Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81895
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵(Chun-Han Ko)
dc.contributor.authorPi-Chung Hungen
dc.contributor.author洪弼仲zh_TW
dc.date.accessioned2022-11-25T03:06:03Z-
dc.date.available2026-09-26
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-26
dc.identifier.citationAulin, C., Gällstedt, M., Lindström, T. (2010). Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose, 17(3), 559-574 Aulin, C., Ström, G. (2013). Multilayered alkyd resin/nanocellulose coatings for use in renewable packaging solutions with a high level of moisture resistance. Industrial Engineering Chemistry Research, 52(7), 2582-2589. Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., Miraki, R. (2013). Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules, 54, 166-173. Amini, E., Azadfallah, M., Layeghi, M., Talaei-Hassanloui, R. (2016). Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose, 23(1), 557-570. Azeredo, H. M., Rosa, M. F., Mattoso, L. H. C. (2017). Nanocellulose in bio-based food packaging applications. Industrial Crops and Products, 97, 664-671. Burg, S. P. (1962). The physiology of ethylene formation. Annual Review of Plant Physiology, 13(1), 265-302. Bhande, S. D., Ravindra, M. R., Goswami, T. K. (2008). Respiration rate of banana fruit under aerobic conditions at different storage temperatures. Journal of Food Engineering, 87(1), 116-123. Brodin, B., Steffansen, B., Nielsen, C. U. (2010). Passive diffusion of drug substances: the concepts of flux and permeability. Molecular Biopharmaceutics, 135-152. Bittmann, B., Bouza, R., Barral, L., González‐Rodríguez, M. V., Abad, M. J. (2012). Nanoclay‐reinforced poly (butylene adipate‐co‐terephthalate) biocomposites for packaging applications. Polymer Composites, 33(11), 2022-2028. Bedane, A. H., Xiao, H., Eić, M. (2014). Water vapor adsorption equilibria and mass transport in unmodified and modified cellulose fiber-based materials. Adsorption, 20(7), 863-874. Bharimalla, A. K., Patil, P. G., Mukherjee, S., Yadav, V., Prasad, V. (2019). Nanocellulose-polymer composites: novel materials for food packaging applications. Polymers for Agri-Food Applications, 553-599. Cetin, N. S., Tingaut, P., Özmen, N., Henry, N., Harper, D., Dadmun, M., Sebe, G. (2009). Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromolecular Bioscience, 9(10), 997-1003. Despond, S., Espuche, E., Cartier, N., Domard, A. (2005). Barrier properties of paper–chitosan and paper–chitosan–carnauba wax films. Journal of Applied Polymer Science, 98(2), 704-710. Dufresne, A. (2013). Nanocellulose: a new ageless bionanomaterial. Materials Today, 16(6), 220-227. Dhar, P., Bhardwaj, U., Kumar, A., Katiyar, V. (2015). Poly (3‐hydroxybutyrate)/cellulose nanocrystal films for food packaging applications: Barrier and migration studies. Polymer Engineering Science, 55(10), 2388-2395. Eichhorn, S. J. (2011). Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter, 7(2), 303-315. Fleming, K., Gray, D. G., Matthews, S. (2001). Cellulose crystallites. Chemistry–A European Journal, 7(9), 1831-1836. Fonseca, S. C., Oliveira, F. A., Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. Journal of Food Engineering, 52(2), 99-119. Fang, C., Yu, R., Zhang, Y., Hu, J., Zhang, M., Mi, X. (2012). Combined modification of asphalt with polyethylene packaging waste and organophilic montmorillonite. Polymer Testing, 31(2), 276-281. Ferrer, A., Pal, L., Hubbe, M. (2017). Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops and Products, 95, 574-582. George, J., Ramana, K. V., Bawa, A. S. (2011). Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. International Journal of Biological Macromolecules, 48(1), 50-57. Ghaderi, M., Mousavi, M., Yousefi, H., Labbafi, M. (2014). All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydrate Polymers, 104, 59-65. Gicquel, E., Martin, C., Yanez, J. G., Bras, J. (2017). Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties. Journal of Materials Science, 52(6), 3048-3061. Habibi, Y. (2014). Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 43(5), 1519-1542. Han, C., Wang, J., Li, Y., Lu, F., Cui, Y. (2014). Antimicrobial-coated polypropylene films with polyvinyl alcohol in packaging of fresh beef. Meat Science, 96(2), 901-907. Han, J. W., Ruiz‐Garcia, L., Qian, J. P., Yang, X. T. (2018). Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17(4), 860-877. Ibrahim, M. M., El-Zawawy, W. K., Nassar, M. A. (2010). Synthesis and characterization of polyvinyl alcohol/nanospherical cellulose particle films. Carbohydrate Polymers, 79(3), 694-699. Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf, M. A., Jasiuk, I. (2005). Experimental trends in polymer nanocomposites—a review. Materials Science and Engineering: A, 393(1-2), 1-11. Jeong, H. S., Choi, E. S., Lee, S. Y., Kim, J. H. (2012). Evaporation-induced, close-packed silica nanoparticle-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: Advantageous effect of highly percolated, electrolyte-philic microporous architecture. Journal of Membrane Science, 415, 513-519. Kimura, S., Laosinchai, W., Itoh, T., Cui, X., Linder, C. R., Brown, R. M. (1999). Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. The Plant Cell, 11(11), 2075-2085. Khan, A., Khan, R. A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J., ... Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 90(4), 1601-1608.  Katri S. Kontturi, Karolina Biegaj, Andreas Mautner, Robert T. Woodward, Benjamin P. Wilson, Leena-Sisko Johansson, Koon-Yang Lee, Jerry Y. Y. Heng, Alexander Bismarck and Eero Kontturi. (2017) Noncovalent Surface Modification of Cellulose Nanopapers by Adsorption of Polymers from Aprotic Solvents. Langmuir, 33, 23, 5707-5712. Kurmus, H., Mohajerani, A. (2020). The toxicity and valorization options of cigarette butts. Waste Management, 104, 104-118. Liu, X., Shiomi, S., Nakatsuka, A., Kubo, Y., Nakamura, R., Inaba, A. (1999). Characterization of ethylene biosynthesis associated with ripening in banana fruit. Plant Physiology, 121(4), 1257-1265. Lin, W. H., Chung, T. S. (2001). Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes. Journal of Membrane Science, 186(2), 183-193. Lavoine, N., Desloges, I., Dufresne, A., Bras, J. (2012). Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 90(2), 735-764. Li, F., Mascheroni, E., Piergiovanni, L. (2015). The potential of nanocellulose in the packaging field: a review. Packaging Technology and Science, 28(6), 475-508. McDonald, R. E., McCollum, T. G., Baldwin, E. A. (1996). Prestorage heat treatments influence free sterols and flavor volatiles of tomatoes stored at chilling temperature. Journal of the American Society for Horticultural Science, 121(3), 531-536. McCaig, M. S., Paul, D. R. (2000). Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical agingPart I. Experimental observations. Polymer, 41(2), 629-637. Marsh, K., Bugusu, B. (2007). Food packaging—roles, materials, and environmental issues. Journal of Food Science, 72(3), R39-R55. Müller, C. M., Laurindo, J. B., Yamashita, F. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328-1333. Morris Jr, J. G. (2011). How safe is our food? Emerging Infectious Diseases, 17(1), 126. Majeed, K., Jawaid, M., Hassan, A. A. B. A. A., Bakar, A. A., Khalil, H. A., Salema, A. A., Inuwa, I. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials Design, 46, 391-410. Mokhothu, T. H., John, M. J. (2015). Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohydrate Polymers, 131, 337-354. Ma, X., Pinnau, I. (2018). Effect of film thickness and physical aging on “intrinsic” gas permeation properties of microporous ethanoanthracene-based polyimides. Macromolecules, 51(3), 1069-1076. Nielsen, L. E. (1967). Models for the permeability of filled polymer systems. Journal of Macromolecular Science—Chemistry, 1(5), 929-942. Norrrahim, M. N. F., Ariffin, H., Hassan, M. A., Ibrahim, N. A., Nishida, H. (2013). Performance evaluation and chemical recyclability of a polyethylene/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) blend for sustainable packaging. RSC Advances, 3(46), 24378-24388. Nair, S. S., Zhu, J. Y., Deng, Y., Ragauskas, A. J. (2014). High performance green barriers based on nanocellulose. Sustainable Chemical Processes, 2(1), 1-7. Nechyporchuk, O., Belgacem, M. N., Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93, 2-25. Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., Varghese, T. O. (2017). UV protective poly (lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules, 99, 37-45. Nguyen, H., Hsiao, M. Y., Nagai, K., Lin, H. (2020). Suppressed crystallization and enhanced gas permeability in thin films of cellulose acetate blends. Polymer, 205, 122790. Pratheep Kumar, A., Pal Singh, R. (2007). Novel hybrid of clay, cellulose, and thermoplastics. I. Preparation and characterization of composites of ethylene–propylene copolymer. Journal of Applied Polymer Science, 104(4), 2672-2682. Paralikar, S. A., Simonsen, J., Lombardi, J. (2008). Poly (vinyl alcohol)/cellulose nanocrystal barrier membranes. Journal of Membrane Science, 320(1-2), 248-258. Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32-43. Qasim, U., Osman, A. I., Ala’a, H., Farrell, C., Al-Abri, M., Ali, M., ... Rooney, D. W. (2020). Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: a review. Environmental Chemistry Letters, 1-29. Ray, S. S., Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11), 1539-1641. Rostami, J., Mathew, A. P., Edlund, U. (2019). Zwitterionic acetylated cellulose nanofibrils. Molecules, 24(17), 3147. Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279-292. Siracusa, V., Rocculi, P., Romani, S., Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science Technology, 19(12), 634-643. Siró, I., Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17(3), 459-494. Silvestre, C., Duraccio, D., Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12), 1766-1782. Siracusa, V. (2012). Food packaging permeability behaviour: A report. International Journal of Polymer Science, 2012. Tucker, G., Yin, X., Zhang, A., Wang, M., Zhu, Q., Liu, X., Xie, X., Chen K., Grierson, D. (2017). Ethylene and fruit softening. Food Quality and Safety, 1(4), 253-267. Tayeb, A. H., Amini, E., Ghasemi, S., Tajvidi, M. (2018). Cellulose nanomaterials—Binding properties and applications: A review. Molecules, 23(10), 2684. Wei Hao, Liu Fei, Wang Jinwen, Zhou Tianle. (2019). Research on Hydrophobic Modification and Application of Cellulose Nanopaper. Materials Science and Technology, 27(4), 30-41. Wei, D. W., Wei, H., Gauthier, A. C., Song, J., Jin, Y., Xiao, H. (2020). Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications. Journal of Bioresources and Bioproducts, 5(1), 1-15. Wang, W., Gu, F., Deng, Z., Zhu, Y., Zhu, J., Guo, T., Song J., Xiao, H. (2021). Multilayer surface construction for enhancing barrier properties of cellulose-based packaging. Carbohydrate Polymers, 255, 117431. Xu, Y., Kuang, Y., Salminen, P. J., Chen, G. (2016). The influence of nano-fibrillated cellulose as a coating component in paper coating. BioResources, 11(2), 4342-4352. Xiongli Liu, Yangbing Wen, Jialei Qu, Xin Geng, Bin Chen, Bing Wei, Binbin Wu, Shuo Yang, Hongjie Zhang and Yonghao Ni. (2019) Improving salt tolerance and thermal stability of cellulose nanofibrils by grafting modification. Carbohydrate Polymers, 211:257-265. Yin, C., Li, J., Xu, Q., Peng, Q., Liu, Y., Shen, X. (2007). Chemical modification of cotton cellulose in supercritical carbon dioxide: Synthesis and characterization of cellulose carbamate. Carbohydrate Polymers, 67(2), 147-154. Yahiaoui, F., Benhacine, F., Ferfera-Harrar, H., Habi, A., Hadj-Hamou, A. S., Grohens, Y. (2015). Development of antimicrobial PCL/nanoclay nanocomposite films with enhanced mechanical and water vapor barrier properties for packaging applications. Polymer Bulletin, 72(2), 235-254. Yang, W., Owczarek, J. S., Fortunati, E., Kozanecki, M., Mazzaglia, A., Balestra, G. M., ... Puglia, D. (2016). Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Industrial Crops and Products, 94, 800-811. Youssef, A. M., Assem, F. M., El-Sayed, H. S., El-Sayed, S. M., Elaaser, M., Abd El-Salam, M. H. (2020). Synthesis and evaluation of eco-friendly carboxymethyl cellulose/polyvinyl alcohol/CuO bionanocomposites and their use in coating processed cheese. RSC Advances, 10(62), 37857-37870. Zeman, S., Kubík, L. (2007). Permeability of polymeric packaging materials. Technical Sciences/University of Warmia and Mazury in Olsztyn, (10), 26-34. Zhong, Y., Janes, D., Zheng, Y., Hetzer, M., De Kee, D. (2007). Mechanical and oxygen barrier properties of organoclay‐polyethylene nanocomposite films. Polymer Engineering Science, 47(7), 1101-1107.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81895-
dc.description.abstract"本研究以不同比例之奈米纖維材料(Cellulose nanofibrils, CNF和Cellulose nanocrystals, CNC)及其疏水化改質後之產物、奈米高嶺土(NC)、聚乙烯醇(PVA)及乙二醛(ED)配製成塗料。塗料性質顯示,纖維素粒徑較小者的屏障性能較佳,界面電位較高者,表示奈米纖維材料之懸浮程度越佳,且團聚現象降低。紙張性質顯示,纖維素含量在10~20%左右來到最佳,擁有最低的氣體穿透能力,而經乙酰化改質之纖維素雖然在氣體阻隔性沒有顯著的改善,但在水蒸氣穿透率有較低的表現。和單純塗佈PVA之影印紙相比,CNC120 B有最佳的屏障性能,透氣性下降了39.4%,水蒸氣穿透率下降了18.3%,而乙烯穿透力則下降了16.7~77.8%(不同時間),其中香蕉的失重率減少了25.9%,醣度也減低了17.2%,顯示本研究製備之奈米纖維素塗料具有應用於水果保鮮包材之潛力。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:06:03Z (GMT). No. of bitstreams: 1
U0001-2510202115304000.pdf: 4272848 bytes, checksum: c2d976ccaa6a28da05523738ee78a3d2 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents誌謝 i 中文摘要 ii ABSTRACT iii LIST OF FIGURES vi LIST OF TABLES x LIST OF ABBREVIATION xi Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Cellulose and cellulose nanomaterials 3 2.1.1 Cellulose nanofibers 6 2.1.2 Cellulose nanocrystals 8 2.2 Hydrophobic cellulose 10 2.3 Nanoclay 12 2.4 Polyvinyl alcohol 15 2.5 Food packaging 17 2.5.1 Properties of nanocellulose used in food packaging 20 2.5.2 Properties of nanoclay used in food packaging 24 2.5.3 Barrier properties 26 2.6 The physiological mechanism of the fruit 34 2.6.1 The respiration of the fruits 34 2.6.2 Formation of ethylene 35 2.6.3 Effect of ethylene on fruits 37 Chapter 3 Materials and methods 38 3.1 Research framework 38 3.2 Materials 39 3.2.1 Substrates 39 3.2.2 Chemicals 39 3.3 Instruments and Equipment 40 3.3.1 Instruments 40 3.3.2 Equipment 40 3.4 Preparation and property testing method of coating material 42 3.4.1 Preparation of cellulose nanocrystals 42 3.4.2 Preparation of hydrophobic cellulose 43 3.4.3 Particle size distribution 44 3.4.4 Crystallinity (X-ray diffraction) 45 3.4.5 Zeta potential 47 3.4.6 Scanning electron microscopy (SEM) 49 3.5 Preparation and property testing method of coated paper 50 3.5.1 Preparation of coating materials 50 3.5.2 Preparation of coated paper 53 3.5.3 Coating weight 55 3.5.4 Smoothness 55 3.5.5 Air permeability 56 3.5.6 Water vapor transmission rate 57 3.5.7 Ethylene permeation 59 3.6 Fruit freshness determination 65 3.6.1 Fruit weight 65 3.6.2 Peel color 65 3.6.3 Brix test 66 3.6.4 Fresh fruit gas composition change 67 Chapter 4 Results and Discussion 68 4.1 Properties of cellulose materials 68 4.1.1 Particle size distribution 68 4.1.2 Crystallinity 77 4.1.3 Zeta potential 80 4.1.4 SEM images 84 4.2 Properties of coated paper 88 4.2.1 Coating weight 88 4.2.2 Smoothness 91 4.2.3 Air permeability 97 4.2.4 Water vapor transmission rate 102 4.2.5 Ethylene permeation 108 4.3 Determination of fruit freshness 118 4.3.1 Fruit weight loss 118 4.3.2 Peel color 120 4.3.3 Degrees Brix 122 4.3.4 Gas composition of fresh fruit 124 Chapter 5 Conclusion 127 REFERANCE 129 APPENDICES 137 Appendix A - Raw Data 137 Appendix B – Compared with literature 139
dc.language.isoen
dc.subject水果保鮮zh_TW
dc.subject纖維素改質zh_TW
dc.subject乙烯zh_TW
dc.subject包裝材料zh_TW
dc.subject奈米纖維素材料zh_TW
dc.subjectfruit preservationen
dc.subjectethyleneen
dc.subjectcellulose modificationen
dc.subjectcellulose nanomaterialsen
dc.subjectpackaging materialsen
dc.title奈米纖維素作為包裝材料塗層之性質與應用zh_TW
dc.titleProperties and applications of nanocellulose as a coating for packaging materialsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林振榮(Hsin-Tsai Liu),何振隆(Chih-Yang Tseng),蔡正偉,張芳志
dc.subject.keyword包裝材料,水果保鮮,奈米纖維素材料,纖維素改質,乙烯,zh_TW
dc.subject.keywordpackaging materials,fruit preservation,cellulose nanomaterials,cellulose modification,ethylene,en
dc.relation.page140
dc.identifier.doi10.6342/NTU202104151
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
dc.date.embargo-lift2026-09-26-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
U0001-2510202115304000.pdf
  此日期後於網路公開 2026-09-26
4.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved