct oral anticoagulants in patients with heart failure and atrial fibrillation. Circulation. Cardiovascular quality and outcomes. 2021;14:e007230. Gislason GH, Rasmussen JN, Abildstrom SZ, et al. Increased mortality and cardiovascular morbidity associated with use of nonsteroidal anti-inflammatory drugs in chronic heart failure. Arch Intern Med. 2009;169:141. Mamdani M, Juurlink DN, Lee DS, et al. Cyclo-oxygenase-2 inhibitors versus non-selective non-steroidal anti-inflammatory drugs and congestive heart failure outcomes in elderly patients: A population-based cohort study. Lancet (London, England). 2004;363:1751. Bhatt AS, DeVore AD, DeWald TA, et al. Achieving a maximally tolerated β-blocker dose in heart failure patients: Is there room for improvement? J Am Coll Cardiol. 2017;69:2542. Faris R, Flather M, Purcell H, et al. Current evidence supporting the role of diuretics in heart failure: A meta analysis of randomised controlled trials. Int J Cardiol. 2002;82:149. Damman K, Kjekshus J, Wikstrand J, et al. Loop diuretics, renal function and clinical outcome in patients with heart failure and reduced ejection fraction. Eur J Heart Fail. 2016;18:328. Mullens W, Damman K, Harjola VP, et al. The use of diuretics in heart failure with congestion - A position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:137. Benowitz NL. Antihypertensive agents. In: Katzung BG and Vanderah TW. Basic amp; Clinical Pharmacology, 15e. New York, NY: McGraw-Hill; 2021. Efstratiadis G, Konstantinou D, Chytas I, et al. Cardio-renal anemia syndrome. Hippokratia. 2008;12:11. McCullough PA. Anemia of cardiorenal syndrome. Kidney international supplements. 2021;11:35. Tymińska A, Kapłon-Cieślicka A, Ozierański K, et al. Anemia at hospital admission and its relation to outcomes in patients with heart failure (from the Polish cohort of 2 European Society of Cardiology heart failure registries). The American journal of cardiology. 2017;119:2021. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81902 | - |
| dc.description.abstract | "研究背景 心臟衰竭 (heart failure) 病人合併慢性腎臟病 (chronic kidney disease, CKD) 或腎功能惡化 (worsening renal function, WRF) 皆具有較高全因性死亡及心臟衰竭住院風險。心臟衰竭治療藥物sacubitril/valsartan (S/V) 於上市前大型臨床試驗中證實能降低射出分率低下心臟衰竭 (heart failure with reduced ejection fraction, HFrEF) 病人之心血管死亡或心臟衰竭住院之綜合事件風險;但在S/V使用過程中可能導致WRF,使醫師不敢貿然調升劑量,甚至可能因而減量或停藥,造成臨床治療之決策困境。然而目前尚無治療指引建議心臟衰竭病人使用S/V發生WRF應如何處置,又相關預後之研究鮮少且有諸多限制。 研究目的 本研究目的為分析心臟衰竭病人啟用S/V前腎功能參數與預後之相關性;以及分析啟用S/V初期不同時間內發生WRF與預後之相關性;接續分析啟用S/V初期肌酸酐 (creatinine, Cre) 上升程度與預後之相關性;最後控制或校正可能影響預後之因素,分析啟用S/V初期發生WRF及追蹤期間腎功能參數與預後之相關性。 研究方法 本研究為回溯性世代追蹤研究,共收納臺大醫院333位於2017年3月1日至2019年2月28日間啟用S/V且用藥 ≥ 30天及左心室射出分率 (left ventricular ejection fraction, LVEF) < 40% 之HFrEF病人,並蒐集其人口學特性、心臟衰竭特性、共病症、腎功能、心臟功能及用藥等參數,其中腎功能參數包含Cre、估算之腎絲球過濾率 (estimated glomerular filtration rate, eGFR)、血清尿素氮 (blood urea nitrogen, BUN) 及BUN與Cre之比值 (BUN/Cre)。本研究參考既有文獻將CKD定義為啟用S/V前eGFR < 60 mL/min/1.73 m2;WRF之腎功能變化程度定義為:(1) eGFR下降 ≥ 20% (WRFeGFR);(2) Cre上升 ≥ 0.3 mg/dL且 ≥ 25% (WRFCre);(3) Cre上升 ≥ 30% (Cre30%);(4) Cre上升 ≥ 50% (Cre50%);WRF之時間區間定義為:(1) 1個月內 (1M);(2) 3個月內 (3M);(3) 6個月內 (6M)。本研究追蹤起日為S/V啟用日,追蹤迄日為2020年12月31日,研究終點為全因性死亡或進行心臟移植之綜合事件。 本研究首先利用Kaplan–Meier method之存活分析合併log-rank test探討啟用S/V前腎功能參數與研究終點之相關性;接續分析啟用S/V初期不同時間內發生WRF及不同Cre上升程度與研究終點之相關性;最後則利用Cox’s proportional hazards model with time-dependent covariates (Cox’s model) 進行多變項分析 (multivariable analysis),控制可能影響預後之變項,以分析啟用S/V初期發生WRF及追蹤期間腎功能參數與研究終點之相關性。多變項分析共有兩模型,Cox’s model 1納入之變項包含啟用S/V前臨床特性、6M WRFeGFR及追蹤期間用藥;Cox’s model 2則額外納入追蹤期間腎功能相關檢驗數據、心臟功能與住院。 研究結果 本研究333位心臟衰竭病人經過中位數33.1個月之追蹤時間,存活分析顯示合併CKD之病人研究終點風險較高 (log-rank test, p = 0.0167);Cre、eGFR、BUN與BUN/Cre較其平均值差者研究終點風險亦較高。存活分析亦顯示6M WRFeGFR及6M WRFCre病人具有較高研究終點風險,然而3M WRFeGFR及3M WRFCre病人不具有較高風險。後續針對3個月內之腎功能變化情形探討,存活分析顯示3M Cre50% 病人具有較高研究終點風險 (log-rank test, p = 0.0165)。 在挑選適當變項放入Cox’s model及排除有部分變項缺失之病人後,最終共291人進行多變項分析。Cox’s model 1結果未顯示6M WRFeGFR與研究終點相關,而與研究終點獨立相關之變項共有22個,大致可分為4種類型:(1) 啟用S/V前心臟衰竭特性、共病症與住院史;(2) 啟用S/V前心臟功能;(3) 啟用S/V前用藥;(4) 追蹤期間用藥或醫療處置,包含S/V日劑量 (hazard ratio [HR], 0.9890; 95% confidence interval [CI], 0.9846–0.9935; p < 0.0001)、環利尿劑 (loop diuretics) 平均日劑量 (HR, 1.0160; 95% CI, 1.0060–1.0261; p = 0.0017)、doxazosin總累積劑量 (HR, 1.0013; 95% CI, 1.0004–1.0021; p = 0.0045) 等。 Cox’s model 2結果亦未顯示6M WRFeGFR與研究終點相關,而與研究終點獨立相關或接近統計顯著差異之變項共有11個,大致可分為4種類型:(1) 啟用S/V前共病症;(2) 追蹤期間腎功能相關檢驗數據,包含每7天Cre變化百分比 (HR, 1.0150; 95% CI, 1.0103–1.0198; p < 0.0001) 及BUN/Cre平均值 (HR, 1.0357; 95% CI, 0.9999–1.0728; p = 0.0506) 等;(3) 追蹤期間心臟功能,包含LVEF (HR, 0.8993; 95% CI, 0.8623–0.9378; p < 0.0001) 及每月LVEF變化 (HR, 0.9423; 95% CI, 0.8982–0.9886; p = 0.0151) 等;(4) 追蹤期間用藥或醫療處置,包含S/V日劑量 (HR, 0.9941; 95% CI, 0.9901–0.9981; p = 0.0037) 及nicorandil日劑量 (HR, 1.2195; 95% CI, 1.0724–1.3867; p = 0.0025) 等。 結論 啟用S/V前後皆須定期監測腎功能,且應同時檢測Cre與BUN。啟用S/V後3個月內Cre上升 < 50% 為可接受之範圍。然而腎功能變化與預後之相關性同時受到心臟功能、S/V及利尿劑等因素影響,因此除了評估腎功能變化程度,更重要的是應同時注意心臟功能、利尿劑與血管擴張劑等影響預後之危險因子,並避免心臟功能惡化、低血壓、renal hypoperfusion以及neurohormonal activation等可能導致預後不佳之情形。若能維持理想血壓與體液狀態,S/V便有機會調升至最佳可耐受劑量,進而獲得較佳之預後。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:06:13Z (GMT). No. of bitstreams: 1 U0001-2110202116414200.pdf: 4138484 bytes, checksum: d2664f17247b4d26fa744438a810058d (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書...i 誌謝...ii 中文摘要...iii Abstract...vi 目錄...ix 圖目錄...xiii 表目錄...xiv 第一章 緒論...1 前言...1 壹、臨床案例探討...1 一、案例介紹...1 二、問題討論...3 貳、心血管系統簡介...3 一、心血管系統功能與組成...3 二、血液動力學...4 參、心臟衰竭簡介...6 一、心臟衰竭之流行病學及公共衛生負擔...6 二、心臟衰竭之分類...7 三、心臟衰竭之病因學...8 四、心臟衰竭之病理生理學...9 五、心臟衰竭之共病症...12 六、心臟衰竭之藥物治療...13 肆、腎臟結構與功能簡介...14 一、腎臟結構與功能...14 二、腎功能指標與評估方式...15 三、血清尿素氮:腎功能與腎灌流指標...17 四、腎功能惡化之分類...19 伍、心臟衰竭與腎功能之探討...19 一、心臟與腎臟交互作用之病理生理學...19 二、心臟衰竭相關藥品影響腎功能之機轉...21 三、腎功能異常或惡化與心臟衰竭之相關研究...22 四、血清尿素氮與心臟衰竭之相關研究...23 陸、心臟衰竭治療藥物sacubitril/valsartan之介紹...26 一、發展緣由與作用機轉...26 二、臨床療效...27 三、臨床安全性...29 四、Sacubitril/valsartan與腎功能之相關研究...30 五、臨床困境...33 柒、當前研究限制...34 一、啟用sacubitril/valsartan前腎功能異常之相關研究...34 二、啟用sacubitril/valsartan後腎功能惡化之相關研究...34 捌、研究假說與目的...35 第二章 研究方法...36 壹、研究設計與架構...36 貳、研究對象之資料來源...36 參、研究對象之收納與排除 (圖2)...36 肆、參數蒐集與定義...38 伍、追蹤期間研究參數觀察時間點...38 陸、腎功能惡化定義...39 柒、研究終點...39 捌、資料處理...41 玖、統計分析...42 一、數據呈現方式...42 二、組間數據比較...43 三、單一類別變項之研究終點存活分析...43 四、研究終點相關因素之多變項分析...43 第三章 研究結果...48 壹、研究族群啟用sacubitril/valsartan前基本特性...48 貳、研究終點...49 參、慢性腎臟病相關因素之單變項分析...50 肆、啟用sacubitril/valsartan前腎功能與預後之相關性...51 伍、追蹤期間sacubitril/valsartan使用劑量分布與變化情形...52 陸、追蹤期間腎功能變化趨勢...52 柒、腎功能惡化發生風險及研究終點發生比例...53 捌、腎功能惡化相關因素之單變項分析...53 玖、腎功能惡化之預後及相關研究參數分析...55 壹拾、腎功能惡化與預後相關之臨界值及相關研究參數分析...57 壹拾壹、研究終點相關因素之多變項分析...58 一、Cox’s model 1:時間固定變項合併用藥之時間相依變項...58 二、Cox’s model 2:時間固定變項合併用藥、腎功能相關檢驗數據、心臟功能及住院之時間相依變項...59 第四章 討論...61 壹、研究族群啟用sacubitril/valsartan前腎功能...61 貳、慢性腎臟病相關因素之單變項分析...62 參、啟用sacubitril/valsartan前腎功能與預後之相關性...63 肆、追蹤期間腎功能變化趨勢...64 伍、腎功能惡化發生風險...66 陸、腎功能惡化相關因素之單變項分析...67 柒、腎功能惡化之預後及相關研究參數分析...68 捌、腎功能惡化與預後相關之臨界值及相關研究參數分析...69 玖、研究終點相關因素之多變項分析:Cox’s model 1...69 一、啟用sacubitril/valsartan前心臟衰竭特性、共病症與住院史...70 二、啟用sacubitril/valsartan前心臟功能...71 三、啟用sacubitril/valsartan前用藥...73 四、追蹤期間用藥或醫療處置...75 壹拾、研究終點相關因素之多變項分析:Cox’s model 2...78 一、啟用sacubitril/valsartan前共病症...78 二、追蹤期間腎功能相關檢驗數據...78 三、追蹤期間心臟功能...79 四、追蹤期間用藥或醫療處置...80 壹拾壹、研究終點相關因素之多變項分析臨床意義與應用...80 壹拾貳、臨床案例探討...82 壹拾參、研究限制...83 第五章 結論與展望...86 第六章 圖...88 第七章 表...99 參考文獻...129 附錄...142 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心臟移植 | zh_TW |
| dc.subject | 心臟衰竭 | zh_TW |
| dc.subject | 腎功能惡化 | zh_TW |
| dc.subject | sacubitril/valsartan | zh_TW |
| dc.subject | 肌酸酐 | zh_TW |
| dc.subject | 血清尿素氮 | zh_TW |
| dc.subject | 全因性死亡 | zh_TW |
| dc.subject | heart failure | en |
| dc.subject | heart transplantation | en |
| dc.subject | all-cause death | en |
| dc.subject | blood urea nitrogen | en |
| dc.subject | creatinine | en |
| dc.subject | sacubitril/valsartan | en |
| dc.subject | worsening renal function | en |
| dc.title | 心臟衰竭病人使用sacubitril-valsartan腎功能惡化與死亡或心臟移植之相關性 | zh_TW |
| dc.title | The Association between Worsening Renal Function and Death or Heart Transplantation in Heart Failure Patients Treated with Sacubitril-Valsartan | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王兆弘(Hsin-Tsai Liu),黃道民(Chih-Yang Tseng),張芳綺 | |
| dc.subject.keyword | 心臟衰竭,腎功能惡化,sacubitril/valsartan,肌酸酐,血清尿素氮,全因性死亡,心臟移植, | zh_TW |
| dc.subject.keyword | heart failure,worsening renal function,sacubitril/valsartan,creatinine,blood urea nitrogen,all-cause death,heart transplantation, | en |
| dc.relation.page | 155 | |
| dc.identifier.doi | 10.6342/NTU202103985 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-10-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床藥學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-10-25 | - |
| 顯示於系所單位: | 臨床藥學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2110202116414200.pdf 此日期後於網路公開 2026-10-25 | 4.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
