Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8186
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor席行正(Hsing-Cheng Hsi)
dc.contributor.authorYi-Cheng Panen
dc.contributor.author潘奕丞zh_TW
dc.date.accessioned2021-05-20T00:49:44Z-
dc.date.available2020-08-21
dc.date.available2021-05-20T00:49:44Z-
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citationAmini, A.; Kim, Y.; Zhang, J.; Boyer, T.; Zhang, Q., Environmental and economic sustainability of ion exchange drinking water treatment for organics removal. Journal of cleaner production 2015, 104, 413-421.
Chen, Z.; Ngo, H. H.; Guo, W., A critical review on sustainability assessment of recycled water schemes. Science of the Total Environment 2012, 426, 13-31.
Corominas, L.; Foley, J.; Guest, J. S.; Hospido, A.; Larsen, H.; Morera, S.; Shaw, A., Life cycle assessment applied to wastewater treatment: state of the art. Water research 2013, 47 (15), 5480-5492.
Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Hischier, R.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Wernet, G.; Nemecek, T. Overview and methodology. Data v2. 0 (2007). Ecoinvent report No. 1; Ecoinvent Centre: 2007.
Fu, J.; Hu, N.; Yang, Z.; Wang, L., Experimental study on zero liquid discharge (ZLD) of FGD wastewater from a coal-fired power plant by flue gas exhausted heat. Journal of water process engineering 2018, 26, 100-107.
Garcia, X.; Pargament, D., Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making. Resour Conserv Recy 2015, 101, 154-166.
Garfí, M.; Flores, L.; Ferrer, I., Life cycle assessment of wastewater treatment systems for small communities: activated sludge, constructed wetlands and high rate algal ponds. Journal of Cleaner Production 2017, 161, 211-219.
Garrido-Baserba, M.; Molinos-Senante, M.; Abelleira-Pereira, J.; Fdez-Güelfo, L.; Poch, M.; Hernández-Sancho, F., Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems. Journal of Cleaner Production 2015, 107, 410-419.
Gaterell, M.; Griffin, P.; Lester, J., Evaluation of environmental burdens associated with sewage treatment processes using life cycle assessment techniques. Environmental technology 2005, 26 (3), 231-250.
Gingerich, D. B.; Grol, E.; Mauter, M. S., Fundamental challenges and engineering opportunities in flue gas desulfurization wastewater treatment at coal fired power plants. Environmental Science: Water Research Technology 2018, 4 (7), 909-925.
Hernández-Padilla, F.; Margni, M.; Noyola, A.; Guereca-Hernandez, L.; Bulle, C., Assessing wastewater treatment in Latin America and the Caribbean: Enhancing life cycle assessment interpretation by regionalization and impact assessment sensibility. Journal of Cleaner Production 2017, 142, 2140-2153.
Hospido, A.; Sanchez, I.; Rodriguez-Garcia, G.; Iglesias, A.; Buntner, D.; Reif, R.; Moreira, M. T.; Feijoo, G., Are all membrane reactors equal from an environmental point of view? Desalination 2012, 285, 263-270.
Huang, Y. H.; Peddi, P. K.; Tang, C.; Zeng, H.; Teng, X., Hybrid zero-valent iron process for removing heavy metals and nitrate from flue-gas-desulfurization wastewater. Separation and Purification Technology 2013, 118, 690-698.
Huijbregts, M.; Steinmann, Z.; Elshout, P.; Stam, G.; Verones, F.; Vieira, M.; Hollander, A.; Zijp, M.; Van Zelm, R., ReCiPe 2016: A harmonized life cycle impact assessment method at midpoint and endpoint level Report I: Characterization. 2016.
Ioannou‐Ttofa, L.; Foteinis, S.; Chatzisymeon, E.; Michael‐Kordatou, I.; Fatta‐Kassinos, D., Life cycle assessment of solar‐driven oxidation as a polishing step of secondary‐treated urban effluents. Journal of Chemical Technology Biotechnology 2017, 92 (6), 1315-1327.
Li, L.; Zhu, F.; Deng, P.; Jia, Y.; Kong, L.; Deng, B.; Li, K.; Liu, D., Separation and recycling of chloride salts from electrolytic titanium powders by vacuum distillation. Separation and Purification Technology 2020, 236, 116282.
Liu, G.-H.; Che, R.; Zhao, Q.; Ye, Z., Removal of highly toxic components from hexanitrobibenzil wastewater by vacuum distillation. Desalination and Water Treatment 2016, 57 (10), 4469-4475.
Mao, W.; Ma, H.; Wang, B., Performance of batch vacuum distillation process with promoters on coke-plant wastewater treatment. Chemical Engineering Journal 2010, 160 (1), 232-238.
Niero, M.; Pizzol, M.; Bruun, H. G.; Thomsen, M., Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. Journal of cleaner production 2014, 68, 25-35.
Opher, T.; Friedler, E., Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse. Journal of environmental management 2016, 182, 464-476.
Raluy, R.; Serra, L.; Uche, J., Life cycle assessment of desalination technologies integrated with renewable energies. Desalination 2005, 183 (1-3), 81-93.
Riffe, M. R.; Heimbigner, B. E.; Braunstein, K. A., Wastewater Treatment for FGD Purge Streams. Citeseer: 2008.
Scheffler, T. B.; Leao, A. J., Fabrication of polymer film heat transfer elements for energy efficient multi-effect distillation. 2008, 222 (1-3), 696-710.
Sustainability, P., SimaPro. PRé Sustainability, Amersfoort, The Netherlands, accessed June 2014, 5, 2014.
Tangsubkul, N.; Beavis, P.; Moore, S.; Lundie, S.; Waite, T., Life cycle assessment of water recycling technology. Water resources management 2005, 19 (5), 521-537.
Teodosiu, C.; Barjoveanu, G.; Sluser, B. R.; Popa, S. A. E.; Trofin, O., Environmental assessment of municipal wastewater discharges: a comparative study of evaluation methods. The International Journal of Life Cycle Assessment 2016, 21 (3), 395-411.
Torres, S.; Acien, G.; García-Cuadra, F.; Navia, R., Direct transesterification of microalgae biomass and biodiesel refining with vacuum distillation. Algal Research 2017, 28, 30-38.
Van Hoof, G.; Vieira, M.; Gausman, M.; Weisbrod, A., Indicator selection in life cycle assessment to enable decision making: issues and solutions. The International Journal of Life Cycle Assessment 2013, 18 (8), 1568-1580.
Zhao, Q.; Ye, Z.; Zhang, M., Treatment of 2, 4, 6-trinitrotoluene (TNT) red water by vacuum distillation. Chemosphere 2010, 80 (8), 947-950.
Zhengguang, T.; Yongjun, M., Preliminary analysis on treatment of wastewater from limestone-gypsum wet flue gas desulfurization process. Shanghai Environmental Sciences 2001, 20 (12), 609-610.
Zi-Qiang, L.; Jiu-Ju, C.; Wen-Qiang, S.; Chao, L., Application of Vacuum Distillation to Treat Wastewater Coming from Hot Rolling Process. Journal of Residuals Science Technology 2016, 13.
許桓瑜(2014):《都市污水處理廠之生命週期評估》。國立臺灣大學工學院環境工程學研究所,碩士論文。 [Shiu, Huan-Yu (2014). Life Cycle Assessment of a Municipal Wastewater Treatment Plant. Unpublished Master Thesis, National Taiwan University.]
蕭燕澤(2019):《以減壓蒸餾技術處理含銅廢水與再利用於活性碳改質創新技術研發》。國立臺灣大學工學院環境工程學研究所,碩士論文。 [Xiao, Yan-Ze (2019). Treatment of copper-containing wastewater by vacuum distillation and reuse of waste copper for preparing novel activated carbon. Unpublished Master Thesis, National Taiwan University.]
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8186-
dc.description.abstract當燃煤電廠發電時,需通過排煙脫硫程序對產生的硫氧化物進行脫硫。此過程產生的脫硫廢水含有高濃度的硫酸鹽、氯化物、硼,和金屬化合物,包括潛在的有毒重金屬。對應於越來越嚴苛的放流水標準,更新穎的脫硫廢水處理技術有其設置必要性。
本研究使用了商用NanoPlus Tech NRS 250型減壓蒸餾裝置 (NRS-250)來處理台灣某燃煤電廠的脫硫廢水。減壓蒸餾是一種低溫,低壓的水分離過程,可以直接將廢水蒸餾並冷凝回收。通過降低操作壓力,真空蒸餾設備可以消耗更少的能量,並在較低的水沸點(35-55 oC)進行蒸餾。在固液分離過程之後,剩餘的殘留固體(以石膏為主體)可以用於回收或後續處置。比較處理前後的重金屬濃度,去除效率高達95%,並且達到大於90%的除硼效率。此外NRS裝置去除了98%的氯化物,氯離子濃度從1,900 mg / L降低到小於25 mg / L,使回收水可以循環至排煙脫硫設備再利用。
本研究使用SimaPro8.5軟體和ReCiPe(H)中點衝擊方法,通過比較原料使用,能資源使用和廢棄物產生,以處理1m3脫硫廢水為功能單位對該設備進行生命週期評估。在生命週期評估結果顯示海洋生態毒性是最重要的衝擊類別,在不同生命週期階段中,NRS設備的使用階段在所有衝擊類別佔有最大影響,其次是製造與廢棄物處置階段,而運輸階段的影響很小。
最後,本研究評估了在印刷電路板工廠中使用NRS設備的經濟效益。其額定處理量為1 CMD廢酸,在五年的服務年限中,NRS-250設備的年收益為新台幣580萬元,淨現值為新台幣1,897萬元。內部投資報酬率 (IRR) 達49%,高於所選擇的折現率(7%),顯示了真空蒸餾進行廢酸處理的經濟可行性。
zh_TW
dc.description.abstractWhen a coal-fired power plant produces electricity, the generated sulfur oxides must be desulfurized through the flue-gas desulfurization (FGD) process. This process produces FGD wastewater containing high concentrations of sulfate, chloride, boron, and metal compounds, including potential toxic metals.
Vacuum distillation is a low-temperature, low-pressure water separation process that can distill and condense water directly from the raw FGD wastewater. By successfully decreasing the operating pressure, the vacuum distillation equipment can distill water at a lower boiling points of water (between 35-55 oC), which consumes much less energy. After this solid-liquid separation process, much fewer residual solids on a per mass basis, mainly as gypsum, is left for subsequent disposal or recycling.
This study used a commercial NanoPlus Tech NRS model 250 vacuum distillation device (NRS) for treating FGD wastewater in a coal-fired power plant in Taiwan. By comparing the concentrations of heavy metals before and after treatment, the removal efficiency of the metals was up to 95%. The distilled water can be successfully recycled with > 90% boron removal efficiency in all scenarios. Furthermore, NRS removed 98% of the chlorides, reducing chloride content from 1,900 mg/L to less than 25 mg/L, and the remaining water could be recycled back to the FGD units.
Additionally, a life cycle assessment (LCA) of this device was performed using the software SimaPro8.5 and ReCiPe (H) midpoint method by comparing raw material use, energy use, chemical input, and waste generation. In the LCA, marine ecotoxicity is a significant impact category. The use phase of the NRS device displays the highest impact across all categories, followed by the manufacturing and the disposal phases, while the transportation phase had only a slight effect.
For comparison, an economic evaluation for a case study using NRS in a printed circuit board factory was also addressed. The rated capacity was 1 CMD waste acid. The NRS-250 device showed benefits of NTD 5.8 million per year, and revenues of NTD 18.97 million at present value. The internal return rate (IRR) accounts for 49%, showing viability in the application of vacuum distillation in waste acid treatment, as the IRR is higher than the interest rate chosen (r = 7%).
en
dc.description.provenanceMade available in DSpace on 2021-05-20T00:49:44Z (GMT). No. of bitstreams: 1
U0001-1608202002280100.pdf: 2688359 bytes, checksum: 1d93674ac830b9ad5db4d99ecf74636f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 I
Abstract III
Contents V
List of figures IX
List of tables XI
Chapter.1 Introduction 1
1.1 Motivation 1
1.2 Research objectives 2
Chapter.2 Literature Review 3
2.1 FGD wastewater 3
2.1.1 The source of FGD wastewater 3
2.1.2 Characteristics of FGD wastewater 4
2.1.3 Conventional FGD wastewater treatment techniques 6
2.2 Vacuum distillation technique 7
2.3 Life cycle assessment 9
2.3.1 Introduction of Life cycle assessment 9
2.3.2 Life cycle assessment of wastewater treatment 10
2.4 Cost-benefit analysis 13
Chapter.3 Materials and Methods 15
3.1 Experimental design 15
3.2 Experimental equipment, analytical instruments, and chemical drugs 17
3.3 Treatment of FGD wastewater by vacuum distillation 18
3.3.1 Experimental procedure 18
3.3.1 Analysis of distillate 19
3.3.2 Analysis of solid residue 20
3.4 Pilot-test in a coal-fired power plant 21
3.4.1 NRS equipment operation process 22
3.4.2 Equipment list and energy demand 26
3.5 Life cycle assessment 27
3.5.1 Goal and scope definition 27
3.5.2 Life cycle inventory 30
3.5.3 Life cycle impact assessment method 33
3.5.4 Sensitivity analysis 34
3.6 Case study in a printed circuit board factory 34
3.6.1 Cost-benefit evaluation 35
3.6.2 Method of cost-benefit analysis 40
3.6.3 Break-even analysis 42
3.6.4 Sensitivity analysis 43
Chapter.4 Results and Discussion 44
4.1 Laboratory-scale test 44
4.1.1 Analysis of distillate 44
4.1.2 Analysis of solid residue 48
4.2 Pilot-scale test 50
4.2.1 Analysis of distillate 52
4.2.2 Analysis of solid residue 54
4.2.3 Toxicity characteristic leaching procedure 55
4.2.4 Analysis of distillate with post-treatment 55
4.3 Life cycle assessment 56
4.3.1 Life cycle impact assessment 56
4.3.2 Life cycle improvement analysis and interpretation 62
4.3.3 Sensitivity analysis 64
4.4 Case study in a printed circuit board factory 65
4.4.1 Cost-benefit evaluation 65
4.4.2 Break-even analysis 67
4.4.3 Sensitivity analysis 67
Chapter.5 Conclusions and Suggestions 70
5.1 Conclusions 70
5.2 Suggestions 73
References 75
dc.language.isoen
dc.title利用減壓蒸餾設備進行脫硫廢水處理以及其生命週期評估zh_TW
dc.titleWastewater Treatment and Life Cycle Assessment of Using a Novel Vacuum Distillation System for a Flue-Gas Desulfurization Processen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor闕蓓德(Pei-Te Chiueh)
dc.contributor.oralexamcommittee馬鴻文(Hwong-Wen Ma),胡憲倫(Hsien-Lun Hu)
dc.subject.keyword廢水處理,排煙脫硫,真空蒸餾,生命週期評估,成本效益分析,zh_TW
dc.subject.keywordwastewater treatment,flue-gas desulfurization,vacuum distillation,life cycle assessment,cost-benefit analysis,en
dc.relation.page77
dc.identifier.doi10.6342/NTU202003558
dc.rights.note同意授權(全球公開)
dc.date.accepted2020-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1608202002280100.pdf2.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved