Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81899
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱俊翔(Jiunn-Shyang Chiou)
dc.contributor.authorChing-Lin Chenen
dc.contributor.author陳靖霖zh_TW
dc.date.accessioned2022-11-25T03:06:09Z-
dc.date.available2026-10-23
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-25
dc.identifier.citation內政部 (2001),「建築物基礎構造設計規範」。 交通部 (2020),「公路橋梁耐震評估與補強設計規範」。 徐雅涵、徐煜淳、陳冠羽、楊鈞翔、黃俊鴻 (2018) 「竹南砂模型側向樁p-y曲線之研究-Reese與API模型之驗證」,中國土木水利工程學刊,第30卷,頁263-273。 陳家漢 (2017),「以振動台試驗探討液化地盤中單樁受震樁土互制關係」,國立臺灣大學博士論文。 黃梓瑞 (2019),「液化傾斜地盤中樁基礎受震行為之試驗與分析」,國立臺灣大學碩士碩文。 Abdoun, T., Dobry, R., O'Rourke, T.D., and Goh, S.H. (2003). “Pile response to lateral spreads: centrifuge modeling.” Journal of Geotechnical and Geoenvironmental Engineering, 129(10), 869-878. Architectural Institute of Japan (AIJ). (2001). “Recommendations for design of building foundations.” Ashour, M., Norris, G., and Pilling, P. (1998). “Lateral loading of a pile in layered soil using the strain wedge model.” Journal of Geotechnical Geoenvironmental Engineering, ASCE, 124(4), 303-315. American Petroleum Institute (API). (2000). “Recommended practice for planning, designing, and constructing fixed offshore platforms—working stress design.” Barton, Y.O., Finn, W.D.L., Parry, R.H.G., and Towhata, I. (1983). “Lateral pile response and p-y curves from centrifuge tests.” Proceedings of the 1st Offshore Technology Conference, Houston, Texas, 503-506. Brandenberg S.J. (2002), “Behavior of pile foundations in liquefied and laterally spreading ground.” Ph.D. Dissertation, University of California, Davis. Broms, B. (1964). “Lateral resistance of piles in cohesionless soils.” Journal of the Soil Mechanics and Foundations Division, ASCE, 90(3), 123-156. Choo, Y.W., and Kim, D. (2016). “Experimental development of the p-y relationship for large-diameter offshore monopiles in sands: centrifuge tests.” Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 04015058. Chung, M.C., Hwang, J.H., and Lyu, Y.D. (2007). “Pushover analysis for the lateral pile subjected to liquefaction-induced flow earth pressure.” Journal of the Chinese Institute of Civil and Hydraulic Engineering, 19(4), 515-528. Cox, W.R., Reese, L.C., and Berry, R.G. (1974). 'Field testing of laterally loaded piles in sand.' Proceedings of the 17th Offshore Technology Conference, Houston, Texas, 460-464. Cubrinovski, M., and Ishihara, K. (2004). “Simplified method for analysis of piles undergoing lateral spreading in liquefied soils.” Soils and Foundations, 44(5), 119-133. Cubrinovski, M., Kokusho, T., and Ishihara, K. (2006). “Interpretation from large-scale shake table tests on piles undergoing lateral spreading in liquefied soils.” Soil Dynamics and Earthquake Engineering, 26(2-4), 275-286. Cubrinovski, M., and Ishihara, K. (2003). “Liquefaction-induced ground deformation and damage to piles in the 1995 Kobe earthquake.” Skopje-Ohrid, Macedonia: International Conference Skopje Earthquake 40 Years of European Earthquake Engineering, 27-31. Dobry, R., Abdoun, T., O'Rourke, T. D., and Goh, S.H. (2003). “Single piles in lateral spreads: field bending moment evaluation.” Journal of Geotechnical and Geoenvironmental Engineering, 129(10), 879-889. Ebeido, A.A. (2019). “Lateral-spreading effects on pile foundations: large-scale testing and analysis.” Ph.D. Dissertation, University of California, San Diego. Ebeido, A.A., Elgamal, A., Tokimatus, K., and Abe, A. (2019). “Pile and pile-group response to liquefaction induced lateral spreading in four large scale shake-table experiments.” Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 04019080. Elgamal, A., Zaghal, M., Dobry, R., Thevanayagam, S., and Abdoun, T. (2006). “Study on pile foundations subjected to liquefaction-induced lateral spreading.” NEES-2006-0122. Hamada, M., and O'Rourke, T. (1992). “Case studies of liquefaction and lifeline performance during past earthquakes.” Japanese Case Studies Technical Report, NCEER-92-0001, Vol. 1., National Center for Earthquake Engineering Research, Buffalo, NY. Hamada, M., Ohtomo, K., Sato, H., and Iwatate, T. (1992). “Experimental study of effects of liquefaction-induced ground displacement on in-ground structures.” Proceedings of the 4th US-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction, Technical Report, NCEER-92-0019, 481-492. Hamada, M., Sato, H., and Kawakami, T. (1994). “A consideration of the mechanism for liquefaction-related large ground displacement.” Proceedings of the 5th US-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction, Technical Report NCEER-94-0026, 285-299. Hamada, M. (2000). “Performance of foundations against liquefaction-induced permanent ground displacement.” Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 1754. Hamada, M., and Takahashi, Y. (2004). “An experimental study on the fluid properties of liquefied sand during its flow.” Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 641. He, L. (2005). “Liquefaction-induced lateral spreading and its effects on pile foundations.” Ph.D. Dissertation, University of California, San Diego. He, L., Elgamal, A., Abdoun, T., Abe, A., Dobry, R., Hamada, M., Meneses, J., Sato, M., Shantz, T., and Tokimatsu, K. (2009). “Liquefaction-Induced lateral load on pile in a medium Dr sand layer.” Journal of Earthquake Engineering, 13(7), 916-938. Hwang, J.I., Kim, C.Y., Chung, C.K., and Kim, M.M. (2006). “Viscous fluid characteristics of liquefied soils and behavior of piles subjected to flow of liquefied soils.” Soil Dynamics and Earthquake Engineering, 26(2-4), 313-323. Ishihara, K., Yoshida, K., and Kato, M. (1997). “Characteristics of lateral spreading in liquefied deposits during the 1995 Hanshin-Awaji Earthquake.” Journal of Earthquake Engineering, 1(1), 23-55. Japan Road Association (JRA). (2002). “Specification for highway bridges, Part V: seismic design.” Lamb H. (1911) “On the uniform motion of a sphere through a viscous fluid.” The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 21(121), 112-121. Mallick M. (2014). “Variation of drag coefficient on rough cylindrical bodies.” Master’s Thesis, National Institute of Technology Rourkela. Meyerhof, G.G., Mathur S.K., and Valsangkar A.J. (1981). “Lateral resistance and deflection of rigid walls and piles in layered soils.” Canadian Geotechnical Journal, 18(2), 159-170. Muthukkumaran, K., Sundaravadivelu, R., and Gandhi, S. (2008). “Effect of slope on p-y curves due to surcharge load.” Soils and Foundations, 48(3), 353-361. O'Rourke, T.D., Meyersohn, W.D., Shiba, Y., and Chaudhuri, D. (1994). “Evaluation of pile response to liquefaction-induced lateral spread.” Proceedings of 5th US–Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Soil Liquefaction, Technical Report, NCEER-94-0026, 457-479. Prasad, Y.V.S.N., and Chari T.R. (1995). “Lateral capacity of model rigid piles in cohesionless soils.” Soils and Foundations, 39(2), 21-29. Poulos, H.G., Chen, L.T., and Hull, T.S. (1995). “Model tests on single piles subjected to lateral soil movement.” Soils and Foundations, 35(4), 85-92. Railway Technical Research Institute (RTRI). (1999). “Design standard for railway facilities - seismic design.” Reese, L.C., Cox, W.R., and Koop, F.D. (1974). “Analysis of laterally loaded piles in sand.” Proceedings of 6th Offshore Technology Conference., Houston, Texas, 473-483. Thieken, K., Achmus, M., and Lemke, K. (2015). “A new static p-y approach for pile with arbitrary dimensions in sand.” Geotechnik, 38(4), 267-288. Tokimatsu, K., and Asaka, Y. (1998). “Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogoken-Nambu earthquake.” Soils and Foundations, 2, 163-178. Tokimatsu, K., and Yoshimi, Y. (1983). “Empirical correlation of soil liquefaction based on N-value and fines content.” Soils and Foundations, 23(4), 56-74. Tokimatsu, K., Suzuki, H., and Suzuki, Y. (2001). “Back-calculated p-y relation of liquefied soils from large shaking table tests.” Proceedings of the 4th International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics,7. Uchida, A., and Tokimatsu, K. (2005). “Comparison of current Japanese design specifications for pile foundations in liquefiable and laterally spreading ground.” Workshop on Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground. Verdugo, R., and González, J. (2015). “Liquefaction-induced ground damages during the 2010 Chile earthquake.” Soil Dynamics and Earthquake Engineering, 79(B), 280-295. Zhao, Q.H., Chen, J.B., and Peng, S.Q. (2020). “Terrain slope angle effect on p–y curves for piles in gravelly soil.” Arabian Journal of Geosciences, 13, 537. Zhu, B., Sun, Y.X., Chen, M., Guo, W.D., and Yang, Y.Y. (2015). “Experimental and analytical models of laterally loaded rigid monopiles with hardening p-y curves.” Journal of Waterway, Port, Coastal and Ocean Engineering, 141(6), 04015007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81899-
dc.description.abstract側潰地盤分為兩類,第一類側潰地盤為單一液化層,第二類側潰地盤包含上部非液化層與下部液化層。對於第二類側潰地盤,當側潰發生時,下部液化層會帶動上部非液化層向下滑動,滑動的土層會對樁基礎產生側向流動力,本研究為建立側潰下側向流動力之分析模式,先以黃梓瑞 (2019) 之振動台試驗為基礎,針對樁基礎在第二類側潰地盤下之反應進行土壤反力與p-y曲線分析,分析結果顯示,上部非液化層之樁土p-y曲線之勁度與強度會受樁身勁度之影響而改變。為瞭解樁身勁度對非液化土層p-y曲線之影響,本研究發展一非液化土層側向流動力分析法,將非液化土層之土壤反力拆解出上下坡土壤之反力貢獻,並以反算分析得出上下坡土壤之p-y曲線。 為建立可評估非液化層側向流動力之分析模式,須解析上下坡土壤p-y曲線與土壤參數之關係,本研究提出主動加載與被動加載之概念,區分上下坡側p-y曲線機制上之不同。透過整理相關之實驗數據,決定水平地盤中上下坡側p-y曲線與土壤參數之關係,並掌握傾斜地盤之傾角對p-y曲線之影響,以決定上下坡土壤之p-y曲線。 對於液化土層,本研究採用與側潰速度相關之液化層側向流動力模型,將液化土層視為流體,並考慮其流經樁基礎時產生之流動阻力,推導出一液化層側向流動力公式,透過整理相關實驗之黏滯係數,決定出黏滯係數之範圍,用以考慮模型中側潰地盤之側向流動力。 最後將非液化層與液化層側向流動力分析模式結合,建立一評估側潰下樁身受力反應之分析方法。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:06:09Z (GMT). No. of bitstreams: 1
U0001-2210202116455500.pdf: 6984557 bytes, checksum: b994e953b0fddef5efc62dff0b905e8e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝III 摘要I Abstract III 目錄IV 圖目錄VIII 表目錄XIV 第一章 緒論 1-1 1.1 研究背景與目的 1-1 1.2研究方法 1-1 1.3研究內容 1-2 第二章 文獻回顧 2-1 2.1 土壤液化與側潰機制 2-1 2.1.1 歷史側潰事件 2-2 2.1.2 液化側潰下 之樁基礎 2-3 2.2 側潰地盤樁基礎設計 2-4 2.2.1 台灣現行設計規範 2-5 2.2.2 日本現行設計規範 2-5 2.2.3 分析模式介紹 2-8 2.3. 液化側潰位移 2-8 2.4 側潰地盤中之樁 -土 p-y曲線 2-10 2.4.1 美國石油協會 (API) 建議砂土 p-y曲線 2-10 2.4.2 液化層砂土 p-y曲線 2-11 2.4.3 樁土相對勁度對樁 -土 p-y曲線影響之研究 2-12 2.5 液化側潰相關研究 2-13 2.5.1 現地實例擬靜態分析 2-13 2.5.2 實驗室實驗擬靜態分析分析 2-14 2.6 小結 2-18 第三章 振動台試驗之土壤反力及 p-y曲線分析 3-1 3.1 振動台試驗 3-1 3.1.1 實驗設置 3-1 3.2 樁身土壤反力分析方法 3-3 3.2.1擬合彎矩函數分析 3-3 3.3土壤反力分析 3-6 3.3.1液化層土壤反力 3-6 3.3.2非液化層土壤反力 3-7 3.4 p-y曲線 3-7 3.4.1 p-y遲滯曲線 3-8 3.4.2 非液化層 p-y曲線 3-8 3.4.3 液化層 p-y遲滯曲線 3-10 3.5 彎矩擬合函數選擇之討論 3-10 3.5.1 非液化層彎矩函數選擇 3-11 3.5.2 液化層彎矩函數選擇 3-13 3.6 小結 3-15 第四章 側向流動力模型發展 4-1 4.1 液化土層側向流動力理論模型 4-1 4.1.1 層流之流速分佈與流動牽引力 4-2 4.1.2液化土層流動牽引力 4-4 4.1.3 流動牽引力之阻力係數 4-4 4.1.3 液化土層側向流動力理論函數模型 4-5 4.2 雷諾數決定法 4-6 4.2.1 實驗之液化層最大側向流動力反算法 4-6 4.2.2振動台試驗反算 4-7 4.2.3離心機試驗反算 4-10 4.2.4 等效黏滯係數 4-11 4.2.5液化層側向流動力驗證 4-11 4.3. 非液化土層側向流動力模式 4-12 4.3.1模式介紹 4-12 4.3.2 以迭代分析法求實驗上下坡側 p-y曲線 4-13 4.4 非液化層側向流動力模式分析參數之決定 4-15 4.4.1上下坡側 p-y曲線函數 4-15 4.4.2 p-y曲線之側向極限土壤反力 4-16 4.4.3 p-y曲線之初始勁度 4-20 4.5 小結 4-22 第五章 側潰作用下樁基礎之受力反應分析 5-1 5.1 側潰下樁基礎數值分析模式 5-1 5.1.1擬靜態分析 5-2 5.1.2 單樁基礎受側潰作用下之分析模式 5-2 5.2 分析模式驗證 5-8 5.2.1 振動台試驗模擬 5-9 5.2.2 離心機試驗模擬 5-12 5.2.3 現地案例模擬 5-13 5.3 模型參數分析 5-16 5.3.1彈性樁基礎之參數分析 5-16 5.4 小結 5-20 第六章 結論與建議 6-1 6.1 結論 6-1 6.2 建議 6-2 參考文獻 R-1 附錄A. Lagrange 乘數法推導 A-1 A.1 Case1 A-1 A.2 Case2 A-5 A.3 Case3 A-8 A.4 Case4 A-12 附錄B.土壤摩擦角 B-1 B.1直剪試驗 B-1 B.2 土壤安息角 B-3 附錄C.樁土介面摩擦角 C-1 C.1直剪試驗 C-1
dc.language.isozh-TW
dc.subject單樁基礎zh_TW
dc.subject液化側潰zh_TW
dc.subject樁土p-y曲線zh_TW
dc.subject側向流動力zh_TW
dc.subjectLiquefactionen
dc.subjectInclined grounden
dc.subjectSeismic designen
dc.subjectLateral spreadingen
dc.subjectPileen
dc.title傾斜液化地盤中樁基礎側向流動力之探討zh_TW
dc.titleInvestigation of Lateral Spreading Forces on Pile Foundations in Inclined Liquefied Grounden
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳家漢(Hsin-Tsai Liu),鄒瑞卿(Chih-Yang Tseng)
dc.subject.keyword單樁基礎,液化側潰,側向流動力,樁土p-y曲線,zh_TW
dc.subject.keywordInclined ground,Lateral spreading,Liquefaction,Pile,Seismic design,en
dc.relation.page225
dc.identifier.doi10.6342/NTU202104045
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
dc.date.embargo-lift2026-10-23-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-2210202116455500.pdf
  此日期後於網路公開 2026-10-23
6.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved