Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81876
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃定洧(Ding-wei Huang)
dc.contributor.authorTsun-yang Chanen
dc.contributor.author詹尊揚zh_TW
dc.date.accessioned2022-11-25T03:05:36Z-
dc.date.available2023-01-01
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-02-04
dc.identifier.citation[1] G. T. Reed and A. P. Knights, Silicon photonics: an introduction. John Wiley Sons, 2004. [2] D. Thomson et al., 'Roadmap on silicon photonics,' Journal of Optics, vol. 18, no. 7, p. 073003, 2016. [3] A. Rahim, T. Spuesens, R. Baets, and W. Bogaerts, 'Open-access silicon photonics: Current status and emerging initiatives,' Proceedings of the IEEE, vol. 106, no. 12, pp. 2313-2330, 2018. [4] L. Chrostowski and M. Hochberg, Silicon photonics design: from devices to systems. Cambridge University Press, 2015. [5] D. Liang and J. E. Bowers, 'Recent progress in lasers on silicon,' Nature photonics, vol. 4, no. 8, pp. 511-517, 2010. [6] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, 'Silicon optical modulators,' Nature photonics, vol. 4, no. 8, pp. 518-526, 2010. [7] 鍾國方, '利用基因演算法優化矽基側向型接面馬赫詹德行波電光調制器之頻寬,' 臺灣大學光電工程學研究所學位論文, pp. 1-104, 2019. [8] 范耿維, '利用粒子群優化演算法設計彎曲定向耦合型寬頻極化分離器,' 臺灣大學光電工程學研究所學位論文, pp. 1-68, 2019. [9] 陳柏翰, '超寬頻淺蝕刻型次波長光柵多模干涉分光器,' 臺灣大學光電工程學研究所學位論文, pp. 1-79, 2019. [10] M. Papes et al., 'Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,' Optics express, vol. 24, no. 5, pp. 5026-5038, 2016. [11] X. Mu, S. Wu, L. Cheng, and H. Fu, 'Edge couplers in silicon photonic integrated circuits: A review,' Applied Sciences, vol. 10, no. 4, p. 1538, 2020. [12] L. Cheng, S. Mao, Z. Li, Y. Han, and H. Y. Fu, 'Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues,' Micromachines (Basel), vol. 11, no. 7, Jul 8 2020, doi: 10.3390/mi11070666. [13] M. H. Lee, J. Y. Jo, D. W. Kim, Y. Kim, and K. H. Kim, 'Comparative Study of Uniform and Nonuniform Grating Couplers for Optimized Fiber Coupling to Silicon Waveguides,' Journal of the Optical Society of Korea, vol. 20, no. 2, pp. 291-299, 2016, doi: 10.3807/josk.2016.20.2.291. [14] W. S. Zaoui et al., 'Bridging the gap between optical fibers and silicon photonic integrated circuits,' Opt Express, vol. 22, no. 2, pp. 1277-86, Jan 27 2014, doi: 10.1364/OE.22.001277. [15] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni, 'Coupling strategies for silicon photonics integrated chips [Invited],' Photonics Research, vol. 7, no. 2, 2019, doi: 10.1364/prj.7.000201. [16] W. Zhou, J. Yang, H. Zhang, X. Li, and J. Yang, 'Design of High-Efficiency Fully-Etched Binary Blazed Gratings Nearly Vertical Coupler,' IEEE Photonics Technology Letters, vol. 24, no. 12, pp. 1048-1050, 2012, doi: 10.1109/lpt.2012.2193667. [17] D. Benedikovic et al., 'Sub-decibel silicon grating couplers based on L-shaped waveguides and engineered subwavelength metamaterials,' Opt Express, vol. 27, no. 18, pp. 26239-26250, Sep 2 2019, doi: 10.1364/OE.27.026239. [18] M. Kamandar Dezfouli et al., 'Perfectly vertical surface grating couplers using subwavelength engineering for increased feature sizes,' Opt Lett, vol. 45, no. 13, pp. 3701-3704, Jul 1 2020, doi: 10.1364/OL.395292. [19] T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold, 'Perpendicular Grating Coupler Based on a Blazed Antiback-Reflection Structure,' Journal of Lightwave Technology, vol. 35, no. 21, pp. 4663-4669, 2017, doi: 10.1109/jlt.2017.2755673. [20] G. Roelkens, D. Van Thourhout, and R. Baets, 'High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,' Optics Express, vol. 14, no. 24, pp. 11622-11630, 2006. [21] D. Vermeulen et al., 'High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,' Optics express, vol. 18, no. 17, pp. 18278-18283, 2010. [22] S. K. Selvaraja et al., 'Highly efficient grating coupler between optical fiber and silicon photonic circuit,' in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference, 2009: IEEE, pp. 1-2. [23] Y. Ding, C. Peucheret, H. Ou, and K. Yvind, 'Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency,' Opt Lett, vol. 39, no. 18, pp. 5348-50, Sep 15 2014, doi: 10.1364/OL.39.005348. [24] Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, 'Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits,' Optics letters, vol. 35, no. 8, pp. 1290-1292, 2010. [25] X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, 'Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,' IEEE Photonics Technology Letters, vol. 22, no. 15, pp. 1156-1158, 2010, doi: 10.1109/lpt.2010.2051220. [26] L. He et al., 'A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography,' IEEE Photonics Technology Letters, vol. 25, no. 14, pp. 1358-1361, 2013, doi: 10.1109/lpt.2013.2265911. [27] Y. Ding, H. Ou, and C. Peucheret, 'Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,' Opt Lett, vol. 38, no. 15, pp. 2732-4, Aug 1 2013, doi: 10.1364/OL.38.002732. [28] D. Taillaert, P. Bienstman, and R. Baets, 'Compact efficient broadband grating coupler for silicon-on-insulator waveguides,' Optics letters, vol. 29, no. 23, pp. 2749-2751, 2004. [29] C. Chang, Y. Hsu, H. Kuo, and Y. Lai, 'Subwavelength apodized grating coupler for silicon photonics waveguide coupling,' in 2020 Opto-Electronics and Communications Conference (OECC), 2020: IEEE, pp. 1-3. [30] R. Halir et al., 'Waveguide sub‐wavelength structures: a review of principles and applications,' Laser Photonics Reviews, vol. 9, no. 1, pp. 25-49, 2015. [31] R. Halir et al., 'Subwavelength-grating metamaterial structures for silicon photonic devices,' Proceedings of the IEEE, vol. 106, no. 12, pp. 2144-2157, 2018. [32] W. Zhou, Z. Cheng, X. Chen, K. Xu, X. Sun, and H. Tsang, 'Subwavelength engineering in silicon photonic devices,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 3, pp. 1-13, 2019. [33] B. Leten, W. Vanhaverbeke, N. Roijakkers, A. Clerix, and J. Van Helleputte, 'IP models to orchestrate innovation ecosystems: IMEC, a public research institute in nano-electronics,' California management review, vol. 55, no. 4, pp. 51-64, 2013. [34] P. P. Absil et al., 'Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform,' in Silicon Photonics X, 2015, vol. 9367: International Society for Optics and Photonics, p. 93670V. [35] M. Gad, A. Zaki, and Y. M. Sabry, 'Silicon photonic mid-infrared grating coupler based on silicon-on-insulator technology,' in 2017 34th National Radio Science Conference (NRSC), 2017: IEEE, pp. 400-406. [36] A. Das, Lectures on electromagnetism. World Scientific, 2013. [37] Z. Zhu and T. G. Brown, 'Full-vectorial finite-difference analysis of microstructured optical fibers,' Optics Express, vol. 10, no. 17, pp. 853-864, 2002. [38] 林羣洋, '基於簡單多模干涉結構的小型雙模態切換器,' 臺灣大學光電工程學研究所學位論文, pp. 1-61, 2020. [39] LUMERICAL Solutions.Inc. https://support.lumerical.com/hc/en-us/articles/360034917233 (accessed 10/06, 2020). [40] K. Yee, 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302-307, 1966. [41] LUMERICAL Solutions.Inc. 'Finite Difference Time Domain (FDTD) solver introduction.' https://support.lumerical.com/hc/en-us/articles/360034914633-Finite-Difference-Time-Domain-FDTD-solver-introduction (accessed 01/14, 2021). [42] J. Kennedy and R. Eberhart, 'Particle swarm optimization,' in Proceedings of ICNN'95-international conference on neural networks, 1995, vol. 4: IEEE, pp. 1942-1948. [43] J. Robinson and Y. Rahmat-Samii, 'Particle Swarm Optimization in Electromagnetics,' IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397-407, 2004, doi: 10.1109/tap.2004.823969. [44] R. Marchetti et al., 'High-efficiency grating-couplers: demonstration of a new design strategy,' Sci Rep, vol. 7, no. 1, p. 16670, Nov 30 2017, doi: 10.1038/s41598-017-16505-z. [45] J. E. Harvey and R. N. Pfisterer, 'Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings,' Optical Engineering, vol. 58, no. 08, 2019, doi: 10.1117/1.Oe.58.8.087105. [46] L. Chrostowski. 'Silicon Electronic Photonic Integrated Circuits (SiEPIC) – Research Training.' https://www.linkedin.com/pulse/silicon-electronic-photonic-integrated-circuits-lukas-chrostowski (accessed. [47] Y. Tong, W. Zhou, and H. K. Tsang, 'Efficient perfectly vertical grating coupler for multi-core fibers fabricated with 193 nm DUV lithography,' Opt Lett, vol. 43, no. 23, pp. 5709-5712, Dec 1 2018, doi: 10.1364/OL.43.005709. [48] Z. Zhang et al., 'Broadband High-Efficiency Grating Couplers for Perfectly Vertical Fiber-to-Chip Coupling Enhanced by Fabry-Perot-like Cavity,' Micromachines (Basel), vol. 11, no. 9, Sep 17 2020, doi: 10.3390/mi11090859. [49] D. Benedikovic et al., 'L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography,' Opt Lett, vol. 42, no. 17, pp. 3439-3442, Sep 1 2017, doi: 10.1364/OL.42.003439. [50] T. Watanabe, Y. Fedoryshyn, and J. Leuthold, '2-D grating couplers for vertical fiber coupling in two polarizations,' IEEE Photonics Journal, vol. 11, no. 4, pp. 1-9, 2019. [51] A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, 'Optimising apodized grating couplers in a pure SOI platform to -0.5 dB coupling efficiency,' Opt Express, vol. 23, no. 12, pp. 16289-304, Jun 15 2015, doi: 10.1364/OE.23.016289. [52] L. Zagaglia, F. Floris, and P. OaBrien, 'Experimental Characterization of Particle Swarm Optimized Focusing Non-Uniform Grating Coupler for Multiple SOI Thicknesses,' Journal of Lightwave Technology, vol. 39, no. 15, pp. 5028-5034, 2021, doi: 10.1109/jlt.2021.3079575. [53] F. Van Laere et al., 'Compact and Highly Efficient Grating Couplers Between Optical Fiber and Nanophotonic Waveguides,' Journal of Lightwave Technology, vol. 25, no. 1, pp. 151-156, 2007, doi: 10.1109/jlt.2006.888164.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81876-
dc.description.abstract本篇論文的目的是設計出符合IMEC矽光子製程代工廠之技術規範與其最小線寬限制,並用於將C-Band 波段由SMF-28單模光纖入射之TE極化光場耦合進入矽光子波導之高效率光柵耦合器。在此高效率光柵耦合器的結構設計方面,本論文將各個光柵週期分為四個等分的小區塊,運用次波長光柵結構 (Sub-wavelength Grating) 之等效介質折射率概念,在小區塊中填入適當的寬度方向次波長光柵結構,依序使其各小區塊之等效介質折射率對應於L型光柵的設計特性,其中次波長光柵結構採用單階段及三階段蝕刻之截面結構以提供不同的設計自由度,在元件特性模擬方面,本論文使用商用光學模擬軟體Lumerical來模擬光場在元件中的傳播情形,並透過粒子群演算法對光柵耦合器的光柵周期、小區塊折射率、單階段或三階段蝕刻深度之不同組合、上下包覆層採用二氧化矽或是空氣之組合、寬度方向次波長光柵結構之填空比等參數進行優化。 為了簡化模擬流程、減少計算時間,首先假設光柵耦合器寬度方向為無限延伸之二維等價結構,因此可將光柵耦合器的設計使用二維時域有限差分法 (2-D FDTD) 模擬,藉此設計出四組不同設計參數的元件,並針對此簡化後之設計命題進行初步的設計參數優化。模擬結果顯示其中有兩組不同的設計皆可得到高耦合效率,分別是元件三和元件四。元件三 (二維等價):考量未來IMEC可提供蝕刻去除下包覆層且最小線寬可縮減至130 nm、上包覆層為二氧化矽且其中包含一層氮化矽、下包覆層為空氣的製程條件下,針對1554 nm之TE極化入射之光纖模態場的耦合效率為86.2%,1-dB頻寬約為37 nm,3-dB頻寬約為71 nm。元件四 (二維等價):考量最小線寬為150 nm為製程限制、上包覆層若為二氧化矽且其中包含一層氮化矽、下包覆層為二氧化矽的製程條件下,針對1550 nm之TE極化入射之光纖模態場的耦合效率為85%,1-dB頻寬約為39 nm,3-dB頻寬約為71 nm。 以二維等價命題得到的兩組不同製程條件之優化設計之後,本論文進一步透過有限差分特徵模態求解器 (Finite Difference Eigenmode) 的輔助,將二維等價命題轉換回三維結構之命題,其各小區塊之寬度方向採用不同填空比之次波長光柵結構取代,並使其等效介質折射率等同於二維等價命題之優化後的介質折射率,最後採用三維時域有限差分法 (3-D FDTD) 模擬此完整的三維光柵耦合器結構之耦合效率。結果顯示兩組採用次波長光柵之三維光柵耦合器依然可以得到高耦合效率。元件三(三維次波長光柵):下包覆層空氣,針對1554 nm之TE極化入射之光纖模態場的耦合效率為83.2%,1-dB頻寬約 40 nm且3-dB頻寬為76 nm。元件四(三維次波長光柵):下包覆層為二氧化矽,針對1550 nm之TE極化入射之光纖模態場的耦合效率為其峰值耦合效率約為83%,1-dB頻寬為 43 nm且3-dB頻寬為74 nm。 本論文亦針對光纖對準誤差及製程誤差容忍度進行分析,對兩種元件設計而言,當光纖入射角度朝x方向變化時,若Δθx = +5°,其頻譜藍移約30 nm,若Δθx = -5°,其頻譜紅移約40 nm,原峰值波長維持44%以上的耦合效率。在兩種元件設計中,當光纖入射角度朝z方向變化,不論是正方向或負方向頻譜皆為藍移現象,元件三之頻譜藍移約30 nm,元件四頻譜藍移約50 nm,若Δθz = ±5°,效率降至約34%。在兩種元件設計中,當光纖入射位置在x方向平移ΔPx = ±2 μm,原峰值波長可維持在65%以上的耦合效率;入射位置在z方向平移 ΔPz = ±2 μm,原峰值波長仍可維持80%以上的耦合效率。對元件三而言,製程誤差若造成光柵週期在x方向有些微的縮放時,若ΔΛx = +5 nm,其頻譜紅移約38 nm,原本的峰值效率會下降至42%,若ΔΛx = -5 nm時,其頻譜紅移約30 nm,原本的峰值效率會下降至54%;對元件四而言,若ΔΛx = +5 nm,其頻譜紅移約35 nm,原本的峰值效率會下降至40%,若ΔΛx = -5 nm,其頻譜藍移約33 nm,原本的峰值效率會下降至42%。在兩種元件中,若光柵在z方向上之次波長光柵的週期有些微的縮放時,會有下列影響,若ΔΛz = ±5 nm,效率仍能維持81%以上的效率,而頻譜偏移5 nm,此誤差變化對效率影響甚小。製程誤差若是造成總體光柵結構在厚度方向d的些微縮放,對元件三而言,其影響如下,若Δd = +20 nm,其頻譜紅移約29 nm,原本的峰值效率會下降至43%,若Δd = -20 nm,其頻譜藍移約32 nm,原本的峰值效率會下降至48%;對元件四而言,若Δd = +20 nm,其頻譜紅移約34 nm,若Δd = -20 nm,其頻譜藍移約32 nm,原本的峰值效率皆會下降至45%。 與文獻中相似的高效率光柵耦合器相比,若文獻中的光柵耦合器最小線寬為100 nm以上且沒有額外在絕緣層上添加布拉格反射夾層,本論文所提出的兩組優化設計元件的耦合效率皆比文獻高5~10%,且本論文所提出的元件四完全符合IMEC矽光子製程代工廠目前的製程技術,具有極佳的可製造性。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:05:36Z (GMT). No. of bitstreams: 1
U0001-0701202219145900.pdf: 10551454 bytes, checksum: def2cccd726433853ded4e4f0ecc134c (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents致謝 i 摘要 ii ABSTRACT iv 目錄 vi 圖目錄 viii 表目錄 xiv 第一章 序論 1 1.1 背景介紹 1 1.2 研究動機 3 1.3 論文架構 4 第二章 研究理論背景 5 2.1 光柵耦合原理 5 2.2 數值模擬分析 8 2.2.1 馬克斯威爾方程式(Maxell,s Equations) 8 2.2.2 有限差分特徵模態求解器(Finite Difference Eigenmode,FDE) 9 2.2.3 時域有限差分法(Finite-Difference Time-Domain,FDTD) 10 2.3 粒子群優化演算法(Particle Swarm Optimization Algorithm,PSOA) 13 第三章 文獻回顧 15 3.1 使用漸變週期做光柵耦合器優化設計 15 3.2 使用二元鋸齒形狀做光柵耦合器優化設計 18 3.3 使用L型做光柵耦合器優化設計 22 第四章 基於粒子群演算法優化符合IMEC製程限制的高效率光柵耦合器設計 26 4.1 元件設計方法 26 4.2 單階段與多階段蝕刻光柵之間的二維模擬效能差異 34 4.3 包覆層對效能的影響 40 4.3.1 元件一之二維模擬效能 41 4.3.2 元件二之二維模擬效能 45 4.3.3 元件三之二維模擬效能 49 4.3.4 元件四之二維模擬效能 53 4.3.5 所有元件效能結果比較 58 4.4 藉由FDE輔助將二維結構轉換為三維次波長光柵結構 59 4.5 元件三之三維模擬效能 63 4.6 元件四之三維模擬效能 67 4.7 與其他文獻相似元件效能比較 71 第五章光纖對準誤差及製程誤差容忍度分析 73 5.1 光纖入射角度θ誤差±5°對效能的影響 73 5.2 光纖入射位置P0偏移±2 μm對效能的影響 78 5.3 光柵週期Λ偏移±5 nm對效能的影響 83 5.4 蝕刻深度d誤差±20 nm對效能的影響 88 第六章 結論與未來展望 92 6.1 結論 92 6.2 未來展望 93 參考資料 95
dc.language.isozh-TW
dc.subject矽光子學zh_TW
dc.subject高效率光柵耦合器zh_TW
dc.subject最小線寬zh_TW
dc.subject次波長光柵耦合器zh_TW
dc.subject三階段蝕刻zh_TW
dc.subjectL 型光柵zh_TW
dc.subjectIMECzh_TW
dc.subject絕緣上矽zh_TW
dc.subjectSMF-28zh_TW
dc.subjectSubwavelength grating coupleren
dc.subjectL-Shaped gratingen
dc.subjectIMECen
dc.subjectHigh efficiency grating coupleren
dc.subjectMinimum feature sizesen
dc.subjectThree-step etchingen
dc.subjectSilicon photonicsen
dc.subjectSMF-28en
dc.subjectSOIen
dc.title利用粒子群優化演算法設計符合IMEC製程限制的三階段高效率光柵耦合器zh_TW
dc.titleDesign of Three-Stage High-Efficiency Grating Coupler Compatible with IMEC Fabrication Rules Using Particle Swarm Optimization Algorithmen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭惠心(Hsin-Tsai Liu),林晃巖(Chih-Yang Tseng)
dc.subject.keyword高效率光柵耦合器,最小線寬,次波長光柵耦合器,三階段蝕刻,L 型光柵,IMEC,絕緣上矽,SMF-28,矽光子學,zh_TW
dc.subject.keywordHigh efficiency grating coupler,Minimum feature sizes,Subwavelength grating coupler,Three-step etching,L-Shaped grating,IMEC,SOI,SMF-28,Silicon photonics,en
dc.relation.page99
dc.identifier.doi10.6342/NTU202200025
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-02-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
dc.date.embargo-lift2023-01-01-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0701202219145900.pdf10.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved