Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81853
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游佳欣(Jiashing Yu)
dc.contributor.authorFang-Jung Chenen
dc.contributor.author陳方榕zh_TW
dc.date.accessioned2022-11-25T03:05:06Z-
dc.date.available2026-07-19
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-07-20
dc.identifier.citation1. Atala, A., Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation research 2004, 7 (1), 15-31. 2. Bonassar, L. J.; Vacanti, C. A., Tissue engineering: the first decade and beyond. Journal of cellular biochemistry 1998, 72 (S30‒31), 297-303. 3. Langer, R., Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Accounts of Chemical Research 2000, 33 (2), 94-101. 4. O'brien, F. J., Biomaterials scaffolds for tissue engineering. Materials today 2011, 14 (3), 88-95. 5. Chang, H.-I.; Wang, Y., Cell responses to surface and architecture of tissue engineering scaffolds. In Regenerative medicine and tissue engineering-cells and biomaterials, InTechOpen: 2011. 6. Lutolf, M.; Hubbell, J., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature biotechnology 2005, 23 (1), 47-55. 7. Chan, B.; Leong, K., Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European spine journal 2008, 17 (4), 467-479. 8. Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J.; Hu, X.; Han, C., Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003, 24 (26), 4833-4841. 9. Priya, S. G.; Jungvid, H.; Kumar, A., Skin tissue engineering for tissue repair and regeneration. Tissue Engineering Part B: Reviews 2008, 14 (1), 105-118. 10. Schmidt, C. E.; Leach, J. B., Neural tissue engineering: strategies for repair and regeneration. Annual review of biomedical engineering 2003, 5 (1), 293-347. 11. Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S., Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26 (15), 2603-2610. 12. Carrier, R. L.; Papadaki, M.; Rupnick, M.; Schoen, F. J.; Bursac, N.; Langer, R.; Freed, L. E.; Vunjak‐Novakovic, G., Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology and bioengineering 1999, 64 (5), 580-589. 13. Vunjak-Novakovic, G.; Tandon, N.; Godier, A.; Maidhof, R.; Marsano, A.; Martens, T. P.; Radisic, M., Challenges in cardiac tissue engineering. Tissue Engineering Part B: Reviews 2010, 16 (2), 169-187. 14. Amini, A. R.; Laurencin, C. T.; Nukavarapu, S. P., Bone tissue engineering: recent advances and challenges. Critical Reviews™ in Biomedical Engineering 2012, 40 (5). 15. Burg, K. J.; Porter, S.; Kellam, J. F., Biomaterial developments for bone tissue engineering. Biomaterials 2000, 21 (23), 2347-2359. 16. Rose, F. R.; Oreffo, R. O., Bone tissue engineering: hope vs hype. Biochemical and biophysical research communications 2002, 292 (1), 1-7. 17. Yaszemski, M. J.; Payne, R. G.; Hayes, W. C.; Langer, R.; Mikos, A. G., Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 1996, 17 (2), 175-185. 18. Shegarfi, H.; Reikeras, O., Bone transplantation and immune response. Journal of Orthopaedic Surgery 2009, 17 (2), 206-211. 19. Murphy, C. M.; O'Brien, F. J.; Little, D. G.; Schindeler, A., Cell-scaffold interactions in the bone tissue engineering triad. 2013. 20. Bose, S.; Roy, M.; Bandyopadhyay, A., Recent advances in bone tissue engineering scaffolds. Trends in biotechnology 2012, 30 (10), 546-554. 21. Zhu, W.; Ye, T.; Lee, S.-J.; Cui, H.; Miao, S.; Zhou, X.; Shuai, D.; Zhang, L. G., Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. Nanomedicine: Nanotechnology, Biology and Medicine 2018, 14 (7), 2485-2494. 22. Fu, C.; Pan, S.; Ma, Y.; Kong, W.; Qi, Z.; Yang, X., Effect of electrical stimulation combined with graphene-oxide-based membranes on neural stem cell proliferation and differentiation. Artificial cells, nanomedicine, and biotechnology 2019, 47 (1), 1867-1876. 23. Gong, H. Y.; Park, J.; Kim, W.; Kim, J.; Lee, J. Y.; Koh, W.-G., A Novel Conductive and Micropatterned PEG-Based Hydrogel Enabling the Topographical and Electrical Stimulation of Myoblasts. ACS applied materials interfaces 2019, 11 (51), 47695-47706. 24. Je, H.-J.; Kim, M.-G.; Cho, I.-H.; Kwon, H.-J., Induction of Myogenic Differentiation in Myoblasts by Electrical Stimulation. Korean Society of Physical Medicine 2019, 14 (2), 63-70. 25. Leppik, L.; Oliveira, K. M. C.; Bhavsar, M. B.; Barker, J. H., Electrical stimulation in bone tissue engineering treatments. European Journal of Trauma and Emergency Surgery 2020, 46 (2), 231-244. 26. Li, J.; Liu, X.; Crook, J. M.; Wallace, G. G., Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold. Materials Science and Engineering: C 2020, 107, 110312. 27. Zhang, Z.; Zheng, T.; Zhu, R., Microchip with Single-Cell Impedance Measurements for Monitoring Osteogenic Differentiation of Mesenchymal Stem Cells under Electrical Stimulation. Analytical Chemistry 2020, 92 (18), 12579-12587. 28. Cheng, Y.-C.; Chen, C.-H.; Kuo, H.-W.; Yen, T.-L.; Mao, Y.-Y.; Hu, W.-W., Electrical stimulation through conductive substrate to enhance osteo-differentiation of human dental pulp-derived stem cells. Applied Sciences 2019, 9 (18), 3938. 29. Ning, C.; Zhou, Z.; Tan, G.; Zhu, Y.; Mao, C., Electroactive polymers for tissue regeneration: Developments and perspectives. Progress in polymer science 2018, 81, 144-162. 30. Huang, L.; Zhuang, X.; Hu, J.; Lang, L.; Zhang, P.; Wang, Y.; Chen, X.; Wei, Y.; Jing, X., Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications. Biomacromolecules 2008, 9 (3), 850-858. 31. Balint, R.; Cassidy, N. J.; Cartmell, S. H., Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta biomaterialia 2014, 10 (6), 2341-2353. 32. Guo, B.; Ma, P. X., Conducting polymers for tissue engineering. Biomacromolecules 2018, 19 (6), 1764-1782. 33. Kim, S.; Jang, L. K.; Jang, M.; Lee, S.; Hardy, J. G.; Lee, J. Y., Electrically conductive polydopamine–polypyrrole as high performance biomaterials for cell stimulation in vitro and electrical signal recording in vivo. ACS applied materials interfaces 2018, 10 (39), 33032-33042. 34. Le, T.-H.; Kim, Y.; Yoon, H., Electrical and electrochemical properties of conducting polymers. Polymers 2017, 9 (4), 150. 35. Wong, J. Y.; Langer, R.; Ingber, D. E., Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proceedings of the National Academy of Sciences 1994, 91 (8), 3201-3204. 36. Kumar, D.; Sharma, R., Advances in conductive polymers. European polymer journal 1998, 34 (8), 1053-1060. 37. Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R., Poly (3, 4‐ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced materials 2000, 12 (7), 481-494. 38. Liu, J.; Wang, X.; Li, D.; Coates, N. E.; Segalman, R. A.; Cahill, D. G., Thermal conductivity and elastic constants of PEDOT: PSS with high electrical conductivity. Macromolecules 2015, 48 (3), 585-591. 39. Xia, Y.; Ouyang, J., Significant different conductivities of the two grades of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate), Clevios P and Clevios PH1000, arising from different molecular weights. ACS applied materials interfaces 2012, 4 (8), 4131-4140. 40. Hollister, S. J., Porous scaffold design for tissue engineering. Nature materials 2005, 4 (7), 518-524. 41. Kumar, G.; Tison, C. K.; Chatterjee, K.; Pine, P. S.; McDaniel, J. H.; Salit, M. L.; Young, M. F.; Simon Jr, C. G., The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials 2011, 32 (35), 9188-9196. 42. Duval, K.; Grover, H.; Han, L.-H.; Mou, Y.; Pegoraro, A. F.; Fredberg, J.; Chen, Z., Modeling physiological events in 2D vs. 3D cell culture. Physiology 2017, 32 (4), 266-277. 43. Shahini, A.; Yazdimamaghani, M.; Walker, K. J.; Eastman, M. A.; Hatami-Marbini, H.; Smith, B. J.; Ricci, J. L.; Madihally, S. V.; Vashaee, D.; Tayebi, L., 3D conductive nanocomposite scaffold for bone tissue engineering. International journal of nanomedicine 2014, 9, 167. 44. Wan, A. M.-D.; Inal, S.; Williams, T.; Wang, K.; Leleux, P.; Estevez, L.; Giannelis, E. P.; Fischbach, C.; Malliaras, G. G.; Gourdon, D., 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. Journal of Materials Chemistry B 2015, 3 (25), 5040-5048. 45. Lee, J. Y.; Bashur, C. A.; Goldstein, A. S.; Schmidt, C. E., Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009, 30 (26), 4325-4335. 46. Zhang, Z.; Roy, R.; Dugré, F. J.; Tessier, D.; Dao, L. H., In vitro biocompatibility study of electrically conductive polypyrrole‐coated polyester fabrics. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2001, 57 (1), 63-71. 47. Luo, X.; Weaver, C. L.; Zhou, D. D.; Greenberg, R.; Cui, X. T., Highly stable carbon nanotube doped poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 2011, 32 (24), 5551-5557. 48. Fischer, R.; Gregori, A.; Sahakalkan, S.; Hartmann, D.; Büchele, P.; Tedde, S. F.; Schmidt, O., Stable and highly conductive carbon nanotube enhanced PEDOT: PSS as transparent electrode for flexible electronics. Organic Electronics 2018, 62, 351-356. 49. Haghighia, M.; Khoshfetratb, A., Carbon nanotube as an appropriate dexamethasone carrier in the presence of PEG. 50. Luo, X.; Matranga, C.; Tan, S.; Alba, N.; Cui, X. T., Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 2011, 32 (26), 6316-6323. 51. Drury, J. L.; Mooney, D. J., Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24 (24), 4337-4351. 52. Lee, K. Y.; Mooney, D. J., Hydrogels for tissue engineering. Chemical reviews 2001, 101 (7), 1869-1880. 53. Fedorovich, N. E.; Alblas, J.; de Wijn, J. R.; Hennink, W. E.; Verbout, A. J.; Dhert, W. J., Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue engineering 2007, 13 (8), 1905-1925. 54. Jin, R.; Teixeira, L. M.; Dijkstra, P. J.; Van Blitterswijk, C.; Karperien, M.; Feijen, J., Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 2010, 31 (11), 3103-3113. 55. Kim, S.-H.; Kim, K.; Kim, B. S.; An, Y.-H.; Lee, U.-J.; Lee, S.-H.; Kim, S. L.; Kim, B.-G.; Hwang, N. S., Fabrication of polyphenol-incorporated anti-inflammatory hydrogel via high-affinity enzymatic crosslinking for wet tissue adhesion. Biomaterials 2020, 242, 119905. 56. Hasturk, O.; Jordan, K. E.; Choi, J.; Kaplan, D. L., Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials 2020, 232, 119720. 57. Rouillard, A. D.; Berglund, C. M.; Lee, J. Y.; Polacheck, W. J.; Tsui, Y.; Bonassar, L. J.; Kirby, B. J., Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability. Tissue Engineering Part C: Methods 2011, 17 (2), 173-179. 58. Cui, X.; Soliman, B. G.; Alcala‐Orozco, C. R.; Li, J.; Vis, M. A.; Santos, M.; Wise, S. G.; Levato, R.; Malda, J.; Woodfield, T. B., Rapid photocrosslinking of silk hydrogels with high cell density and enhanced shape fidelity. Advanced healthcare materials 2020, 9 (4), 1901667. 59. Zoratto, N.; Di Lisa, D.; de Rutte, J.; Sakib, M. N.; Alves e Silva, A. R.; Tamayol, A.; Di Carlo, D.; Khademhosseini, A.; Sheikhi, A., In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering. Bioengineering Translational Medicine 2020, 5 (3), e10180. 60. Ramanan, R. M. K.; Chellamuthu, P.; Tang, L.; Nguyen, K. T., Development of a temperature‐sensitive composite hydrogel for drug delivery applications. Biotechnology progress 2006, 22 (1), 118-125. 61. Ruel-Gariepy, E.; Leroux, J.-C., In situ-forming hydrogels—review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics 2004, 58 (2), 409-426. 62. Stammen, J. A.; Williams, S.; Ku, D. N.; Guldberg, R. E., Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 2001, 22 (8), 799-806. 63. Xue, Z.; Wang, S.; Lin, L.; Chen, L.; Liu, M.; Feng, L.; Jiang, L., A novel superhydrophilic and underwater superoleophobic hydrogel‐coated mesh for oil/water separation. Advanced Materials 2011, 23 (37), 4270-4273. 64. Allison, D. D.; Grande-Allen, K. J., Hyaluronan: a powerful tissue engineering tool. Tissue engineering 2006, 12 (8), 2131-2140. 65. Huang, H.; Choi, J. K.; Rao, W.; Zhao, S.; Agarwal, P.; Zhao, G.; He, X., Alginate hydrogel microencapsulation inhibits devitrification and enables large‐volume low‐CPA cell vitrification. Advanced functional materials 2015, 25 (44), 6839-6850. 66. Rafat, M.; Xeroudaki, M.; Koulikovska, M.; Sherrell, P.; Groth, F.; Fagerholm, P.; Lagali, N., Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications. Biomaterials 2016, 83, 142-155. 67. Croisier, F.; Jérôme, C., Chitosan-based biomaterials for tissue engineering. European Polymer Journal 2013, 49 (4), 780-792. 68. Kim, Y.-H.; Furuya, H.; Tabata, Y., Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels. Biomaterials 2014, 35 (1), 214-224. 69. Fisher, S. A.; Anandakumaran, P. N.; Owen, S. C.; Shoichet, M. S., Tuning the microenvironment: click‐crosslinked hyaluronic acid‐based hydrogels provide a platform for studying breast cancer cell invasion. Advanced Functional Materials 2015, 25 (46), 7163-7172. 70. Choi, J. R.; Yong, K. W.; Choi, J. Y.; Cowie, A. C., Recent advances in photo-crosslinkable hydrogels for biomedical applications. BioTechniques 2019, 66 (1), 40-53. 71. Pereira, R. F.; Bártolo, P. J., 3D photo-fabrication for tissue engineering and drug delivery. Engineering 2015, 1 (1), 090-112. 72. Williams, C. G.; Malik, A. N.; Kim, T. K.; Manson, P. N.; Elisseeff, J. H., Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 2005, 26 (11), 1211-1218. 73. Cesur, B.; Karahan, O.; Agopcan, S.; Eren, T. N.; Okte, N.; Avci, D., Difunctional monomeric and polymeric photoinitiators: synthesis and photoinitiating behaviors. Progress in Organic Coatings 2015, 86, 71-78. 74. Segurola, J.; Allen, N. S.; Edge, M.; McMahon, A.; Wilson, S., Photoyellowing and discolouration of UV cured acrylated clear coatings systems: influence of photoinitiator type. Polymer degradation and stability 1999, 64 (1), 39-48. 75. Fairbanks, B. D.; Schwartz, M. P.; Bowman, C. N.; Anseth, K. S., Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 2009, 30 (35), 6702-6707. 76. Xu, H.; Casillas, J.; Krishnamoorthy, S.; Xu, C., Effects of Irgacure 2959 and lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomedical Materials 2020, 15 (5), 055021. 77. Yuk, H.; Lu, B.; Zhao, X., Hydrogel bioelectronics. Chemical Society Reviews 2019, 48 (6), 1642-1667. 78. Li, Z.; Zhang, S.; Chen, Y.; Ling, H.; Zhao, L.; Luo, G.; Wang, X.; Hartel, M. C.; Liu, H.; Xue, Y., Gelatin Methacryloyl‐Based Tactile Sensors for Medical Wearables. Advanced Functional Materials 2020, 30 (49), 2003601. 79. Distler, T.; Boccaccini, A. R., 3D printing of electrically conductive hydrogels for tissue engineering and biosensors–A review. Acta biomaterialia 2020, 101, 1-13. 80. Zhou, J.; Chen, J.; Sun, H.; Qiu, X.; Mou, Y.; Liu, Z.; Zhao, Y.; Li, X.; Han, Y.; Duan, C., Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function. Scientific reports 2014, 4 (1), 1-11. 81. Håkansson, A.; Han, S.; Wang, S.; Lu, J.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X.; Fabiano, S., Effect of (3‐glycidyloxypropyl) trimethoxysilane (GOPS) on the electrical properties of PEDOT: PSS films. Journal of Polymer Science Part B: Polymer Physics 2017, 55 (10), 814-820. 82. Lai, T.; Yu, J.; Tsai, W., Gelatin methacrylate/carboxybetaine methacrylate hydrogels with tunable crosslinking for controlled drug release. Journal of Materials Chemistry B 2016, 4 (13), 2304-2313. 83. Hu, W. W.; Chen, T. C.; Tsao, C. W.; Cheng, Y. C., The effects of substrate‐mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2019, 107 (5), 1607-1619. 84. Wick, P.; Manser, P.; Limbach, L. K.; Dettlaff-Weglikowska, U.; Krumeich, F.; Roth, S.; Stark, W. J.; Bruinink, A., The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology letters 2007, 168 (2), 121-131. 85. Park, S. Y.; Park, S. Y.; Namgung, S.; Kim, B.; Im, J.; Kim, J. Y.; Sun, K.; Lee, K. B.; Nam, J. M.; Park, Y., Carbon nanotube monolayer patterns for directed growth of mesenchymal stem cells. Advanced Materials 2007, 19 (18), 2530-2534. 86. Baik, K. Y.; Park, S. Y.; Heo, K.; Lee, K. B.; Hong, S., Carbon nanotube monolayer cues for osteogenesis of mesenchymal stem cells. small 2011, 7 (6), 741-745. 87. Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M. M.; Kröger, R., Fractal-like hierarchical organization of bone begins at the nanoscale. Science 2018, 360 (6388). 88. Zhu, L.; Luo, D.; Liu, Y., Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. International journal of oral science 2020, 12 (1), 1-15. 89. Zhu, B.; Lu, Q.; Yin, J.; Hu, J.; Wang, Z., Alignment of osteoblast-like cells and cell-produced collagen matrix induced by nanogrooves. Tissue engineering 2005, 11 (5-6), 825-834. 90. Komlev, V.; Peyrin, F.; Mastrogiacomo, M.; Cedola, A.; Papadimitropoulos, A.; Rustichelli, F.; Cancedda, R., Kinetics of in vivo bone deposition by bone marrow stromal cells into porous calcium phosphate scaffolds: an X-ray computed microtomography study. Tissue engineering 2006, 12 (12), 3449-3458. 91. Meinel, L.; Karageorgiou, V.; Fajardo, R.; Snyder, B.; Shinde-Patil, V.; Zichner, L.; Kaplan, D.; Langer, R.; Vunjak-Novakovic, G., Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Annals of biomedical engineering 2004, 32 (1), 112-122. 92. Komori, T., Regulation of osteoblast differentiation by Runx2. In Osteoimmunology, Springer: 2009; pp 43-49. 93. Komori, T., Roles of Runx2 in skeletal development. RUNX Proteins in development and cancer 2017, 83-93. 94. Shi, S.; Kirk, M.; Kahn, A. J., The role of type I collagen in the regulation of the osteoblast phenotype. Journal of Bone and Mineral Research 1996, 11 (8), 1139-1145. 95. Marino, G.; Rosso, F.; Cafiero, G.; Tortora, C.; Moraci, M.; Barbarisi, M.; Barbarisi, A., β-Tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. Journal of Materials Science: Materials in Medicine 2010, 21 (1), 353-363. 96. Hoemann, C.; El-Gabalawy, H.; McKee, M., In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathologie Biologie 2009, 57 (4), 318-323. 97. Blaeser, A.; Duarte Campos, D. F.; Puster, U.; Richtering, W.; Stevens, M. M.; Fischer, H., Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Advanced healthcare materials 2016, 5 (3), 326-333.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81853-
dc.description.abstract" 導電高分子在生醫領域的應用隨著幹細胞療程及生物訊號探測的發展也越來越受到注目。首先,由導電高分子所製備而成的可導電生醫材料與電刺激的結合可以促進神經、硬骨以及肌肉的組織再生,使其在組織工程領域中發展成為相當有潛力的材料。許多研究已致力於導電高分子所製成的二維材料在分化上的應用,但三維孔洞結構的應用還未被多加關注。另外,導電水凝膠的發展在生物感測器的需求提升之下也越來越受到注目。然而在傳統上合成導電水凝膠時往往會混參含有細胞毒性的化合物或金屬。 因此,在這份研究中導電高分子聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸鹽) (PEDOT:PSS) 首先結合了奈米碳管 (MWCNT) 用於製備三維導電支架。電刺激結合PEDOT:PSS及MWCNT所作成的三維支架被應用於人類脂肪幹細胞的硬骨分化。研究結果顯示人類脂肪幹細胞可以成功地在支架內部生長,代表此導電三維支架的低細胞毒性。更重要的是,硬骨分化的分析結果顯示鈣沉積及硬骨分化特定基因在電刺激的作用下都可以顯著地提高。綜合這些結果表示PEDOT:PSS及MWCNT所製成的三維高孔洞支架可作為電刺激應用於幹細胞硬骨分化的平台。 另一方面,PEDOT:PSS更被混合入可光交聯的甲基丙烯酸酐化明膠 (GelMA) 來合成可導電的水凝膠。PEDOT:PSS及GelMA混合而成的水凝膠更進一步使用鈣離子進行物理性交聯,而結果顯示額外使用鈣離子交聯的導電水凝膠具有較低的彭潤效果及較慢的降解速率,使得PEDOT:PSS及GelMA所製備而成的水凝膠擁有可調控的物理及化學性質。而在細胞實驗中,結果也顯示此導電水凝膠具有低細胞毒性及良好的生物相容性,且可使小鼠成纖維母細胞L929在水凝膠內部增殖且生長。後續仍須進行更多實驗以及文獻來佐證導電水凝膠在電刺激組織工程或是生物訊號探測應用是否確有其效果。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:05:06Z (GMT). No. of bitstreams: 1
U0001-0607202113060600.pdf: 18472936 bytes, checksum: 8a9a026d5f9acdac880a9fb41570741c (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i 摘要 iv Abstract vi Contents viii List of Figures xiii List of Tables xvii List of Equations xviii Chapter 1 Introduction 1 1.1 Tissue Engineering 1 1.1.1 Tissue engineering introduction 1 1.1.2 Bone tissue engineering 2 1.1.3 Electrical stimulation on bone tissue engineering 3 1.2 Conductive polymers 3 1.2.1 Conductive polymer introduction 3 1.2.2 PEDOT:PSS 4 1.3 Three-dimensional scaffold 6 1.3.1 3D scaffold introduction 6 1.3.2 Fabrication methods for PEDOT:PSS porous scaffold 6 1.3.3 PEDOT:PSS scaffold incorporation with carbon nanotube 7 1.4 Hydrogel 8 1.4.1 Hydrogel introduction 8 1.4.2 Photo-crosslinkable hydrogel 9 1.4.3 Conductive hydrogel 10 1.4.4 GelMA hydrogel incorporation with PEDOT:PSS 11 1.5 Motivation and Aims 11 1.6 Research Framework 14 Chapter 2 Materials and Methods 15 2.1 Materials 15 2.1.1 Fabrication of PEDOT:PSS/MWCNT scaffold 15 2.1.2 Fabrication of PEDOT:PSS/GelMA hydrogel 15 2.1.3 Degradation test 15 2.1.4 Cell culture 16 2.1.5 Cell viability and proliferation 17 2.1.6 Cell differentiation 17 2.1.7 Calcium quantification 17 2.1.8 Immunofluorescence staining 17 2.1.9 Real-time quantitative polymerase chain reaction (qPCR) 18 2.2 Equipment 19 2.3 Solution formula 21 2.4 Methods 24 2.4.1 Fabrication of PEDOT:PSS/MWCNT scaffold 24 2.4.2 Fabrication of PEDOT:PSS/GelMA hydrogel 25 2.4.3 Dynamic compression test 26 2.4.4 Swelling test 26 2.4.5 Conductivity test 26 2.4.6 in vitro degradation test 27 2.4.7 3D bio-printing 28 2.4.8 Cell culture 28 2.4.9 Cytotoxicity test 29 2.4.10 Osteogenic differentiation in PEDOT:PSS/MWCNT scaffold 31 2.4.11 Characteristics of osteogenic differentiated hASC 33 2.4.12 Electrical stimulation 34 2.4.13 RNA extraction 37 2.4.14 Reverse transcription of RNA 37 2.4.15 Real-time polymerase chain reaction (qPCR) 38 2.4.16 Statistical analysis 38 Chapter 3 Results and discussion 39 3.1 Characterizations of PEDOT:PSS/MWCNT scaffold 39 3.1.1 Physical properties of PEDOT:PSS/MWCNT scaffold 39 3.1.2 Dynamic compression of PEDOT:PSS/MWCNT scaffold 42 3.1.3 Discussion 43 3.2 Biocompatibility of PEDOT:PSS/MWCNT scaffold 48 3.2.1 Cell activity 48 3.2.2 Cell viability 49 3.2.3 Cell adhesion 50 3.2.4 Discussion 51 3.3 hASC osteogenesis potential in PEDOT:PSS/MWCNT scaffold 56 3.3.1 Cell morphology 56 3.3.2 Calcium deposition quantification 57 3.3.3 Discussion 58 3.4 hASC osteogenesis performance with electrical stimulation (ES) 61 3.4.1 Electrical stimulation parameter 61 3.4.2 Cell morphology 63 3.4.3 Calcium deposition quantification 64 3.4.4 Immunocytochemistry fluorescence staining 66 3.4.5 qPCR 67 3.4.6 Discussion 68 3.5 Characterizations of PEDOT:PSS/GelMA hydrogel 76 3.5.1 Appearance and microstructure of hydrogel 76 3.5.2 Swelling behavior 78 3.5.3 Enzymatic degradation 79 3.5.4 Long-term degradation 80 3.5.5 Three-dimensional bioprinting of PEDOT:PSS/GelMA hydrogel 81 3.5.6 Discussion 83 3.6 Biocompatibility of PEDOT:PSS/GelMA hydrogel 91 3.6.1 Cytotoxicity of PEDOT:PSS/GelMA hydrogel 91 3.6.2 Proliferation of encapsulated L929 in PEDOT:PSS/GelMA hydrogel 92 3.6.3 Cell morphology of L929 contacted with PEDOT:PSS/GelMA hydrogel 93 3.6.4 Discussion 94 Conclusion 98 References 100
dc.language.isoen
dc.subject硬骨組織再生zh_TW
dc.subject孔洞支架zh_TW
dc.subject導電高分子zh_TW
dc.subject電刺激zh_TW
dc.subject幹細胞zh_TW
dc.subject導電水凝膠zh_TW
dc.subjectelectrical stimulationen
dc.subjectconductive hydrogelen
dc.subjectbone tissue regenerationen
dc.subjectconductive polymeren
dc.subjectPEDOT:PSSen
dc.subjectporous scaffolden
dc.subjectstem cellen
dc.title以導電高分子製備之三維孔洞支架及水凝膠在組織再生工程上的應用zh_TW
dc.titleFabrication of Three-dimensional Porous Scaffold and Hydrogel from Conductive Polymer for Tissue Regenerationen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅世強(Hsin-Tsai Liu),蕭育生(Chih-Yang Tseng),陳賢燁
dc.subject.keyword導電高分子,孔洞支架,電刺激,幹細胞,硬骨組織再生,導電水凝膠,zh_TW
dc.subject.keywordconductive polymer,PEDOT:PSS,porous scaffold,electrical stimulation,stem cell,bone tissue regeneration,conductive hydrogel,en
dc.relation.page107
dc.identifier.doi10.6342/NTU202101295
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2026-07-19-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-0607202113060600.pdf
  此日期後於網路公開 2026-07-19
18.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved