Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81858
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施路易(Ludvig Löwemark)
dc.contributor.authorBor-Jiun Jongen
dc.contributor.author鍾伯均zh_TW
dc.date.accessioned2022-11-25T03:05:13Z-
dc.date.available2023-07-31
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-07-14
dc.identifier.citationAagaard, K., and E. C. Carmack, 1989, The role of sea ice and other fresh water in the Arctic circulation: Journal of Geophysical Research: Oceans, v. 94, p. 14485-14498. Aagaard, K., L. Coachman, and E. Carmack, 1981, On the halocline of the Arctic Ocean: Deep Sea Research Part A. Oceanographic Research Papers, v. 28, p. 529-545. Alling, V., D. Porcelli, C.-M. Mörth, L. G. Anderson, L. Sanchez-Garcia, Ö. Gustafsson, P. Andersson, and C. Humborg, 2012, Degradation of terrestrial organic carbon, primary production and out-gassing of CO2 in the Laptev and East Siberian Seas as inferred from δ13C values of DIC: Geochimica et Cosmochimica Acta, v. 95, p. 143-159. Bahr, A., J. Hoffmann, J. Schönfeld, M. W. Schmidt, D. Nürnberg, S. J. Batenburg, and S. Voigt, 2018, Low-latitude expressions of high-latitude forcing during Heinrich Stadial 1 and the Younger Dryas in northern South America: Global and Planetary Change, v. 160, p. 1-9. Barker, S., M. Greaves, and H. Elderfield, 2003, A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry: Geochemistry, Geophysics, Geosystems, v. 4. Bauch, H., H. Erlenkeuser, D. Bauch, T. Müller-Lupp, and E. Taldenkova, 2004, Stable oxygen and carbon isotopes in modern benthic foraminifera from the Laptev Sea shelf: implications for reconstructing proglacial and profluvial environments in the Arctic: Marine Micropaleontology, v. 51, p. 285-300. Bauch, H. A., T. Mueller-Lupp, E. Taldenkova, R. F. Spielhagen, H. Kassens, P. M. Grootes, J. Thiede, J. Heinemeier, and V. Petryashov, 2001, Chronology of the Holocene transgression at the North Siberian margin: Global and Planetary Change, v. 31, p. 125-139. Bertram, M. A., and J. P. Cowen, 1997, Morphological and compositional evidence for biotic precipitation of marine barite: Journal of Marine Research, v. 55, p. 577-593. Bishop, J. K., 1988, The barite-opal-organic carbon association in oceanic particulate matter: Nature, v. 332, p. 341-343. Broecker, W. S., 1997, Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance?: Science, v. 278, p. 1582-1588. Cao, Z., C. Siebert, E. C. Hathorne, M. Dai, and M. Frank, 2016, Constraining the oceanic barium cycle with stable barium isotopes: Earth and Planetary Science Letters, v. 434, p. 1-9. Chapin, F. S., M. Sturm, M. C. Serreze, J. P. McFadden, J. Key, A. H. Lloyd, A. McGuire, T. S. Rupp, A. H. Lynch, and J. P. Schimel, 2005, Role of land-surface changes in Arctic summer warming: science, v. 310, p. 657-660. Chiu, P.-Y., 2016, Radiocarbon dating Arctic deep marine sediment to refine the usage of Mn variations as a stratigraphic tool, National Taiwan University. Chiu, P.-Y., W.-S. Chao, R. Gyllencreutz, M. Jakobsson, H.-C. Li, L. Löwemark, and M. O'Regan, 2017, New constraints on Arctic Ocean Mn stratigraphy from radiocarbon dating on planktonic foraminifera: Quaternary International, v. 447, p. 13-26. Clark, P. U., N. G. Pisias, T. F. Stocker, and A. J. Weaver, 2002, The role of the thermohaline circulation in abrupt climate change: Nature, v. 415, p. 863-869. Cronin, T. M., L. Gemery, W. Briggs Jr, M. Jakobsson, L. Polyak, and E. Brouwers, 2010, Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy: Quaternary Science Reviews, v. 29, p. 3415-3429. Davis, C. V., J. S. Fehrenbacher, T. M. Hill, A. D. Russell, and H. J. Spero, 2017, Relationships Between Temperature, pH, and Crusting on Mg/Ca Ratios in Laboratory-GrownNeogloboquadrinaForaminifera: Paleoceanography, v. 32, p. 1137-1152. Dehairs, F., R. Chesselet, and J. Jedwab, 1980, Discrete suspended particles of barite and the barium cycle in the open ocean: Earth and Planetary Science Letters, v. 49, p. 528-550. Dickens, G. R., 2001, Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir: Geochimica et Cosmochimica Acta, v. 65, p. 529-543. Dickens, G. R., T. Fewless, E. Thomas, and T. J. Bralower, 2003, Excess barite accumulation during the Paleocene-Eocene Thermal Maximum: Massive input of dissolved barium from seafloor gas hydrate reservoirs: SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA, p. 11-24. Elderfield, H., and G. Ganssen, 2000, Past temperature and δ 18 O of surface ocean waters inferred from foraminiferal Mg/Ca ratios: Nature, v. 405, p. 442-445. Erlenkeuser, H., 1995, Stable carbon isotope ratios in the waters of the Laptev Sea/Sept. 94: Ber. Polarforsch, v. 176, p. 170-177. Erlenkeuser, H., H. Cordt, J. Simstich, D. Bauch, and R. Spielhagen, 2003, DIC stable carbon isotope pattern in the surface waters of the southern Kara Sea, Sep. 2000: Siberian River Run-off in the Kara Sea: Characterisation, Quantification, Variability and Environmental Significance, Proc. Mar. Sci, p. 91-110. Evans, D., R. Bhatia, H. Stoll, and W. Müller, 2015, LA‐ICPMS Ba/Ca analyses of planktic foraminifera from the B ay of B engal: Implications for late P leistocene orbital control on monsoon freshwater flux: Geochemistry, Geophysics, Geosystems, v. 16, p. 2598-2618. Galimov, E., L. Kodina, O. Stepanets, and G. Korobeinik, 2006, Biogeochemistry of the Russian Arctic. Kara Sea: Research results under the SIRRO project, 1995–2003: Geochemistry International, v. 44, p. 1053-1104. Ganeshram, R. S., R. François, J. Commeau, and S. L. Brown-Leger, 2003, An experimental investigation of barite formation in seawater: Geochimica et Cosmochimica Acta, v. 67, p. 2599-2605. Gonzalez-Muñoz, M., F. Martinez-Ruiz, F. Morcillo, J. Martin-Ramos, and A. Paytan, 2012, Precipitation of barite by marine bacteria: a possible mechanism for marine barite formation: Geology, v. 40, p. 675-678. González-Munoz, M. T., B. Fernández-Luque, F. Martínez-Ruiz, K. B. Chekroun, J. M. Arias, M. Rodríguez-Gallego, M. Martínez-Canamero, C. De Linares, and A. Paytan, 2003, Precipitation of barite by Myxococcus xanthus: possible implications for the biogeochemical cycle of barium: Applied and Environmental Microbiology, v. 69, p. 5722-5725. Graversen, R. G., T. Mauritsen, M. Tjernstrom, E. Kallen, and G. Svensson, 2008, Vertical structure of recent Arctic warming: Nature, v. 451, p. 53-6. Greco, M., L. Jonkers, K. Kretschmer, J. Bijma, and M. Kucera, 2019, Variable habitat depth of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentration: Biogeosciences Discussions, p. 1-30. Guay, C., and K. K. Falkner, 1998, A survey of dissolved barium in the estuaries of major Arctic rivers and adjacent seas: Continental Shelf Research, v. 18, p. 859-882. Guay, C. K., and K. K. Falkner, 1997, Barium as a tracer of Arctic halocline and river waters: Deep Sea Research Part II: Topical Studies in Oceanography, v. 44, p. 1543-1569. Hörner, T., R. Stein, K. Fahl, and D. Birgel, 2016, Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean)–A high-resolution biomarker study: Quaternary Science Reviews, v. 143, p. 133-149. Hönisch, B., K. A. Allen, A. D. Russell, S. M. Eggins, J. Bijma, H. J. Spero, D. W. Lea, and J. Yu, 2011, Planktic foraminifers as recorders of seawater Ba/Ca: Marine Micropaleontology, v. 79, p. 52-57. Haine, T. W. N., B. Curry, R. Gerdes, E. Hansen, M. Karcher, C. Lee, B. Rudels, G. Spreen, L. de Steur, K. D. Stewart, and R. Woodgate, 2015, Arctic freshwater export: Status, mechanisms, and prospects: Global and Planetary Change, v. 125, p. 13-35. Hall, J. M., and L. H. Chan, 2004, Ba/Ca inNeogloboquadrina pachydermaas an indicator of deglacial meltwater discharge into the western Arctic Ocean: Paleoceanography, v. 19, p. n/a-n/a. Hanslik, D., M. Jakobsson, J. Backman, S. Björck, E. Sellén, M. O’Regan, E. Fornaciari, and G. Skog, 2010, Quaternary Arctic Ocean sea ice variations and radiocarbon reservoir age corrections: Quaternary Science Reviews, v. 29, p. 3430-3441. Hendry, K. R., K. M. Pyle, G. Barney Butler, A. Cooper, A. Fransson, M. Chierici, M. J. Leng, A. Meyer, and P. A. Dodd, 2018, Spatiotemporal Variability of Barium in Arctic Sea‐Ice and Seawater: Journal of Geophysical Research: Oceans, v. 123, p. 3507-3522. Hillaire-Marcel, C., A. De Vernal, L. Polyak, and D. Darby, 2004, Size-dependent isotopic composition of planktic foraminifers from Chukchi Sea vs. NW Atlantic sediments—implications for the Holocene paleoceanography of the western Arctic: Quaternary Science Reviews, v. 23, p. 245-260. Holmes, R. M., J. W. McClelland, B. J. Peterson, I. A. Shiklomanov, A. I. Shiklomanov, A. V. Zhulidov, V. V. Gordeev, and N. N. Bobrovitskaya, 2002, A circumpolar perspective on fluvial sediment flux to the Arctic ocean: Global Biogeochemical Cycles, v. 16, p. 45-1-45-14. Holmes, R. M., A. I. Shiklomanov, A. Suslova, M. Tertiakov, J. W. McClelland, R. G. M. Spencer, and S. E. Tank, 2018, 2018: River Discharge, Arctic Report Card, https://arctic.noaa.gov/Report-Card. Horner, T. J., C. W. Kinsley, and S. G. Nielsen, 2015, Barium-isotopic fractionation in seawater mediated by barite cycling and oceanic circulation: Earth and Planetary Science Letters, v. 430, p. 511-522. Howell, P., N. Pisias, J.Ballance, J. Baughman, and L. Ochs, 2006, ARAND Time-Series Analysis Software, Brown University, Providence RI. Hsieh, Y.-T., and G. M. Henderson, 2017, Barium stable isotopes in the global ocean: Tracer of Ba inputs and utilization: Earth and Planetary Science Letters, v. 473, p. 269-278. Iizuka, Y., 2012, Electron microprobe study of otolith: migratory behavior and habitat of three major temperate species of eels: JEOL News, v. 47, p. 33-50. Jakobsson, M., R. Løvlie, H. Al-Hanbali, E. Arnold, J. Backman, and M. Mörth, 2000, Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology: Geology, v. 28, p. 23-26. Jonkers, L., B. Buse, G. J. A. Brummer, and I. R. Hall, 2016, Chamber formation leads to Mg/Ca banding in the planktonic foraminifer Neogloboquadrina pachyderma: Earth and Planetary Science Letters, v. 451, p. 177-184. Jonkers, L., P. Jiménez-Amat, P. G. Mortyn, and G.-J. A. Brummer, 2013, Seasonal Mg/Ca variability of N. pachyderma (s) and G. bulloides: Implications for seawater temperature reconstruction: Earth and Planetary Science Letters, v. 376, p. 137-144. Knies, J., M. Hald, H. Ebbesen, U. Mann, and C. Vogt, 2003, A deglacial–middle Holocene record of biogenic sedimentation and paleoproductivity changes from the northern Norwegian continental shelf: Paleoceanography, v. 18. Knies, J., N. Nowaczyk, C. Müller, C. Vogt, and R. Stein, 2000, A multiproxy approach to reconstruct the environmental changes along the Eurasian continental margin over the last 150 000 years: Marine Geology, v. 163, p. 317-344. Knies, J., C. Vogt, and R. Stein, 1998, Late Quaternary growth and decay of the Svalbard/Barents Sea ice sheet and paleoceanographic evolution in the adjacent Arctic Ocean: Geo-Marine Letters, v. 18, p. 195-202. Kozdon, R., T. Ushikubo, N. T. Kita, M. Spicuzza, and J. W. Valley, 2009, Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real vs. apparent vital effects by ion microprobe: Chemical Geology, v. 258, p. 327-337. Lammers, R. B., A. I. Shiklomanov, C. J. Vörösmarty, B. M. Fekete, and B. J. Peterson, 2001, Assessment of contemporary Arctic river runoff based on observational discharge records: Journal of Geophysical Research: Atmospheres, v. 106, p. 3321-3334. Lea, D. W., and H. J. Spero, 1992, Experimental determination of barium uptake in shells of the planktonic foraminifera Orbulina universa at 22 C: Geochimica et Cosmochimica Acta, v. 56, p. 2673-2680. Lea, D. W., and H. J. Spero, 1994, Assessing the reliability of paleochemical tracers: Barium uptake in the shells of planktonic foraminifera: Paleoceanography, v. 9, p. 445-452. Li, W. K., F. A. McLaughlin, C. Lovejoy, and E. C. Carmack, 2009, Smallest algae thrive as the Arctic Ocean freshens: Science, v. 326, p. 539-539. Livsey, C. M., R. Kozdon, D. Bauch, G. J. A. Brummer, L. Jonkers, I. Orland, T. M. Hill, and H. J. Spero, 2020, High‐Resolution Mg/Ca and δ18O Patterns in Modern Neogloboquadrina pachyderma From the Fram Strait and Irminger Sea: Paleoceanography and Paleoclimatology, v. 35. Lo, L., C.-C. Shen, C.-J. Lu, Y.-C. Chen, C.-C. Chang, K.-Y. Wei, D. Qu, and M. K. Gagan, 2014, Determination of element/Ca ratios in foraminifera and corals using cold-and hot-plasma techniques in inductively coupled plasma sector field mass spectrometry: Journal of Asian Earth Sciences, v. 81, p. 115-122. Macdonald, R., T. Harner, J. Fyfe, H. Loeng, and T. Weingartner, 2003, The influence of global change on contaminant pathways to, within, and from the arctic. AMAP Assessment Report: Arctic Monitoring Assessment Program, Oslo, Norway. Marotzke, J., 2000, Abrupt climate change and thermohaline circulation: Mechanisms and predictability: Proceedings of the National Academy of Sciences, v. 97, p. 1347-1350. Martin, J.-M., and M. Meybeck, 1979, Elemental mass-balance of material carried by major world rivers: Marine chemistry, v. 7, p. 173-206. McClelland, J. W., S. J. Déry, B. J. Peterson, R. M. Holmes, and E. F. Wood, 2006, A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century: Geophysical Research Letters, v. 33. Miller, G. H., J. Brigham-Grette, R. B. Alley, L. Anderson, H. A. Bauch, M. Douglas, M. Edwards, S. Elias, B. Finney, and J. J. Fitzpatrick, 2010, Temperature and precipitation history of the Arctic: Quaternary Science Reviews, v. 29, p. 1679-1715. Millo, C., M. Sarnthein, H. Erlenkeuser, P. M. Grootes, and N. Andersen, 2005, Methane-induced early diagenesis of foraminiferal tests in the southwestern Greenland Sea: Marine Micropaleontology, v. 58, p. 1-12. Monnin, C., C. Jeandel, T. Cattaldo, and F. Dehairs, 1999, The marine barite saturation state of the world's oceans: Marine Chemistry, v. 65, p. 253-261. National Snow and Ice Data Center, Sea Ice Index: extent, Concentration, and Concentration Anomalies, https://nsidc.org/data/seaice_index/bist. National Snow and Ice Data Center, 2020, Ocean Waves in November—in the Arctic, http://nsidc.org/arcticseaicenews/. Nuernberg, D., 1995, Magnesium in tests of Neogloboquadrina pachyderma sinistral from high northern and southern latitudes: The Journal of Foraminiferal Research, v. 25, p. 350-368. Pados, T., and R. F. Spielhagen, 2014, Species distribution and depth habitat of recent planktic foraminifera in Fram Strait, Arctic Ocean: Polar Research, v. 33, p. 22483. Pagani, M., N. Pedentchouk, M. Huber, A. Sluijs, S. Schouten, H. Brinkhuis, J. S. S. Damsté, and G. R. Dickens, 2006, Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum: Nature, v. 442, p. 671-675. Paytan, A., and E. M. Griffith, 2007, Marine barite: Recorder of variations in ocean export productivity: Deep Sea Research Part II: Topical Studies in Oceanography, v. 54, p. 687-705. Perovich, D. K., J. A. Richter-Menge, K. F. Jones, and B. Light, 2008, Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007: Geophysical Research Letters, v. 35. Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vörösmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf, 2002, Increasing river discharge to the Arctic Ocean: science, v. 298, p. 2171-2173. Peterson, B. J., J. McClelland, R. Curry, R. M. Holmes, J. E. Walsh, and K. Aagaard, 2006, Trajectory shifts in the Arctic and subarctic freshwater cycle: Science, v. 313, p. 1061-6. Polyakova, Y. I., H. A. Bauch, and T. S. Klyuvitkina, 2005, Early to middle Holocene changes in Laptev Sea water masses deduced from diatom and aquatic palynomorph assemblages: Global and Planetary Change, v. 48, p. 208-222. Polyakova, Y. I., and R. Stein, 2004, Holocene paleoenvironmental implications of diatom and organic carbon records from the southeastern Kara Sea (Siberian Margin): Quaternary Research, v. 62, p. 256-266. Rahmstorf, S., 1996, On the freshwater forcing and transport of the Atlantic thermohaline circulation: Climate Dynamics, v. 12, p. 799-811. Rahmstorf, S., 2002, Ocean circulation and climate during the past 120,000 years: Nature, v. 419, p. 207-214. Regenberg, M., D. Nürnberg, J. Schönfeld, and G.-J. Reichart, 2007, Early diagenetic overprint in Caribbean sediment cores and its effect on the geochemical composition of planktonic foraminifera: Biogeosciences, v. 4, p. 957–973. Roeske, T., D. Bauch, M. R. V. Loeff, and B. Rabe, 2012a, Utility of dissolved barium in distinguishing North American from Eurasian runoff in the Arctic Ocean: Marine Chemistry, v. 132, p. 1-14. Roeske, T., M. R. vd Loeff, R. Middag, and K. Bakker, 2012b, Deep water circulation and composition in the Arctic Ocean by dissolved barium, aluminium and silicate: Marine Chemistry, v. 132, p. 56-67. Rudels, B., L. Anderson, P. Eriksson, E. Fahrbach, M. Jakobsson, E. P. Jones, H. Melling, S. Prinsenberg, U. Schauer, and T. Yao, 2012, Observations in the ocean, Arctic Climate Change, Springer, p. 117-198. Schiebel, R., and C. Hemleben, 2005, Modern planktic foraminifera: Paläontologische Zeitschrift, v. 79, p. 135-148. Schiebel, R., and C. Hemleben, 2017, Planktic foraminifers in the modern ocean, Springer. Serreze, M. C., A. P. Barrett, A. G. Slater, R. A. Woodgate, K. Aagaard, R. B. Lammers, M. Steele, R. Moritz, M. Meredith, and C. M. Lee, 2006, The large‐scale freshwater cycle of the Arctic: Journal of Geophysical Research: Oceans, v. 111. Shen, C.-C., D. W. Hastings, T. Lee, C.-H. Chiu, M.-Y. Lee, K.-Y. Wei, and R. L. Edwards, 2001, High precision glacial–interglacial benthic foraminiferal Sr/Ca records from the eastern equatorial Atlantic Ocean and Caribbean Sea: Earth and Planetary Science Letters, v. 190, p. 197-209. Shiklomanov, I. A., A. I. Shiklomanov, R. B. Lammers, B. J. Peterson, and C. J. Vorosmarty, 2000, The Dynamics of River Water Inflow to the Arctic Ocean: The Freshwater Budget of the Arctic Ocean. NATO Science Series (Series 2. Environment Security), v. 70, p. 281-296. Sidorchuk, A., and A. Panin, 1996, Water supply from the Yana River basin since Late Pliocene: Terra Nostra, v. 9, p. 97. Spielhagen, R. F., and H. A. Bauch, 2015, The role of Arctic Ocean freshwater during the past 200 ky: arktos, v. 1. Spielhagen, R. F., and H. Erlenkeuser, 1994, Stable oxygen and carbon isotopes in planktic foraminifers from Arctic Ocean surface sediments: Reflection of the low salinity surface water layer: Marine geology, v. 119, p. 227-250. Stein, R., B. Boucsein, K. Fahl, T. G. de Oteyza, J. Knies, and F. Niessen, 2001, Accumulation of particulate organic carbon at the Eurasian continental margin during late Quaternary times: controlling mechanisms and paleoenvironmental significance: Global and Planetary Change, v. 31, p. 87-104. Sternberg, E., D. Tang, T.-Y. Ho, C. Jeandel, and F. M. Morel, 2005, Barium uptake and adsorption in diatoms: Geochimica et Cosmochimica Acta, v. 69, p. 2745-2752. Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007, Arctic sea ice decline: Faster than forecast: Geophysical research letters, v. 34. Stuiver, M., P. J. Reimer, and R. W. Reimer, 2020, Calib 14C calibration program, version 7.10. Taylor, J. R., K. K. Falkner, U. Schauer, and M. Meredith, 2003, Quantitative considerations of dissolved barium as a tracer in the Arctic Ocean: Journal of Geophysical Research: Oceans, v. 108. Tierney, J. E., S. B. Malevich, W. Gray, L. Vetter, and K. Thirumalai, 2019, Bayesian Calibration of the Mg/Ca Paleothermometer in Planktic Foraminifera: Paleoceanography and Paleoclimatology, v. 34, p. 2005-2030. Tremblay, J.-É., and J. Gagnon, 2009, The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change, Influence of climate change on the changing arctic and sub-arctic conditions, Springer, p. 73-93. Volkmann, R., 2000, Planktic foraminifers in the outer Laptev Sea and the Fram Strait—modern distribution and ecology: The Journal of Foraminiferal Research, v. 30, p. 157-176. Wei, K.-Y., T.-C. Chiu, and Y.-G. Chen, 2003, Toward establishing a maritime proxy record of the East Asian summer monsoons for the late Quaternary: Marine Geology, v. 201, p. 67-79. Weldeab, S., D. W. Lea, R. R. Schneider, and N. Andersen, 2007, 155,000 years of West African monsoon and ocean thermal evolution: science, v. 316, p. 1303-1307. Wollenburg, J. E., J. Knies, and A. Mackensen, 2004, High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean: Palaeogeography, palaeoclimatology, palaeoecology, v. 204, p. 209-238. Wollenburg, J. E., W. Kuhnt, and A. Mackensen, 2001, Changes in Arctic Ocean paleoproductivity and hydrography during the last 145 kyr: The benthic foraminiferal record: Paleoceanography, v. 16, p. 65-77. Wu, P., R. Wood, and P. Stott, 2004, Does the recent freshening trend in the North Atlantic indicate a weakening thermohaline circulation?: Geophysical Research Letters, v. 31. Xiao, W., R. Wang, L. Polyak, A. Astakhov, and X. Cheng, 2014, Stable oxygen and carbon isotopes in planktonic foraminifera Neogloboquadrina pachyderma in the Arctic Ocean: An overview of published and new surface-sediment data: Marine Geology, v. 352, p. 397-408. Xiao, X., K. Fahl, and R. Stein, 2013, Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): indicators for organic-carbon sources and sea-ice coverage: Quaternary Science Reviews, v. 79, p. 40-52. Xiao, X., R. Stein, and K. Fahl, 2015, MIS 3 to MIS 1 temporal and LGM spatial variability in Arctic Ocean sea ice cover: Reconstruction from biomarkers: Paleoceanography, v. 30, p. 969-983.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81858-
dc.description.abstract"北極海周圍之河流淡水注入對於其海洋循環具有重要的調節作用,而來自北極海的淡水與北大西洋深層水(North Atlantic Deep Water, NADW)的生成亦有著密切的連動關係。因此,北極海河流淡水注入在全球海洋系統中有其獨特重要性。觀測研究顯示,自1938年到1999年隨著全球地表氣溫增加,北極海周圍的河流注入量每年平均增加7%,顯著改變北極海的淡水相對含量。因此,了解河流淡水注入的增加對於海洋與氣候系統的影響,為氣候研究中重要的議題之一。 透過地質紀錄,我們得以獲取在長時間尺度下,河流注入與地球系統之間交互作用的證據。其中,浮游性有孔蟲中的鋇鈣元素比,在過去的中低緯度研究中被證實為有效的河流注入指標。前人研究指出,海洋中鋇元素之主要來源為河流注入,在有孔蟲造殼的過程中,其周圍海水鋇離子會與殼體結合,因而反應了海水中鋇元素豐度變化。然而,在北極海中的鋇元素,除了河流注入為主要來源外,同時也受到海洋生產力相關之生物移除作用(biological removal)與再礦化作用(remineralization)影響。因此,本研究目的為了解河流注入與生物移除作用對於浮游性有孔蟲中鋇鈣元素比之影響,並評估此新穎的工具,是否可以在北極海研究中作為可靠的河流注入指標。 本研究選取6根海洋沉積物岩芯與11個表層沉積物樣本,以涵蓋北極海歐亞海盆(Eurasian Basin)側之空間變化。分析所使用的浮游性有孔蟲為Neogloboquadrina pachyderma (sinistral),並運用設立於國立臺灣大學地質科學系的磁場式感應藕荷電漿質譜儀(Sector Field Inductively Coupled Plasma Mass Spectrometry, SF-ICP-MS)分析其殼體內微量元素含量。研究結果建立了過去四萬年以來北極海中鋇鈣元素比的時空分佈,並發現浮游性有孔蟲受到沉積後成岩作用(Diagenesis)影響的證據。透過使用掃描式電子顯微鏡(Scanning Electron Microscope, SEM)與能量散射光譜儀(Energy Dispersive Spectroscopy, EDS)分析後,發現特定岩芯與深度的N. pachyderma表面受到碳酸鈣再結晶作用影響,導致異常高的鎂鈣元素比,可高達正常值的三到十倍高,但鋇鈣元素比並未受到影響。 位在歐亞海盆中周圍的拉普捷夫海(Laptev Sea)與喀拉海(Kara Sea)接收來自歐亞大陸的河流注入。N. pachyderma的鋇鈣元素比,自歐亞海盆中央朝拉普捷夫海與喀拉海方向,呈現數值升高的趨勢。鋇鈣元素比朝陸地的上升趨勢,與現代海水鋇元素分析有著相似的空間變化,顯示表層沉積物之N. pachyderma的鋇鈣元素比可以反應近代海水鋇元素在北極海中的空間分佈。在過去四萬年之N. pachyderma的鋇鈣元素比紀錄中,則發現在全新世 (Holocene)時,呈現較低的比值,而在海洋氧同位素階2-3期 (Marine Isotope Stages 3-2)呈現較高的比值。此一結果與我們的研究假設相反;如果鋇鈣元素比是受到河流注入主導的話,在河流注入量較大的全新世時期,應有較高的浮游性有孔蟲鋇鈣元素比值。由此可見,有其他非河流注入之因素顯著地影響北極海中的浮游性有孔蟲之鋇鈣元素比。 本研究認為,浮游性有孔蟲鋇鈣元素比反應的海水鋇元素相對豐度變化,在間冰期是受到海洋中旺盛的初級生產力影響,加速海水中鋇元素的生物移除作用;再加上間冰期較高的海水面高度,加長了鋇元素自出海口到北極海中央的運送距離,兩個主要因素導致較低的鋇鈣元素比。在冰期時,較弱的海洋生產力降低了鋇元素的生物移除作用,加上較低的海水面縮短了鋇元素的運送距離,導致此時期呈現較高的鋇鈣元素比。此研究顯示:一、浮游性有孔蟲N. pachyderma的鋇鈣元素比可以反應北極海中海水的鋇元素豐度變化。二,在北極海中的鋇元素循環,除了受到河流注入的掌控外,海洋生產力相關的生物移除作用也扮演重要的角色。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:05:13Z (GMT). No. of bitstreams: 1
U0001-0507202111301300.pdf: 5739054 bytes, checksum: 96018c50ba787d68fef5419c20123d5d (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 II 中文摘要 IV Abstract VI Contents VIII List of figures X List of tables XV Chapter 1 Introduction 1 1.1 The relationship between Arctic Ocean, global ocean and climate system 1 1.2 The freshwater system and river input in the Arctic Ocean 2 1.3 Ba/Ca ratios of planktic foraminifera in the Arctic Ocean 4 1.4 Studies of seawater Ba in the Arctic Ocean 5 1.5 Planktic foraminifera in the Arctic Ocean 8 1.6 The goal of this study 9 Chapter 2 Material and Methods 10 2.1 Material 10 2.1.1 Sample location 10 2.1.2 Core selection 12 2.1.3 Sediment sieving 14 2.1.4 Planktic foraminifera 14 2.2 Trace elements 15 2.2.1 Vial cleaning 15 2.2.2 Foraminiferal cleaning procedures and dissolution 16 2.2.3 Analytical methods 19 2.2.4 Sample overprint issues by background noise during experiment 20 2.2.5 Single specimen test 21 2.2.6 Interlaboratory comparison with Heidelberg University 22 2.3 Stable isotopes 23 2.4 Radiocarbon dating 23 2.5 Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and Electron Probe Micro Analyzer (EPMA) 24 Chapter 3 Results 25 3.1 Radiocarbon dating 25 3.2 Additional Experiments to trace element analysis 26 3.3 Trace element 33 3.3.1 Spatial variation of Ba/Ca ratios in the Arctic Ocean 33 3.3.2 Spatial variation of Mg/Ca ratios in the Arctic Ocean 35 3.3.3 Time series of Ba/Ca ratios in the Arctic Ocean 36 3.3.4 Time series of Mg/Ca 36 3.4 Stable isotopes 42 3.4.1 Variation in oxygen isotopes in the Arctic Ocean 42 3.4.2 Variation of carbon isotopes in the Arctic Ocean 43 3.4.3 Time series of oxygen isotopes 44 3.4.4 Time series of carbon isotopes 44 3.5 Scanning Electron Microbe and EPMA 45 3.5.1 Diagenetic effects under the SEM 45 3.5.2 Energy Dispersive X-ray Spectroscopy (EDS): Qualitative Mg distribution in N. pachyderma shell 50 3.5.3 Field Emission Electron Probe Microanalyzer (EPMA): Quantitative Mg concentration in the high Mg-band 52 Chapter 4 Discussion 54 4.1 The efficiency and reliability of cleaning process 54 4.2 Radiocarbon dating 54 4.3 Diagenetic effect 56 4.4 Stable isotopes in the Arctic Ocean 59 4.5 Ba/Ca ratios: Spatial variation 61 4.5.1 Comparison to stable isotopes 62 4.5.2 Comparison to modern seawater records 62 4.5.3 How does the habitat of N. pachyderma affect the values of Ba/Ca ratios? 65 4.5.4 The spatial variation of Ba/Ca ratios in the Arctic Ocean 65 4.6 Ba/Ca ratios: Temporal variability 66 4.6.1 Temporal variability 66 4.6.2 Factors controlling the past Ba cycle 68 4.6.3 Ba cycle during glacial and interglacial periods 69 4.6.4 The influence of river input on the Ba/Ca ratios 72 4.6.5 Limitations of the Ba/Ca ratios record 72 Chapter 5 Conclusions 73 Reference 74 Appendix 83"
dc.language.isoen
dc.subject鋇元素循環zh_TW
dc.subject鋇鈣元素比zh_TW
dc.subject生物移除作用zh_TW
dc.subject北極海zh_TW
dc.subject河流注入zh_TW
dc.subject浮游性有孔蟲zh_TW
dc.subjectBa cycleen
dc.subjectbiological removalen
dc.subjectriver inputen
dc.subjectBa/Ca ratiosen
dc.subjectplanktic foraminiferaen
dc.subjectArctic Oceanen
dc.title北極海浮游性有孔蟲(Neogloboquadrina pachyderma)殼體之鋇鈣比時空分佈zh_TW
dc.titleSpatio-temporal Ba/Ca variations of planktic foraminifera (Neogloboquadrina pachyderma) in the Arctic Oceanen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賀詩琳(Hsin-Tsai Liu),羅立(Chih-Yang Tseng),沈川洲
dc.subject.keyword北極海,浮游性有孔蟲,鋇鈣元素比,鋇元素循環,河流注入,生物移除作用,zh_TW
dc.subject.keywordArctic Ocean,planktic foraminifera,Ba/Ca ratios,Ba cycle,river input,biological removal,en
dc.relation.page86
dc.identifier.doi10.6342/NTU202101270
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
dc.date.embargo-lift2023-07-31-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-0507202111301300.pdf5.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved