請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81857完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭尊仁(Tsun-Jen Cheng) | |
| dc.contributor.author | Tzu-Hsuan Kuo | en |
| dc.contributor.author | 郭子瑄 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:05:12Z | - |
| dc.date.available | 2023-01-01 | |
| dc.date.copyright | 2021-07-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-12 | |
| dc.identifier.citation | 1. Abarghouei, S., Hedayati, A., Raeisi, M., Hadavand, B. S., Rezaei, H., Abed-Elmdoust, A. (2021). Size-dependent effects of microplastic on uptake, immune system, related gene expression and histopathology of goldfish (Carassius auratus). Chemosphere, 276, 129977. doi:10.1016/j.chemosphere.2021.129977 2. Abu-Shanab, A., Quigley, E. M. (2010). The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol, 7(12), 691-701. doi:10.1038/nrgastro.2010.172 3. Anselmo, A. C., Gupta, V., Zern, B. J., Pan, D., Zakrewsky, M., Muzykantov, V., Mitragotri, S. (2013). Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano, 7(12), 11129-11137. doi:10.1021/nn404853z 4. Avery-Gomm, S., Provencher, J. F., Liboiron, M., Poon, F. E., Smith, P. A. (2018). Plastic pollution in the Labrador Sea: An assessment using the seabird northern fulmar Fulmarus glacialis as a biological monitoring species. Mar Pollut Bull, 127, 817-822. doi:10.1016/j.marpolbul.2017.10.001 5. Ayala, A., Munoz, M. F., Arguelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev, 2014, 360438. doi:10.1155/2014/360438 6. Bartucci, R., Paramanandana, A., Boersma, Y. L., Olinga, P., Salvati, A. (2020). Comparative study of nanoparticle uptake and impact in murine lung, liver and kidney tissue slices. Nanotoxicology, 1-19. doi:10.1080/17435390.2020.1771785 7. Bermudez, E., Mangum, J. B., Wong, B. A., Asgharian, B., Hext, P. M., Warheit, D. B., Everitt, J. I. (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci, 77(2), 347-357. doi:10.1093/toxsci/kfh019 8. Caron, A. G. M., Thomas, C. R., Berry, K. L. E., Motti, C. A., Ariel, E., Brodie, J. E. (2018). Ingestion of microplastic debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: Validation of a sequential extraction protocol. Mar Pollut Bull, 127, 743-751. doi:10.1016/j.marpolbul.2017.12.062 9. Catarino, A. I., Macchia, V., Sanderson, W. G., Thompson, R. C., Henry, T. B. (2018). Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ Pollut, 237, 675-684. doi:10.1016/j.envpol.2018.02.069 10. Chae, Y., Kim, D., Kim, S. W., An, Y. J. (2018). Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Sci Rep, 8(1), 284. doi:10.1038/s41598-017-18849-y 11. Chiu, H. W., Xia, T., Lee, Y. H., Chen, C. W., Tsai, J. C., Wang, Y. J. (2015). Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale, 7(2), 736-746. doi:10.1039/c4nr05509h 12. Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., Dudas, S. E. (2019). Human Consumption of Microplastics. Environ Sci Technol, 53(12), 7068-7074. doi:10.1021/acs.est.9b01517 13. De Falco, F., Gullo, M. P., Gentile, G., Di Pace, E., Cocca, M., Gelabert, L., . . . Avella, M. (2018). Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ Pollut, 236, 916-925. doi:10.1016/j.envpol.2017.10.057 14. Delzenne, N. M., Knudsen, C., Beaumont, M., Rodriguez, J., Neyrinck, A. M., Bindels, L. B. (2019). Contribution of the gut microbiota to the regulation of host metabolism and energy balance: a focus on the gut-liver axis. Proc Nutr Soc, 78(3), 319-328. doi:10.1017/S0029665118002756 15. Deng, Y., Zhang, Y., Lemos, B., Ren, H. (2017). Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep, 7, 46687. doi:10.1038/srep46687 16. Deng, Y., Zhang, Y., Qiao, R., Bonilla, M. M., Yang, X., Ren, H., Lemos, B. (2018). Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus). J Hazard Mater, 357, 348-354. doi:10.1016/j.jhazmat.2018.06.017 17. Desforges, J. P., Galbraith, M., Dangerfield, N., Ross, P. S. (2014). Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar Pollut Bull, 79(1-2), 94-99. doi:10.1016/j.marpolbul.2013.12.035 18. Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut, 221, 453-458. doi:10.1016/j.envpol.2016.12.013 19. Dris, R., Gasperi, J., Saad, M., Mirande, C., Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar Pollut Bull, 104(1-2), 290-293. doi:10.1016/j.marpolbul.2016.01.006 20. Ebel, J. P. (1990). A method for quantifying particle absorption from the small intestine of the mouse. Pharm Res, 7(8), 848-851. doi:10.1023/a:1015964916486 21. Ensign, L. M., Henning, A., Schneider, C. S., Maisel, K., Wang, Y. Y., Porosoff, M. D., . . . Hanes, J. (2013). Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues. Mol Pharm, 10(6), 2176-2182. doi:10.1021/mp400087y 22. Forte, M., Iachetta, G., Tussellino, M., Carotenuto, R., Prisco, M., De Falco, M., . . . Valiante, S. (2016). Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol In Vitro, 31, 126-136. doi:10.1016/j.tiv.2015.11.006 23. Fournier, S. B., D'Errico, J. N., Adler, D. S., Kollontzi, S., Goedken, M. J., Fabris, L., . . . Stapleton, P. A. (2020). Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol, 17(1), 55. doi:10.1186/s12989-020-00385-9 24. Gagne, F., Auclair, J., Quinn, B. (2019). Detection of polystyrene nanoplastics in biological samples based on the solvatochromic properties of Nile red: application in Hydra attenuata exposed to nanoplastics. Environ Sci Pollut Res Int, 26(32), 33524-33531. doi:10.1007/s11356-019-06501-3 25. Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schurch, S., Kreyling, W., Schulz, H., . . . Gehr, P. (2005). Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect, 113(11), 1555-1560. doi:10.1289/ehp.8006 26. Gigault, J., Halle, A. T., Baudrimont, M., Pascal, P. Y., Gauffre, F., Phi, T. L., . . . Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environ Pollut, 235, 1030-1034. doi:10.1016/j.envpol.2018.01.024 27. Graham, P., Palazzo, L., Andrea de Lucia, G., Telfer, T. C., Baroli, M., Carboni, S. (2019). Microplastics uptake and egestion dynamics in Pacific oysters, Magallana gigas (Thunberg, 1793), under controlled conditions. Environ Pollut, 252(Pt A), 742-748. doi:10.1016/j.envpol.2019.06.002 28. Hendrickse, C. W., Kelly, R. W., Radley, S., Donovan, I. A., Keighley, M. R., Neoptolemos, J. P. (1994). Lipid peroxidation and prostaglandins in colorectal cancer. Br J Surg, 81(8), 1219-1223. doi:10.1002/bjs.1800810849 29. Hernandez, L. M., Xu, E. G., Larsson, H. C. E., Tahara, R., Maisuria, V. B., Tufenkji, N. (2019). Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ Sci Technol, 53(21), 12300-12310. doi:10.1021/acs.est.9b02540 30. Hiraku, Y., Nishikawa, Y., Ma, N., Afroz, T., Mizobuchi, K., Ishiyama, R., . . . Murata, M. (2017). Nitrative DNA damage induced by carbon-black nanoparticles in macrophages and lung epithelial cells. Mutat Res, 818, 7-16. doi:10.1016/j.mrgentox.2017.04.002 31. Ho, D., Leong, J. W., Crew, R. C., Norret, M., House, M. J., Mark, P. J., . . . Keelan, J. A. (2017). Maternal-placental-fetal biodistribution of multimodal polymeric nanoparticles in a pregnant rat model in mid and late gestation. Sci Rep, 7(1), 2866. doi:10.1038/s41598-017-03128-7 32. Hossain, M. S., Rahman, M. S., Uddin, M. N., Sharifuzzaman, S. M., Chowdhury, S. R., Sarker, S., Nawaz Chowdhury, M. S. (2020). Microplastic contamination in Penaeid shrimp from the Northern Bay of Bengal. Chemosphere, 238, 124688. doi:10.1016/j.chemosphere.2019.124688 33. Hou, B., Wang, F., Liu, T., Wang, Z. (2020). Reproductive toxicity of polystyrene microplastics: In vivo experimental study on testicular toxicity in mice. J Hazard Mater, 124028. doi:10.1016/j.jhazmat.2020.124028 34. Hou, J., Lei, Z., Cui, L., Hou, Y., Yang, L., An, R., . . . Zhang, L. (2021). Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats. Ecotoxicol Environ Saf, 212, 112012. doi:10.1016/j.ecoenv.2021.112012 35. Hu, L., Su, L., Xue, Y., Mu, J., Zhu, J., Xu, J., Shi, H. (2016). Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere, 164, 611-617. doi:10.1016/j.chemosphere.2016.09.002 36. Hussain, N. (2001). Fluorometric method for the simultaneous quantitation of differently-sized nanoparticles in rodent tissue. Int J Pharm, 214(1-2), 55-61. doi:10.1016/s0378-5173(00)00631-1 37. Imhof, H. K., Sigl, R., Brauer, E., Feyl, S., Giesemann, P., Klink, S., . . . Laforsch, C. (2017). Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Mar Pollut Bull, 116(1-2), 340-347. doi:10.1016/j.marpolbul.2017.01.010 38. Jani, P., Halbert, G. W., Langridge, J., Florence, A. T. (1990). Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol, 42(12), 821-826. doi:10.1111/j.2042-7158.1990.tb07033.x 39. Jiang, C., Wang, Z., Huang, H., He, T. (2011). Large-scale and highly oriented liquid crystal phase in suspensions of polystyrene-block-poly(L-lactide) single crystals. Langmuir, 27(8), 4351-4357. doi:10.1021/la200314t 40. Jin, Lu, L., Tu, W., Luo, T., Fu, Z. (2019). Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ, 649, 308-317. doi:10.1016/j.scitotenv.2018.08.353 41. Jin, H., Ma, T., Sha, X., Liu, Z., Zhou, Y., Meng, X., . . . Ding, J. (2020). Polystyrene microplastics induced male reproductive toxicity in mice. J Hazard Mater, 401, 123430. doi:10.1016/j.jhazmat.2020.123430 42. Kang, H. M., Byeon, E., Jeong, H., Kim, M. S., Chen, Q., Lee, J. S. (2021). Different effects of nano- and microplastics on oxidative status and gut microbiota in the marine medaka Oryzias melastigma. J Hazard Mater, 405, 124207. doi:10.1016/j.jhazmat.2020.124207 43. Kanhai, D. K., Officer, R., Lyashevska, O., Thompson, R. C., O'Connor, I. (2017). Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean. Mar Pollut Bull, 115(1-2), 307-314. doi:10.1016/j.marpolbul.2016.12.025 44. Karami, A., Golieskardi, A., Keong Choo, C., Larat, V., Galloway, T. S., Salamatinia, B. (2017). The presence of microplastics in commercial salts from different countries. Sci Rep, 7, 46173. doi:10.1038/srep46173 45. Kawanishi, S., Hiraku, Y., Pinlaor, S., Ma, N. (2006). Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem, 387(4), 365-372. doi:10.1515/BC.2006.049 46. Kik, K., Bukowska, B., Sicinska, P. (2020). Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ Pollut, 262, 114297. doi:10.1016/j.envpol.2020.114297 47. Koelmans, A. A., Mohamed Nor, N. H., Hermsen, E., Kooi, M., Mintenig, S. M., De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res, 155, 410-422. doi:10.1016/j.watres.2019.02.054 48. Kulkarni, S. A., Feng, S. S. (2013). Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res, 30(10), 2512-2522. doi:10.1007/s11095-012-0958-3 49. Lavers, J. L., Stivaktakis, G., Hutton, I., Bond, A. L. (2019). Detection of ultrafine plastics ingested by seabirds using tissue digestion. Mar Pollut Bull, 142, 470-474. doi:10.1016/j.marpolbul.2019.04.001 50. Li, Ding, Y., Cheng, X., Sheng, D., Xu, Z., Rong, Q., . . . Zhang, Y. (2020). Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere, 244, 125492. doi:10.1016/j.chemosphere.2019.125492 51. Li, G., Cao, Y., Sun, Y., Xu, R., Zheng, Z., Song, H. (2016). Ultrafine particles in the airway aggravated experimental lung injury through impairment in Treg function. Biochem Biophys Res Commun, 478(1), 494-500. doi:10.1016/j.bbrc.2016.05.059 52. Li, J., Liu, H., Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res, 137, 362-374. doi:10.1016/j.watres.2017.12.056 53. Li, J., Lusher, A. L., Rotchell, J. M., Deudero, S., Turra, A., Brate, I. L. N., . . . Shi, H. (2019). Using mussel as a global bioindicator of coastal microplastic pollution. Environ Pollut, 244, 522-533. doi:10.1016/j.envpol.2018.10.032 54. Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., . . . Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environ Pollut, 214, 177-184. doi:10.1016/j.envpol.2016.04.012 55. Liebezeit, G., Liebezeit, E. (2013). Non-pollen particulates in honey and sugar. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 30(12), 2136-2140. doi:10.1080/19440049.2013.843025 56. Liebezeit, G., Liebezeit, E. (2014). Synthetic particles as contaminants in German beers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 31(9), 1574-1578. doi:10.1080/19440049.2014.945099 57. Lu. (2018). Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ, 631-632, 449-458. doi:10.1016/j.scitotenv.2018.03.051 58. Lu, Wan, Z., Luo, T., Fu, Z., Jin, Y. (2018). Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ, 631-632, 449-458. doi:10.1016/j.scitotenv.2018.03.051 59. Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., . . . Ren, H. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ Sci Technol, 50(7), 4054-4060. doi:10.1021/acs.est.6b00183 60. Lusher, A. L., Tirelli, V., O'Connor, I., Officer, R. (2015). Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci Rep, 5, 14947. doi:10.1038/srep14947 61. Magri, D., Sanchez-Moreno, P., Caputo, G., Gatto, F., Veronesi, M., Bardi, G., . . . Fragouli, D. (2018). Laser Ablation as a Versatile Tool To Mimic Polyethylene Terephthalate Nanoplastic Pollutants: Characterization and Toxicology Assessment. ACS Nano, 12(8), 7690-7700. doi:10.1021/acsnano.8b01331 62. Mai, L., Bao, L. J., Shi, L., Wong, C. S., Zeng, E. Y. (2018). A review of methods for measuring microplastics in aquatic environments. Environ Sci Pollut Res Int, 25(12), 11319-11332. doi:10.1007/s11356-018-1692-0 63. Maxi B. Paul a, V. S. a., Julia Cara-Carmona a, Elisa Lisicki a, Sofiya Shopova a, Valérie Fessard b, Albert Braeuning a, Holger Sieg*a and Linda Böhmert a. (2020). Micro- and nanoplastics – current state of knowledge with the focus on oral uptake and toxicity. doi:10.1039/D0NA00539H 64. Mowat, A. M. (2003). Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol, 3(4), 331-341. doi:10.1038/nri1057 65. Nemmar, A., Yuvaraju, P., Beegam, S., Yasin, J., Kazzam, E. E., Ali, B. H. (2016). Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles. Int J Nanomedicine, 11, 919-928. doi:10.2147/IJN.S92278 66. Neves, D., Sobral, P., Ferreira, J. L., Pereira, T. (2015). Ingestion of microplastics by commercial fish off the Portuguese coast. Mar Pollut Bull, 101(1), 119-126. doi:10.1016/j.marpolbul.2015.11.008 67. Noel, A., Truchon, G., Cloutier, Y., Charbonneau, M., Maghni, K., Tardif, R. (2017). Mass or total surface area with aerosol size distribution as exposure metrics for inflammatory, cytotoxic and oxidative lung responses in rats exposed to titanium dioxide nanoparticles. Toxicol Ind Health, 33(4), 351-364. doi:10.1177/0748233716651560 68. Ogino, K., Wang, D. H. (2007). Biomarkers of oxidative/nitrosative stress: an approach to disease prevention. Acta Med Okayama, 61(4), 181-189. doi:10.18926/AMO/32871 69. Ossmann, B. E., Sarau, G., Holtmannspotter, H., Pischetsrieder, M., Christiansen, S. H., Dicke, W. (2018). Small-sized microplastics and pigmented particles in bottled mineral water. Water Res, 141, 307-316. doi:10.1016/j.watres.2018.05.027 70. Park, E. J., Han, J. S., Park, E. J., Seong, E., Lee, G. H., Kim, D. W., . . . Lee, B. S. (2020). Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation. Toxicol Lett, 324, 75-85. doi:10.1016/j.toxlet.2020.01.008 71. Park, E. J., Lee, G. H., Yoon, C., Jeong, U., Kim, Y., Cho, M. H., Kim, D. W. (2016). Biodistribution and toxicity of spherical aluminum oxide nanoparticles. J Appl Toxicol, 36(3), 424-433. doi:10.1002/jat.3233 72. Parveen, S., Sahoo, S. K. (2011). Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol, 670(2-3), 372-383. doi:10.1016/j.ejphar.2011.09.023 73. Peng, L., Fu, D., Qi, H., Lan, C. Q., Yu, H., Ge, C. (2020). Micro- and nano-plastics in marine environment: Source, distribution and threats - A review. Sci Total Environ, 698, 134254. doi:10.1016/j.scitotenv.2019.134254 74. Poon, C. K., Tang, O., Chen, X. M., Kim, B., Hartlieb, M., Pollock, C. A., . . . Perrier, S. (2017). Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactant-Free RAFT Emulsion Polymerization. Macromol Biosci, 17(10). doi:10.1002/mabi.201600366 75. Powell, J. J., Faria, N., Thomas-McKay, E., Pele, L. C. (2010). Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun, 34(3), J226-233. doi:10.1016/j.jaut.2009.11.006 76. Rehse, S., Kloas, W., Zarfl, C. (2016). Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere, 153, 91-99. doi:10.1016/j.chemosphere.2016.02.133 77. Rillig, M. C., Ingraffia, R., de Souza Machado, A. A. (2017). Microplastic Incorporation into Soil in Agroecosystems. Front Plant Sci, 8, 1805. doi:10.3389/fpls.2017.01805 78. Rist, S., Carney Almroth, B., Hartmann, N. B., Karlsson, T. M. (2018). A critical perspective on early communications concerning human health aspects of microplastics. Sci Total Environ, 626, 720-726. doi:10.1016/j.scitotenv.2018.01.092 79. Rosenkranz, P., Chaudhry, Q., Stone, V., Fernandes, T. F. (2009). A comparison of nanoparticle and fine particle uptake by Daphnia magna. Environ Toxicol Chem, 28(10), 2142-2149. doi:10.1897/08-559.1 80. Salim, S. Y., Kaplan, G. G., Madsen, K. L. (2014). Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microbes, 5(2), 215-219. doi:10.4161/gmic.27251 81. Sarlo, K., Blackburn, K. L., Clark, E. D., Grothaus, J., Chaney, J., Neu, S., . . . Kuhn, M. (2009). Tissue distribution of 20 nm, 100 nm and 1000 nm fluorescent polystyrene latex nanospheres following acute systemic or acute and repeat airway exposure in the rat. Toxicology, 263(2-3), 117-126. doi:10.1016/j.tox.2009.07.002 82. Sass, W., Dreyer, H. P., Seifert, J. (1990). Rapid insorption of small particles in the gut. Am J Gastroenterol, 85(3), 255-260. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/2309677 83. Seifert, J., Sass, W. (1990). Intestinal absorption of macromolecules and small particles. Dig Dis, 8(3), 169-178. doi:10.1159/000171250 84. Spickett, C. M. (2013). The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis. Redox Biol, 1, 145-152. doi:10.1016/j.redox.2013.01.007 85. Stock, V., Bohmert, L., Lisicki, E., Block, R., Cara-Carmona, J., Pack, L. K., . . . Lampen, A. (2019). Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol, 93(7), 1817-1833. doi:10.1007/s00204-019-02478-7 86. Ter Halle, A., Jeanneau, L., Martignac, M., Jarde, E., Pedrono, B., Brach, L., Gigault, J. (2017). Nanoplastic in the North Atlantic Subtropical Gyre. Environ Sci Technol, 51(23), 13689-13697. doi:10.1021/acs.est.7b03667 87. Toussaint, B., Raffael, B., Angers-Loustau, A., Gilliland, D., Kestens, V., Petrillo, M., . . . Van den Eede, G. (2019). Review of micro- and nanoplastic contamination in the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 36(5), 639-673. doi:10.1080/19440049.2019.1583381 88. Van Cauwenberghe, L., Janssen, C. R. (2014). Microplastics in bivalves cultured for human consumption. Environ Pollut, 193, 65-70. doi:10.1016/j.envpol.2014.06.010 89. van Raamsdonk, L. W. D., van der Zande, M., Koelmans, A. A., Hoogenboom, R., Peters, R. J. B., Groot, M. J., . . . Weesepoel, Y. J. A. (2020). Current Insights into Monitoring, Bioaccumulation, and Potential Health Effects of Microplastics Present in the Food Chain. Foods, 9(1). doi:10.3390/foods9010072 90. VJ Mohanraj, Y. C. (2006). Nanoparticles – A Review. Tropical Journal of Pharmaceutical Research, 5 (1): 561-573. 91. Volkheimer, G. (1974). Passage of particles through the wall of the gastrointestinal tract. Environ Health Perspect, 9, 215-225. doi:10.1289/ehp.749215 92. von Seth, E., Nyqvist, D., Andersson, A., Carlsson, P. O., Kohler, M., Mattsson, G., . . . Jansson, L. (2007). Distribution of intraportally implanted microspheres and fluorescent islets in mice. Cell Transplant, 16(6), 621-627. doi:10.3727/000000007783465055 93. Waite, H. R., Donnelly, M. J., Walters, L. J. (2018). Quantity and types of microplastics in the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a Florida estuary. Mar Pollut Bull, 129(1), 179-185. doi:10.1016/j.marpolbul.2018.02.026 94. Walczak, A. P., Hendriksen, P. J., Woutersen, R. A., van der Zande, M., Undas, A. K., Helsdingen, R., . . . Bouwmeester, H. (2015). Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats. J Nanopart Res, 17(5), 231. doi:10.1007/s11051-015-3029-y 95. Walczak, A. P., Kramer, E., Hendriksen, P. J., Helsdingen, R., van der Zande, M., Rietjens, I. M., Bouwmeester, H. (2015). In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model. Nanotoxicology, 9(7), 886-894. doi:10.3109/17435390.2014.988664 96. Wang, X., Cui, X., Zhao, Y., Chen, C. (2020). Nano-bio interactions: the implication of size-dependent biological effects of nanomaterials. Sci China Life Sci, 63(8), 1168-1182. doi:10.1007/s11427-020-1725-0 97. Wang, Y. L., Lee, Y. H., Hsu, Y. H., Chiu, I. J., Huang, C. C., Huang, C. C., . . . Chiu, H. W. (2021). The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. Environ Health Perspect, 129(5), 57003. doi:10.1289/EHP7612 98. Waring, R. H., Harris, R. M., Mitchell, S. C. (2018). Plastic contamination of the food chain: A threat to human health? Maturitas, 115, 64-68. doi:10.1016/j.maturitas.2018.06.010 99. West-Eberhard, M. J. (2019). Nutrition, the visceral immune system, and the evolutionary origins of pathogenic obesity. Proc Natl Acad Sci U S A, 116(3), 723-731. doi:10.1073/pnas.1809046116 100. Wright, S. L., Kelly, F. J. (2017). Plastic and Human Health: A Micro Issue? Environ Sci Technol, 51(12), 6634-6647. doi:10.1021/acs.est.7b00423 101. Wu, B., Wu, X., Liu, S., Wang, Z., Chen, L. (2019). Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2cells. Chemosphere, 221, 333-341. doi:10.1016/j.chemosphere.2019.01.056 102. Xiong, X., Chen, X., Zhang, K., Mei, Z., Hao, Y., Zheng, J., . . . Wang, D. (2018). Microplastics in the intestinal tracts of East Asian finless porpoises (Neophocaena asiaeorientalis sunameri) from Yellow Sea and Bohai Sea of China. Mar Pollut Bull, 136, 55-60. doi:10.1016/j.marpolbul.2018.09.006 103. Xu, D., Ma, Y., Han, X., Chen, Y. (2021). Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J Hazard Mater, 417, 126092. doi:10.1016/j.jhazmat.2021.126092 104. Xu, S., Ma, J., Ji, R., Pan, K., Miao, A. J. (2020). Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci Total Environ, 703, 134699. doi:10.1016/j.scitotenv.2019.134699 105. Yang, D., Shi, H., Li, L., Li, J., Jabeen, K., Kolandhasamy, P. (2015). Microplastic Pollution in Table Salts from China. Environ Sci Technol, 49(22), 13622-13627. doi:10.1021/acs.est.5b03163 106. Zhang, J., Nie, X., Ji, Y., Liu, Y., Wu, X., Chen, C., Fang, X. (2014). Quantitative biokinetics and systemic translocation of various gold nanostructures are highly dependent on their size and shape. J Nanosci Nanotechnol, 14(6), 4124-4138. doi:10.1166/jnn.2014.8274 107. Zhang, K., Su, J., Xiong, X., Wu, X., Wu, C., Liu, J. (2016). Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environ Pollut, 219, 450-455. doi:10.1016/j.envpol.2016.05.048 108. Zheng, H., Wang, J., Wei, X., Chang, L., Liu, S. (2021). Proinflammatory properties and lipid disturbance of polystyrene microplastics in the livers of mice with acute colitis. Sci Total Environ, 750, 143085. doi:10.1016/j.scitotenv.2020.143085 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81857 | - |
| dc.description.abstract | 塑膠微粒為近年來興起的全球議題,其被定義為粒徑小於5毫米的聚合物,廣泛的分佈在環境中,已在各大海洋、湖泊及冰川檢測到塑膠微粒,因其不易降解的特性,將隨著食物鏈累積在生物體,除了海洋生物,已有研究顯示哺乳類,例如海豚、海龜及海鷗都有檢測出塑膠微粒。暴露到塑膠微粒的途徑有皮膚吸收、呼吸道吸入及食道攝入這三種途徑,其中,攝入(Ingestion)被認為是人類主要暴露塑膠微粒的途徑。 相關研究過去多著重於微米級塑膠微粒(>1 µm),顯示塑膠微粒在攝入後將會被腸胃道吸收並且累積在肝臟、脾臟及腎臟等器官,並且將會造成氧化壓力及發炎反應,但結果並不一致,對於哺乳類毒性的研究也很有限。且已有研究顯示越小的塑膠微粒在生物體內累積後的清除效率越低,而在體外細胞實驗,在相同重量濃度下較小的塑膠微粒其因為有較大的總表面積,會產生較大的細胞毒性。為進一步瞭解次微米級塑膠微粒(<1 µm)的健康效應,本研究探討次微米塑膠微粒在小鼠腸道的吸收、在體內的分佈及毒理效應。 本研究使用粒徑800 nm與200 nm的Nile Red螢光聚苯乙烯微珠,以胃管灌食6週大C57BL/6母鼠,為比較200 nm與800 nm微粒在組織的分佈,每次灌食109顆,每週三次連續灌食四週。暴露後24小時尿液以全代謝籠於暴露期間隔週收集,周邊血液於犧牲後由心臟收集,同時採集腸道及其他器官,包括肝臟、脾臟、腎臟及肺臟。使用螢光顯微鏡及全景組織細胞分析儀(TissueFAXS)觀察塑膠微粒在組織的分佈及累積,及使用流式細胞儀(Flow cytometry)來檢測血液、尿液及將器官組織消化過後的組織消化液,以獲得單位微粒數目濃度。 另外檢測生物指標,將部份尿液做四種全身性氧化壓力(Oxidative stress)的濃度檢測,包括8-OHdG、8-NO2Gua、8-IsoPF2a及HNE-MA,及將肺臟及腎臟組織檢測四種發炎因子(Cytokine)的含量,包括Interferon- γ (IFNγ)、Interleukin- 1β (IL-1β)、Interleukin-6 (IL-6)與Tumor Necrosis Factor- α (TNFα)。 在以胃管灌食小鼠四週後,次微米塑膠微粒會穿越腸胃道屏障進入血液循環,並進一步累積在肝臟、脾臟及腎臟,平均每個器官將會有102 ~ 103的微粒累積,並且肺臟在兩者次微米塑膠微粒皆是最主要微粒累積的器官,平均每個肺(右肺)將會有104 ~ 105的微粒累積。比較200 nm與800 nm的微粒累積,200 nm在各器官的平均微粒總累積量是800 nm的10倍左右。在24小時尿液當中,在第二週及第四週從部份800 nm暴露組小鼠尿液中檢測到塑膠微粒,在200 nm微粒暴露組則皆低於偵測極限。另外將肺部切片在螢光顯微鏡底下觀察,觀察到相比800 nm暴露組,200 nm微粒的暴露組肺臟累積的微粒含量要來得多,且大部分的微粒皆被巨噬細胞吞噬而聚集。 暴露組的肝臟重量顯著比控制組輕,且800 nm組別要比200 nm組別要來的輕,顯示較多的800 nm微粒累積在腸道將會導致菌群紊亂,肝臟重量下降。另外尿液中活性氧化物(ROS)為系統性氧化壓力,可以看到暴露組在8-OHdG、8-NO2Gua、8-IsoPF2a及HNE-MA的濃度均顯著比控制組要來得高(p<0.05),且其中HNE-MA在200 nm微粒暴露組顯著比800 nm微粒暴露組來得高。此外,發炎因子的結果顯示在800 nm暴露組的在腎臟的IFNγ、IL-1β、IL-6與TNFα皆顯著高於控制組(p<0.05),顯示800 nm微粒在腎臟排出的過程中可能造成了腎臟的發炎損傷,導致總排尿量顯著下降,肺臟發炎因子相較控制組則是沒有顯著變化。 上述實驗結果顯示相比800 nm微粒,200 nm微粒更能穿越腸胃道屏障累積在肝、肺、腎及脾臟當中,其中肺臟為主要累積的器官。部分800 nm微粒將會經由腎臟排泄進入尿液,造成腎臟發炎因子的上升,而200 nm微粒傾向累積在小鼠體內而不易被排出,並且兩者粒徑的微粒皆會引起全身性氧化壓力。本實驗在四週的重複暴露後,顯示較小的塑膠微粒較容易穿越腸胃道屏障並累積在哺乳類動物體內,產生氧化壓力及發炎反應,後續應繼續關注在長期重複暴露次微米或奈米塑膠微粒的毒性研究。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:05:12Z (GMT). No. of bitstreams: 1 U0001-0507202118251300.pdf: 12082930 bytes, checksum: 9ca8cb32083a04cce74491baa68af98c (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 v 第一章 前言與研究目的 1 1.1. 前言 1 1.2. 研究目的 2 第二章 文獻回顧 3 2.1. 塑膠微粒的來源及分佈 3 2.2. 塑膠微粒的暴露途徑 5 2.3. 塑膠微粒的健康效應 7 2.3.1. 微粒與氧化壓力 7 2.3.2. 微粒與發炎因子 8 2.4. 塑膠微粒動力學 9 2.4.1. 腸胃道的吸收機制 9 2.4.2. 微粒在器官的分佈 11 2.4.3. 微粒的代謝與排泄 13 2.5. 塑膠微粒的檢測 14 第三章 材料與方法 15 3.1. 實驗流程與架構 15 3.2. 實驗動物 16 3.3. 聚苯乙烯塑膠微粒 17 3.3.1. 微粒的型態 17 3.3.2. 微粒的粒徑大小及表面電荷 17 3.3.3. 微粒的數目濃度 18 3.3.4. 微粒的螢光 18 3.3.5. 微粒懸浮液的製備 20 3.4. 暴露方法 22 3.5. 動物檢體收集與處理 23 3.5.1. 尿液收集 23 3.5.2. 動物犧牲與器官採樣 23 3.5.3. 腸道的取樣與前處理 24 3.5.4. 組織包埋 25 3.6. 組織中微粒的檢測 26 3.6.1. 組織消化液 26 3.6.1.1. 組織消化液的製備與檢測 26 3.6.1.2. 組織消化液的偵測極限 27 3.6.1.3. 消化對微粒的影響 28 3.6.1.4. 組織中微粒型態 29 3.6.2. 組織切片 29 3.6.2.1. 單一螢光影像觀察 29 3.6.2.2. 大圖螢光拼接觀察 30 3.7. 血液及尿液中微粒的檢測 31 3.7.1. 取樣與微粒的檢測 31 3.7.2. 血液與尿液中的偵測極限 32 3.7.3. 尿液中微粒型態 32 3.8. 生物指標 33 3.8.1. 尿液系統性氧化壓力 33 3.8.2. 特定器官發炎因子 34 3.9. 組織病理 36 3.10. 統計方法 36 第四章 結果 37 4.1. 實驗流程與架構 37 4.1.1. 體重變化 37 4.1.2. 飲水量與排尿量 37 4.1.3. 器官重量 38 4.2. 塑膠微粒的描述 39 4.2.1. 微粒的型態 39 4.2.2. 微粒的粒徑大小及表面電荷 39 4.2.3. 微粒的數目濃度 39 4.2.4. 微粒的螢光 40 4.3. 組織中微粒 41 4.3.1. 組織消化液的檢測 41 4.3.1.1. 微粒在腸道中的分佈 41 4.3.1.2. 微粒在器官的分佈 41 4.3.1.3. 微粒的偵測極限及回收率 41 4.3.1.4. 組織中微粒型態 42 4.3.2. 組織切片的觀察 43 4.3.2.1. 單一螢光影像觀察 43 4.3.2.2. 大圖螢光拼接觀察 43 4.4. 血液尿液中微粒 44 4.4.1. 微粒的檢測 44 4.4.2. 在血液與尿中液的偵測極限 45 4.4.3. 血尿中微粒型態 45 4.5. 生物指標 46 4.5.1. 尿液系統性氧化壓力 46 4.5.2. 特定器官發炎因子 46 4.6. 微粒分佈與生物指標相關性 47 4.6.1. 微粒在器官分佈的相關性 47 4.6.2. 微粒與氧化壓力的相關性 47 4.6.3. 微粒與發炎因子的相關性 48 4.7 組織病理 49 第五章 討論 50 5.1. 次微米塑膠微粒對動物生理指標的變化 51 5.2. 次微米塑膠微粒在腸道及器官的分佈 53 5.3. 次微米塑膠微粒與生物指標之關係 57 5.4. 研究限制 61 第六章 結論 63 第七章 建議 64 第八章 參考資料 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 發炎因子 | zh_TW |
| dc.subject | 次微米塑膠微粒 | zh_TW |
| dc.subject | 胃管灌食 | zh_TW |
| dc.subject | 小鼠 | zh_TW |
| dc.subject | 吸收效率 | zh_TW |
| dc.subject | 組織分佈 | zh_TW |
| dc.subject | 流式細胞儀 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | oral gavage | en |
| dc.subject | submicroplastics | en |
| dc.subject | cytokine | en |
| dc.subject | oxidative stress | en |
| dc.subject | flow cytometry | en |
| dc.subject | distribution | en |
| dc.subject | uptake | en |
| dc.subject | mice | en |
| dc.title | 次微米塑膠微粒在小鼠經由腸胃道的吸收分佈及毒性研究 | zh_TW |
| dc.title | The distribution and toxicity of submicron plastic particles through the gastrointestinal tract in mice | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 姜至剛(Hsin-Tsai Liu),蕭伊倫(Chih-Yang Tseng),吳焜裕 | |
| dc.subject.keyword | 次微米塑膠微粒,胃管灌食,小鼠,吸收效率,組織分佈,流式細胞儀,氧化壓力,發炎因子, | zh_TW |
| dc.subject.keyword | submicroplastics,oral gavage,mice,uptake,distribution,flow cytometry,oxidative stress,cytokine, | en |
| dc.relation.page | 133 | |
| dc.identifier.doi | 10.6342/NTU202101281 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-12 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-01-01 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0507202118251300.pdf | 11.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
