Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81887
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳穎練(Ying-Lien Chen)
dc.contributor.authorTing-Yao Chiangen
dc.contributor.author江庭曜zh_TW
dc.date.accessioned2022-11-25T03:05:50Z-
dc.date.available2026-10-27
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-27
dc.identifier.citation王瑞章、江汶錦、吳雅芳等。2011。馬鈴薯栽培管理技術。臺南區農業改良場技術專刊。1-25。 邵宇恆。2017。改良式芽孢桿菌屬細菌轉型及再生效率提升技術。中興大學植物病理學系所學位論文。 郭建志、陳俊位、廖君達、陳葦玲。(2014)。液化澱粉芽孢桿菌在作物病害防治的開發與應用。臺中區農業改良場特刊。69-86。 黃仁麒、吳雅芳、蔡佳欣、周浩平、林宜賢、陳穎練。(2021)。液化澱粉芽孢桿菌 Ba01 防治馬鈴薯青枯病之探討。台灣農業研究70。24-42。 黃巧雯。2008。台灣由 Streptomyces scabies 所引起之馬鈴薯瘡痂病-病原菌生物特性及應用拮抗性枯草桿菌於其生物防治之初探。中興大學植物病理學系所學位論文。 馮如瑩。(2019)。利用剔除液化澱粉芽孢桿菌 Ba01 之 srf 基因簇證明表面素為抑制馬鈴薯瘡痂病菌之重要二次代謝物。臺灣大學植物醫學碩士學位學程學位論文。 黃㯖昌、曾國欽、呂昀陞。(2007)。細菌性軟腐病之診斷與鑑定。植物重要防疫檢疫病害診斷鑑定技術研習會專刊6。109-116。 廖仁宏。(2017)。液化澱粉芽孢桿菌 Ba-BPD1 及其抗菌脂胜肽防治作物病害之研究。中興大學化學工程學系所學位論文。 蔡志濃、安寶貞、王姻婷、王馨媛、胡瓊月。(2009)。利用中和後之亞磷酸溶液防治馬鈴薯與番茄晚疫病。台灣農業研究58。185-95。 謝奉家、高穗生。(2012)。具商品化潛力之多功能液化澱粉芽孢桿菌。海峡两岸生物防治研討會。28-29。 Bignell D., Fyans J., Cheng Z. (2014). Phytotoxins produced by plant pathogenic Streptomyces species. Journal of Applied Microbiology 116:223-235. Chan J.M., Guttenplan S.B., Kearns D.B. (2014). Defects in the flagellar motor increase synthesis of poly-γ-glutamate in Bacillus subtilis. In Bacteria in Agrobiology: Plant Growth Response 196:740-753. Chen X.H., Vater J., Piel J.R., et al., (2006). Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42. Journal of Bacteriology 188:4024-36. Chen X., Koumoutsi A., Scholz R., et al., (2009). Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology 140:27-37. Chowdhury S.P., Hartmann A., Gao X., Borriss R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frotiers in Microbiology 6:780. Fan B., Wang C., Song X., et al. (2018). Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol. Frotiers in Microbiology 9:2491. Goodson J.R., Klupt S., Zhang C., Straight P., Winkler W.C. (2017). LoaP is a broadly conserved antiterminator protein that regulates antibiotic gene clusters in Bacillus amyloliquefaciens. Natre Microbiology 2:1-10. Healy F.G., Wach M., Krasnoff S.B., Gibson D.M., Loria R. (2000). The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Molecular Microbiology 38:794-804. Kloepper J.W., Ryu C.M., Zhang S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259-66. Le Breton Y., Mohapatra N.P., Haldenwang W.G. (2006). In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Applied and Environmental Microbiology 72:327-33. Lerat S., Simao‐Beaunoir A.M., Beaulieu C. (2009). Genetic and physiological determinants of Streptomyces scabies pathogenicity. Molecular Plant Pathology 10:579-85. Lin C., Tsai C.H., Chen P.Y., et al. (2018). Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One 13:e0196520. Loria R., Kers J., Joshi M. (2006). Evolution of plant pathogenicity in Streptomyces. Annual Review of Phytopathology 44:469-87. Michielse C.B., Van W.R., Reijnen L., Cornelissen B.J., Rep M. (2009). Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biology 10:1-18. Ongena M., Jourdan E., Adam A., et al. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology 9:1084-90. Pérez-García A., Romero D., De Vicente A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture.Current Opinion in Biotechnology 22:187-93. Patrick J.E., Kearns D.B., (2008). MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Molecular Microbiology 70:1166-79. Rachinger M., Bauch M., Strittmatter A., et al. (2013). Size unlimited markerless deletions by a transconjugative plasmid-system in Bacillus licheniformis. Journal of Biotechnology 167:365-9. Wu G., Liu Y., Xu Y., Zhang G., Shen Q., Zhang R. (2018). Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Plant Microbe Interaction 31, 560-7. Wu L., Wu H., Chen L., Yu X., Borriss R., Gao X. (2015). Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sciencetific Reports 5:1-9. Ye M., Tang X., Yang R., et al. (2018). Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chemical Biology 13:500-5. Zhang W., Xie H., He Y., et al. (2013). Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens. FEMS Microbiology Letters 343:127-34. Zhang Z., Ding Z.T., Shu D., Luo D., Tan H. (2015). Development of an efficient electroporation method for iturin A-producing Bacillus subtilis ZK. International Journal of Moleular Sciences 16:7334-51.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81887-
dc.description.abstract馬鈴薯為世界上四大重要作物之一,而瘡痂病為馬鈴薯常見病害,主要病原為馬鈴薯瘡痂病菌 (Streptomyces scabies),可造成薯塊表面木栓化及腐敗凹陷病斑,使馬鈴薯薯塊品質降低,臺灣目前無推薦防治藥劑可施用,僅能以健康種薯、作物輪作或調節土壤酸鹼值作為病害控制,但防治效果有限。本實驗室前人研究發現液化澱粉芽孢桿菌(Bacillus amyloliquefaciens)Ba01在濾紙片擴散試驗或田間試驗皆能有效抑制馬鈴薯瘡痂病菌生長及降低罹病度。實驗室前人也推測Ba01二次代謝物表面素(surfactin)扮演抑制瘡痂病重要機制。為找出更多可能影響芽孢桿菌抑制瘡痂病菌的作用機制,本實驗利用模式菌株貝萊斯芽孢桿菌(Bacillus velezensis)FZB42搭配含有跳躍子功能之質體pMarA進行隨機突變試驗,將pMarA質體轉型進入FZB42後,利用溫度變化誘導跳躍子隨機插入菌株染色體DNA中,再以突變株比較野生株拮抗馬鈴薯瘡痂病菌的能力差異,並以反向PCR (inverse-PCR)進行突變基因的確認。實驗發現二次代謝物difficidin基因(dfn)在隨機突變之後,拮抗能力顯著下降,因此推測此二次代謝物影響FZB42拮抗瘡痂病菌之能力。為證實此一推測,本實驗以difficidin基因簇及基因簇中J區域(dfn J)進行目標基因突變。實驗利用接合作用(conjugation)將選殖成功的質體轉型進入FZB42中進行in-frame deletion,而後篩選出dfn基因簇突變株CTY1、CTY2及dfn J突變株CTY3和dfn J互補株CTY4。後續利用濾紙片擴散試驗測試各突變株及互補株與野生株抑制瘡痂病菌能力的差異,發現dfn突變株CTY1、CTY2及dfn J突變菌株CTY3與野生株FZB42比較,抑制能力皆顯著降低,而CTY4互補株則無差異。以上結果顯示FZB42二次代謝物difficidin基因於抑制馬鈴薯瘡痂病菌機制扮演重要角色。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:05:50Z (GMT). No. of bitstreams: 1
U0001-2610202116193100.pdf: 2685862 bytes, checksum: 200307567a5e9c3ca109ba2ade139001 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents目錄 ...................................................... v 前言 ....................................................................................... 1 材料與方法 .......................................................................... 7 結果 .......................................................................................... 17 討論 ........................................................................................... 21 圖表 ................................................................................................. 24 表一、本研究使用之菌株及質體 .................................................................................. 24 表二、本研究所用之引子 ............................................................................................. 25 圖一、inverse PCR(iPCR)模式圖 ................................................................................... 26 圖二、B. velezensis FZB42 dfn基因簇突變cassette建立模式圖 .................................... 27 圖三、B. velezensis FZB42 dfnJ基因突變cassette建立模式圖 ...................................... 28 圖四、利用In-frame deletion獲得dfn基因簇突變株之模式圖 ..................................... 29 圖五、隨機突變得到之候選菌株及iPCR電泳分析 ...................................................... 30 圖六、五隨機突變菌株南方雜合法分析 ....................................................................... 31 圖七、五隨機突變菌株對抗馬鈴薯瘡痂病菌PS07之濾紙片擴散試驗 ......................... 32 圖八、dfn基因簇突變株CTY1及CTY2電泳分析....................................................... 33 圖九、dfnJ基因突變株CTY3及互補株CTY4電泳分析 .............................................. 34 圖十、突變菌株CTY1、CTY2、CTY3及互補株CTY4與野生株對抗馬鈴薯瘡痂病菌PS07能力測試 ............................ 36 參考文獻 ....................................................................................................................... 38
dc.language.isozh-TW
dc.subjectdifficidinzh_TW
dc.subject馬鈴薯瘡痂病zh_TW
dc.subject馬鈴薯瘡痂病菌zh_TW
dc.subject貝萊斯芽孢桿菌zh_TW
dc.subjectdifficidinen
dc.subjectpotato common scaben
dc.subjectStreptomyces scabiesen
dc.subjectBacillus velezensisen
dc.title貝萊斯芽孢桿菌FZB42之dfn基因簇拮抗馬鈴薯瘡痂病菌之角色探討zh_TW
dc.titleRoles of dfn gene cluster of Bacillus velezensis FZB42 in combating Streptomyces scabiesen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡佳欣(Hsin-Tsai Liu),曾敏南(Chih-Yang Tseng)
dc.subject.keyword馬鈴薯瘡痂病,馬鈴薯瘡痂病菌,貝萊斯芽孢桿菌,difficidin,zh_TW
dc.subject.keywordpotato common scab,Streptomyces scabies,Bacillus velezensis,difficidin,en
dc.relation.page41
dc.identifier.doi10.6342/NTU202104247
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-10-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
dc.date.embargo-lift2026-10-27-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-2610202116193100.pdf
  此日期後於網路公開 2026-10-27
2.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved