請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81849完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭尊仁(Tsun-Jen Cheng) | |
| dc.contributor.author | Po-Han Lee | en |
| dc.contributor.author | 李柏翰 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:05:00Z | - |
| dc.date.available | 2023-01-01 | |
| dc.date.copyright | 2021-07-20 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-07-12 | |
| dc.identifier.citation | Acosta-Coley, I., Mendez-Cuadro, D., Rodriguez-Cavallo, E., de la Rosa, J., Olivero-Verbel, J. (2019). Trace elements in microplastics in Cartagena: A hotspot for plastic pollution at the Caribbean. Marine Pollution Bulletin, 139, 402-411. doi:10.1016/j.marpolbul.2018.12.016 2. Adan, A., Alizada, G., Kiraz, Y., Baran, Y., Nalbant, A. (2017). Flow cytometry: basic principles and applications. Crit Rev Biotechnol, 37(2), 163-176. doi:10.3109/07388551.2015.1128876 3. Albanese, A., Tang, P. S., Chan, W. C. W. (2012). The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annual Review of Biomedical Engineering, Vol 14, 14, 1-16. doi:10.1146/annurev-bioeng-071811-150124 4. Andrady, A. L. (2011). Microplastics in the marine environment. Mar Pollut Bull, 62(8), 1596-1605. doi:10.1016/j.marpolbul.2011.05.030 5. Araujo, C. F., Nolasco, M. M., Ribeiro, A. M. P., Ribeiro-Claro, P. J. A. (2018a). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research, 142, 426-440. doi:10.1016/j.watres.2018.05.060 6. Araujo, C. F., Nolasco, M. M., Ribeiro, A. M. P., Ribeiro-Claro, P. J. A. (2018b). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res, 142, 426-440. doi:10.1016/j.watres.2018.05.060 7. Bareford, L. M., Swaan, P. W. (2007). Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev, 59(8), 748-758. doi:10.1016/j.addr.2007.06.008 8. Barnes, D. K. A., Galgani, F., Thompson, R. C., Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B-Biological Sciences, 364(1526), 1985-1998. doi:10.1098/rstb.2008.0205 9. Besseling, E., Wang, B., Lurling, M., Koelmans, A. A. (2014). Nanoplastic Affects Growth of S. obliquus and Reproduction of D. magna. Environmental Science Technology, 48(20), 12336-12343. doi:10.1021/es503001d 10. Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? Journal of Controlled Release, 235, 337-351. doi:10.1016/j.jconrel.2016.06.017 11. Bouwmeester, H., Hollman, P. C., Peters, R. J. (2015). Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environ Sci Technol, 49(15), 8932-8947. doi:10.1021/acs.est.5b01090 12. Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., Thompson, R. (2011). Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol, 45(21), 9175-9179. doi:10.1021/es201811s 13. Busse, K., Ebner, I., Humpf, H. U., Ivleva, N., Kaeppler, A., Ossmann, B. E., Schymanski, D. (2020). Comment on 'Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea'. Environ Sci Technol, 54(21), 14134-14135. doi:10.1021/acs.est.0c03182 14. Cai, H., Xu, E. G., Du, F., Li, R., Liu, J., Shi, H. (2021). Analysis of environmental nanoplastics: Progress and challenges. Chemical Engineering Journal, 410. doi:10.1016/j.cej.2020.128208 15. Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X., Chen, Q. (2017). Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environ Sci Pollut Res Int, 24(32), 24928-24935. doi:10.1007/s11356-017-0116-x 16. Canesi, L., Ciacci, C., Bergami, E., Monopoli, M. P., Dawson, K. A., Papa, S., . . . Corsi, I. (2015a). Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar Environ Res, 111, 34-40. doi:10.1016/j.marenvres.2015.06.008 17. Canesi, L., Ciacci, C., Bergami, E., Monopoli, M. P., Dawson, K. A., Papa, S., . . . Corsi, I. (2015b). Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Marine Environmental Research, 111, 34-40. doi:10.1016/j.marenvres.2015.06.008 18. Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P., Peck, B. B. (1972). Polystyrene spherules in coastal waters. Science, 178(4062), 749-750. doi:10.1126/science.178.4062.749 19. Chang, Y. J., Shih, Y. H., Su, C. H., Ho, H. C. (2017). Comparison of three analytical methods to measure the size of silver nanoparticles in real environmental water and wastewater samples. Journal of Hazardous Materials, 322, 95-104. doi:10.1016/j.jhazmat.2016.03.030 20. Chen, Q., Zhang, H., Allgeier, A., Zhou, Q., Ouellet, J. D., Crawford, S. E., . . . Hollert, H. (2019). Marine microplastics bound dioxin-like chemicals: Model explanation and risk assessment. J Hazard Mater, 364, 82-90. doi:10.1016/j.jhazmat.2018.10.032 21. Chen, Q. Q., Reisser, J., Cunsolo, S., Kwadijk, C., Kotterman, M., Proietti, M., . . . Koelmans, A. A. (2018). Pollutants in Plastics within the North Pacific Subtropical Gyre. Environmental Science Technology, 52(2), 446-456. doi:10.1021/acs.est.7b04682 22. Chiu, H. W., Xia, T., Lee, Y. H., Chen, C. W., Tsai, J. C., Wang, Y. J. (2015). Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale, 7(2), 736-746. doi:10.1039/c4nr05509h 23. Colton, J. B., Jr., Burns, B. R., Knapp, F. D. (1974). Plastic particles in surface waters of the northwestern atlantic. Science, 185(4150), 491-497. doi:10.1126/science.185.4150.491 24. Comas-Riu, J., Rius, N. (2009). Flow cytometry applications in the food industry. J Ind Microbiol Biotechnol, 36(8), 999-1011. doi:10.1007/s10295-009-0608-x 25. Cooper, D. A., Corcoran, P. L. (2010). Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Marine Pollution Bulletin, 60(5), 650-654. doi:10.1016/j.marpolbul.2009.12.026 26. Correia, M., Loeschner, K. (2018). Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations. Analytical and Bioanalytical Chemistry, 410(22), 5603-5615. doi:10.1007/s00216-018-0919-8 27. Devriese, L. I., van der Meulen, M. D., Maes, T., Bekaert, K., Paul-Pont, I., Frere, L., . . . Vethaak, A. D. (2015). Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar Pollut Bull, 98(1-2), 179-187. doi:10.1016/j.marpolbul.2015.06.051 28. dos Santos, T., Varela, J., Lynch, I., Salvati, A., Dawson, K. A. (2011). Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One, 6(9), e24438. doi:10.1371/journal.pone.0024438 29. Dris, R., Gasperi, J., Saad, M., Mirande, C., Tassin, B. (2016). Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar Pollut Bull, 104(1-2), 290-293. doi:10.1016/j.marpolbul.2016.01.006 30. Du, F. N., Cai, H. W., Zhang, Q., Chen, Q. Q., Shi, H. H. (2020). Microplastics in take-out food containers. Journal of Hazardous Materials, 399. doi:ARTN 122969 31. 10.1016/j.jhazmat.2020.122969 32. Erdbrugger, U., Rudy, C. K., Etter, M. E., Dryden, K. A., Yeager, M., Klibanov, A. L., Lannigan, J. (2014). Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry A, 85(9), 756-770. doi:10.1002/cyto.a.22494 33. Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., . . . Amato, S. (2013). Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull, 77(1-2), 177-182. doi:10.1016/j.marpolbul.2013.10.007 34. Fang, C., Sobhani, Z., Zhang, X., McCourt, L., Routley, B., Gibson, C. T., Naidu, R. (2021). Identification and visualisation of microplastics / nanoplastics by Raman imaging (iii): algorithm to cross-check multi-images. Water Research, 194. doi:ARTN 116913 35. 10.1016/j.watres.2021.116913 36. Fendall, L. S., Sewell, M. A. (2009). Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar Pollut Bull, 58(8), 1225-1228. doi:10.1016/j.marpolbul.2009.04.025 37. Filipe, V., Hawe, A., Jiskoot, W. (2010). Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res, 27(5), 796-810. doi:10.1007/s11095-010-0073-2 38. Forte, M., Iachetta, G., Tussellino, M., Carotenuto, R., Prisco, M., De Falco, M., . . . Valiante, S. (2016). Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol In Vitro, 31, 126-136. doi:10.1016/j.tiv.2015.11.006 39. Frias, J. P., Sobral, P., Ferreira, A. M. (2010). Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar Pollut Bull, 60(11), 1988-1992. doi:10.1016/j.marpolbul.2010.07.030 40. Fu, W., Min, J., Jiang, W., Li, Y., Zhang, W. (2020). Separation, characterization and identification of microplastics and nanoplastics in the environment. Sci Total Environ, 721, 137561. doi:10.1016/j.scitotenv.2020.137561 41. Gallego-Schmid, A., Mendoza, J. M. F., Azapagic, A. (2019). Environmental impacts of takeaway food containers. Journal of Cleaner Production, 211, 417-427. doi:10.1016/j.jclepro.2018.11.220 42. Geyer, R., Jambeck, J. R., Law, K. L. (2017). Production, use, and fate of all plastics ever made. Sci Adv, 3(7), e1700782. doi:10.1126/sciadv.1700782 43. Geys, J., Coenegrachts, L., Vercammen, J., Engelborghs, Y., Nemmar, A., Nemery, B., Hoet, P. H. (2006). In vitro study of the pulmonary translocation of nanoparticles: a preliminary study. Toxicol Lett, 160(3), 218-226. doi:10.1016/j.toxlet.2005.07.005 44. Gigault, J., El Hadri, H., Nguyen, B., Grassl, B., Rowenczyk, L., Tufenkji, N., . . . Wiesner, M. (2021). Nanoplastics are neither microplastics nor engineered nanoparticles. Nat Nanotechnol, 16(5), 501-507. doi:10.1038/s41565-021-00886-4 45. Gigault, J., El Hadri, H., Reynaud, S., Deniau, E., Grassl, B. (2017). Asymmetrical flow field flow fractionation methods to characterize submicron particles: application to carbon-based aggregates and nanoplastics. Analytical and Bioanalytical Chemistry, 409(29), 6761-6769. doi:10.1007/s00216-017-0629-7 46. Gniadek, M., Dbrowska, A. (2019). The marine nano- and microplastics characterisation by SEM-EDX: The potential of the method in comparison with various physical and chemical approaches. Marine Pollution Bulletin, 148, 210-216. doi:10.1016/j.marpolbul.2019.07.067 47. Graham, E. S., Angel, C. E., Schwarcz, L. E., Dunbar, P. R., Glass, M. (2010). Detailed characterisation of CB2 receptor protein expression in peripheral blood immune cells from healthy human volunteers using flow cytometry. Int J Immunopathol Pharmacol, 23(1), 25-34. doi:10.1177/039463201002300103 48. Gregory, M. R. (1996). Plastic 'scrubbers' in hand cleansers: A further (and minor) source for marine pollution identified. Marine Pollution Bulletin, 32(12), 867-871. doi:Doi 10.1016/S0025-326x(96)00047-1 49. Groh, K. J., Backhaus, T., Carney-Almroth, B., Geueke, B., Inostroza, P. A., Lennquist, A., . . . Muncke, J. (2019). Overview of known plastic packaging-associated chemicals and their hazards. Science of the Total Environment, 651, 3253-3268. doi:10.1016/j.scitotenv.2018.10.015 50. Gundogdu, S. (2018). Contamination of table salts from Turkey with microplastics. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 35(5), 1006-1014. doi:10.1080/19440049.2018.1447694 51. Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179-199. doi:10.1016/j.jhazmat.2017.10.014 52. Hartmann, N. B., Huffer, T., Thompson, R. C., Hassellov, M., Verschoor, A., Daugaard, A. E., . . . Wagner, M. (2019). Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ Sci Technol, 53(3), 1039-1047. doi:10.1021/acs.est.8b05297 53. Hernandez, L. M., Xu, E. G., Larsson, H. C. E., Tahara, R., Maisuria, V. B., Tufenkji, N. (2019a). Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environmental Science Technology, 53(21), 12300-12310. doi:10.1021/acs.est.9b02540 54. Hernandez, L. M., Xu, E. G., Larsson, H. C. E., Tahara, R., Maisuria, V. B., Tufenkji, N. (2019b). Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ Sci Technol, 53(21), 12300-12310. doi:10.1021/acs.est.9b02540 55. Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., Thiel, M. (2012a). Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol, 46(6), 3060-3075. doi:10.1021/es2031505 56. Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., Thiel, M. (2012b). Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environmental Science Technology, 46(6), 3060-3075. doi:10.1021/es2031505 57. Holmes, L. A., Turner, A., Thompson, R. C. (2012). Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut, 160(1), 42-48. doi:10.1016/j.envpol.2011.08.052 58. Hou, J., Ci, H., Wang, P., Wang, C., Lv, B., Miao, L., You, G. (2018). Nanoparticle tracking analysis versus dynamic light scattering: Case study on the effect of Ca(2+) and alginate on the aggregation of cerium oxide nanoparticles. J Hazard Mater, 360, 319-328. doi:10.1016/j.jhazmat.2018.08.010 59. Huppertsberg, S., Knepper, T. P. (2018). Instrumental analysis of microplastics-benefits and challenges. Analytical and Bioanalytical Chemistry, 410(25), 6343-6352. doi:10.1007/s00216-018-1210-8 60. Imhof, H. K., Laforsch, C., Wiesheu, A. C., Schmid, J., Anger, P. M., Niessner, R., Ivleva, N. P. (2016). Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Res, 98, 64-74. doi:10.1016/j.watres.2016.03.015 61. Ivleva, N. P., Wiesheu, A. C., Niessner, R. (2017a). Microplastic in Aquatic Ecosystems. Angew Chem Int Ed Engl, 56(7), 1720-1739. doi:10.1002/anie.201606957 62. Ivleva, N. P., Wiesheu, A. C., Niessner, R. (2017b). Microplastic in Aquatic Ecosystems. Angewandte Chemie-International Edition, 56(7), 1720-1739. doi:10.1002/anie.201606957 63. Jahan-Tigh, R. R., Ryan, C., Obermoser, G., Schwarzenberger, K. (2012). Flow Cytometry. Journal of Investigative Dermatology, 132(10), 1-6. doi:10.1038/jid.2012.282 64. Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., . . . Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. doi:10.1126/science.1260352 65. James, A. E., Driskell, J. D. (2013). Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS). Analyst, 138(4), 1212-1218. doi:10.1039/c2an36467k 66. Jamieson, A. J., Brooks, L. S. R., Reid, W. D. K., Piertney, S. B., Narayanaswamy, B. E., Linley, T. D. (2019). Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. R Soc Open Sci, 6(2), 180667. doi:10.1098/rsos.180667 67. Johnston, H. J., Semmler-Behnke, M., Brown, D. M., Kreyling, W., Tran, L., Stone, V. (2010). Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicol Appl Pharmacol, 242(1), 66-78. doi:10.1016/j.taap.2009.09.015 68. Kappler, A., Fischer, D., Oberbeckmann, S., Schernewski, G., Labrenz, M., Eichhorn, K. J., Voit, B. (2016a). Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Analytical and Bioanalytical Chemistry, 408(29), 8377-8391. doi:10.1007/s00216-016-9956-3 69. Kappler, A., Fischer, D., Oberbeckmann, S., Schernewski, G., Labrenz, M., Eichhorn, K. J., Voit, B. (2016b). Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Analytical and Bioanalytical Chemistry, 408(29), 8377-8391. doi:10.1007/s00216-016-9956-3 70. Karami, A., Golieskardi, A., Choo, C. K., Larat, V., Karbalaei, S., Salamatinia, B. (2018). Microplastic and mesoplastic contamination in canned sardines and sprats. Sci Total Environ, 612, 1380-1386. doi:10.1016/j.scitotenv.2017.09.005 71. Karami, A., Golieskardi, A., Keong Choo, C., Larat, V., Galloway, T. S., Salamatinia, B. (2017). The presence of microplastics in commercial salts from different countries. Sci Rep, 7, 46173. doi:10.1038/srep46173 72. Kim, J. S., Lee, H. J., Kim, S. K., Kim, H. J. (2018). Global Pattern of Microplastics (MPs) in Commercial Food-Grade Salts: Sea Salt as an Indicator of Seawater MP Pollution. Environ Sci Technol, 52(21), 12819-12828. doi:10.1021/acs.est.8b04180 73. Koelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M., De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research, 155, 410-422. doi:10.1016/j.watres.2019.02.054 74. Kosuth, M., Mason, S. A., Wattenberg, E. V. (2018). Anthropogenic contamination of tap water, beer, and sea salt. PLoS One, 13(4), e0194970. doi:10.1371/journal.pone.0194970 75. Kutralam-Muniasamy, G., Perez-Guevara, F., Elizalde-Martinez, I., Shruti, V. C. (2020). Branded milks - Are they immune from microplastics contamination? Sci Total Environ, 714, 136823. doi:10.1016/j.scitotenv.2020.136823 76. Löder, M. G. J., Gerdts, G. (2015). Methodology Used for the Detection and Identification of Microplastics—A Critical Appraisal. In Marine Anthropogenic Litter (pp. 201-227). 77. Lacroix, R., Robert, S., Poncelet, P., Dignat-George, F. (2010). Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Hemost, 36(8), 807-818. doi:10.1055/s-0030-1267034 78. Lambert, S., Wagner, M. (2016). Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere, 145, 265-268. doi:10.1016/j.chemosphere.2015.11.078 79. Law, K. L., Thompson, R. C. (2014). Oceans. Microplastics in the seas. Science, 345(6193), 144-145. doi:10.1126/science.1254065 80. Le, L. L., Liu, M. T., Song, Y., Lu, S. B., Hu, J. N., Cao, C. J., . . . He, D. F. (2018). Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environmental Science-Nano, 5(8), 2009-2020. doi:10.1039/c8en00412a 81. Lehner, R., Weder, C., Petri-Fink, A., Rothen-Rutishauser, B. (2019). Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environmental Science Technology, 53(4), 1748-1765. doi:10.1021/acs.est.8b05512 82. Lenz, R., Enders, K., Stedmon, C. A., Mackenzie, D. M. A., Nielsen, T. G. (2015). A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Marine Pollution Bulletin, 100(1), 82-91. doi:10.1016/j.marpolbul.2015.09.026 83. Lespes, G., Gigault, J. (2011). Hyphenated analytical techniques for multidimensional characterisation of submicron particles: A review. Analytica Chimica Acta, 692(1-2), 26-41. doi:10.1016/j.aca.2011.02.052 84. Li, D. Z., Shi, Y. H., Yang, L. M., Xiao, L. W., Kehoe, D. K., Gun'ko, Y. K., . . . Wang, J. J. (2020). Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nature Food, 1(11), 746-+. doi:10.1038/s43016-020-00171-y 85. Lichtman, J. W., Conchello, J. A. (2005). Fluorescence microscopy. Nature Methods, 2(12), 910-919. doi:10.1038/Nmeth817 86. Liebezeit, G., Liebezeit, E. (2013). Non-pollen particulates in honey and sugar. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 30(12), 2136-2140. doi:10.1080/19440049.2013.843025 87. Liebezeit, G., Liebezeit, E. (2014). Synthetic particles as contaminants in German beers. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 31(9), 1574-1578. doi:10.1080/19440049.2014.945099 88. Liu, J., Zhang, T., Piche-Choquette, S., Wang, G., Li, J. (2020). Microplastic Pollution in China, an Invisible Threat Exacerbated by Food Delivery Services. Bull Environ Contam Toxicol. doi:10.1007/s00128-020-03018-1 89. Maecker, H. T., McCoy, J. P., Jr., Consortium, F. H. I., Amos, M., Elliott, J., Gaigalas, A., . . . Yeh, J. H. (2010). A model for harmonizing flow cytometry in clinical trials. Nat Immunol, 11(11), 975-978. doi:10.1038/ni1110-975 90. Maes, T., Jessop, R., Wellner, N., Haupt, K., Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci Rep, 7, 44501. doi:10.1038/srep44501 91. Mahler, G. J., Esch, M. B., Tako, E., Southard, T. L., Archer, S. D., Glahn, R. P., Shuler, M. L. (2012). Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol, 7(4), 264-271. doi:10.1038/nnano.2012.3 92. Malloy, A., Carr, B. (2006). NanoParticle Tracking Analysis - The Halo™ System. Particle Particle Systems Characterization, 23(2), 197-204. doi:10.1002/ppsc.200601031 93. Meeker, J. D., Sathyanarayana, S., Swan, S. H. (2009). Phthalates and other additives in plastics: human exposure and associated health outcomes. Philosophical Transactions of the Royal Society B-Biological Sciences, 364(1526), 2097-2113. doi:10.1098/rstb.2008.0268 94. Mintenig, S. M., Bauerlein, P. S., Koelmans, A. A., Dekker, S. C., van Wezel, A. P. (2018). Closing the gap between small and smaller: towards a framework to analyse nano- and microplastics in aqueous environmental samples. Environmental Science-Nano, 5(7), 1640-1649. doi:10.1039/c8en00186c 95. Mullier, F., Bailly, N., Chatelain, C., Dogne, J. M., Chatelain, B. (2011). More on: calibration for the measurement of microparticles: needs, interests, and limitations of calibrated polystyrene beads for flow cytometry-based quantification of biological microparticles. Journal of Thrombosis and Haemostasis, 9(8), 1679-1681. doi:10.1111/j.1538-7836.2011.04386.x 96. Murphy, F., Ewins, C., Carbonnier, F., Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ Sci Technol, 50(11), 5800-5808. doi:10.1021/acs.est.5b05416 97. Nomura, D. H., Mateus, S. F., Saiki, M., Bode, P. (2000). Characterization of inorganic components in plastic materials. Journal of Radioanalytical and Nuclear Chemistry, 244(1), 61-65. doi:Doi 10.1023/A:1006766821530 98. Oriekhova, O., Stoll, S. (2018). Heteroaggregation of nanoplastic particles in the presence of inorganic colloids and natural organic matter. Environmental Science-Nano, 5(3), 792-799. doi:10.1039/c7en01119a 99. Peda, C., Caccamo, L., Fossi, M. C., Gai, F., Andaloro, F., Genovese, L., . . . Maricchiolo, G. (2016). Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environmental Pollution, 212, 251-256. doi:10.1016/j.envpol.2016.01.083 100. Pikuda, O., Xu, E. G., Berk, D., Tufenkji, N. (2019). Toxicity Assessments of Micro- and Nanoplastics Can Be Confounded by Preservatives in Commercial Formulations. Environmental Science Technology Letters, 6(1), 21-25. doi:10.1021/acs.estlett.8b00614 101. Pirok, B. W. J., Abdulhussain, N., Aalbers, T., Wouters, B., Peters, R. A. H., Schoenmakers, P. J. (2017). Nanoparticle Analysis by Online Comprehensive Two-Dimensional Liquid Chromatography combining Hydrodynamic Chromatography and Size-Exclusion Chromatography with Intermediate Sample Transformation. Analytical Chemistry, 89(17), 9167-9174. doi:10.1021/acs.analchem.7b01906 102. Piruska, A., Nikcevic, I., Lee, S. H., Ahn, C., Heineman, W. R., Limbach, P. A., Seliskar, C. J. (2005). The autofluorescence of plastic materials and chips measured under laser irradiation. Lab on a Chip, 5(12), 1348-1354. doi:10.1039/b508288a 103. Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., . . . Giorgini, E. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146. doi:ARTN 106274 104. 10.1016/j.envint.2020.106274 105. Ramer, G., Lendl, B. (2013). Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. In Encyclopedia of Analytical Chemistry. 106. Ranjan, V. P., Joseph, A., Goel, S. (2021). Microplastics and other harmful substances released from disposable paper cups into hot water. J Hazard Mater, 404(Pt B), 124118. doi:10.1016/j.jhazmat.2020.124118 107. Reddy, M. S., Basha, S., Adimurthy, S., Ramachandraiah, G. (2006). Description of the small plastics fragments in marine sediments along the Alang-Sosiya ship-breaking yard, India. Estuarine Coastal and Shelf Science, 68(3-4), 656-660. doi:10.1016/j.ecss.2006.03.018 108. Rist, S., Almroth, B. C., Hartmann, N. B., Karlsson, T. M. (2018). A critical perspective on early communications concerning human health aspects of microplastics. Science of the Total Environment, 626, 720-726. doi:10.1016/j.scitotenv.2018.01.092 109. Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel, B. T., Hoh, E., Karapanagioti, H. K., . . . Thompson, R. C. (2013). Classify plastic waste as hazardous. Nature, 494(7436), 169-171. doi:DOI 10.1038/494169a 110. Roederer, M. (2001). Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry, 45(3), 194-205. doi:10.1002/1097-0320(20011101)45:3<194::aid-cyto1163>3.0.co;2-c 111. Ruenraroengsak, P., Tetley, T. D. (2015). Differential bioreactivity of neutral, cationic and anionic polystyrene nanoparticles with cells from the human alveolar compartment: robust response of alveolar type 1 epithelial cells. Part Fibre Toxicol, 12, 19. doi:10.1186/s12989-015-0091-7 112. Schwabl, P., Koppel, S., Konigshofer, P., Bucsics, T., Trauner, M., Reiberger, T., Liebmann, B. (2019). Detection of Various Microplastics in Human Stool A Prospective Case Series. Annals of Internal Medicine, 171(7), 453-+. doi:10.7326/M19-0618 113. Schymanski, D., Goldbeck, C., Humpf, H. U., Furst, P. (2018). Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res, 129, 154-162. doi:10.1016/j.watres.2017.11.011 114. Sgier, L., Freimann, R., Zupanic, A., Kroll, A. (2016). Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics. Nat Commun, 7, 11587. doi:10.1038/ncomms11587 115. Shim, W. J., Song, Y. K., Hong, S. H., Jang, M. (2016). Identification and quantification of microplastics using Nile Red staining. Marine Pollution Bulletin, 113(1-2), 469-476. doi:10.1016/j.marpolbul.2016.10.049 116. Sintim, H. Y., Bary, A. I., Hayes, D. G., Wadsworth, L. C., Anunciado, M. B., English, M. E., . . . Flury, M. (2020). In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Sci Total Environ, 727, 138668. doi:10.1016/j.scitotenv.2020.138668 117. Smith, M., Love, D. C., Rochman, C. M., Neff, R. A. (2018). Microplastics in Seafood and the Implications for Human Health. Curr Environ Health Rep, 5(3), 375-386. doi:10.1007/s40572-018-0206-z 118. Soares, E. P., Saiki, M., Wiebeck, H. (2005). Determination of inorganic constituents and polymers in metallized plastic materials. Journal of Radioanalytical and Nuclear Chemistry, 264(1), 9-13. doi:10.1007/s10967-005-0667-z 119. Sobhani, Z., Zhang, X., Gibson, C., Naidu, R., Megharaj, M., Fang, C. (2020). Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): Down to 100 nm. Water Research, 174. doi:ARTN 115658 120. 10.1016/j.watres.2020.115658 121. Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Rani, M., Lee, J., Shim, W. J. (2015). A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull, 93(1-2), 202-209. doi:10.1016/j.marpolbul.2015.01.015 122. Talsness, C. E., Andrade, A. J. M., Kuriyama, S. N., Taylor, J. A., vom Saal, F. S. (2009). Components of plastic: experimental studies in animals and relevance for human health. Philosophical Transactions of the Royal Society B-Biological Sciences, 364(1526), 2079-2096. doi:10.1098/rstb.2008.0281 123. Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., . . . Russell, A. E. (2004). Lost at sea: Where is all the plastic? Science, 304(5672), 838-838. doi:DOI 10.1126/science.1094559 124. Troester, M., Brauch, H. J., Hofmann, T. (2016). Vulnerability of drinking water supplies to engineered nanoparticles. Water Res, 96, 255-279. doi:10.1016/j.watres.2016.03.038 125. Vianello, A., Boldrin, A., Guerriero, P., Moschino, V., Rella, R., Sturaro, A., Da Ros, L. (2013). Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuarine Coastal and Shelf Science, 130, 54-61. doi:10.1016/j.ecss.2013.03.022 126. Wahlund, K. G. (2013). Flow field-flow fractionation: Critical overview. Journal of Chromatography A, 1287, 97-112. doi:10.1016/j.chroma.2013.02.028 127. Wakkaf, T., El Zrelli, R., Kedzierski, M., Balti, R., Shaiek, M., Mansour, L., . . . Rabaoui, L. (2020). Microplastics in edible mussels from a southern Mediterranean lagoon: Preliminary results on seawater-mussel transfer and implications for environmental protection and seafood safety. Mar Pollut Bull, 158, 111355. doi:10.1016/j.marpolbul.2020.111355 128. Wang, Q., Zhang, Y., Wangjin, X., Wang, Y., Meng, G., Chen, Y. (2020). The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. J Environ Sci (China), 87, 272-280. doi:10.1016/j.jes.2019.07.006 129. Wang, Y., Wang, F., Xiang, L., Gu, C., Redmile-Gordon, M., Sheng, H., . . . Jiang, X. (2021). Risk Assessment of Agricultural Plastic Films Based on Release Kinetics of Phthalate Acid Esters. Environ Sci Technol, 55(6), 3676-3685. doi:10.1021/acs.est.0c07008 130. Westerhoff, P., Atkinson, A., Fortner, J., Wong, M. S., Zimmerman, J., Gardea-Torresdey, J., . . . Herckes, P. (2018). Low risk posed by engineered and incidental nanoparticles in drinking water. Nat Nanotechnol, 13(8), 661-669. doi:10.1038/s41565-018-0217-9 131. Xia, T., Kovochich, M., Liong, M., Zink, J. I., Nel, A. E. (2008). Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano, 2(1), 85-96. doi:10.1021/nn700256c 132. Xu, R. L. (2015). Light scattering: A review of particle characterization applications. Particuology, 18, 11-21. doi:10.1016/j.partic.2014.05.002 133. Xu, S., Ma, J., Ji, R., Pan, K., Miao, A. J. (2020). Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Science of the Total Environment, 703. doi:ARTN 134699 134. 10.1016/j.scitotenv.2019.134699 135. Xu, X. Y., Huang, Y. H. (2019). Restaurant information cues, Diners' expectations, and need for cognition: Experimental studies of online-to-offline mobile food ordering. Journal of Retailing and Consumer Services, 51, 231-241. doi:10.1016/j.jretconser.2019.06.010 136. Yunker, P. J., Still, T., Lohr, M. A., Yodh, A. G. (2011). Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 476(7360), 308-311. doi:10.1038/nature10344 137. Zhang, B., Wu, D., Yang, X., Teng, J., Liu, Y., Zhang, C., . . . Wang, Q. (2019). Microplastic pollution in the surface sediments collected from Sishili Bay, North Yellow Sea, China. Mar Pollut Bull, 141, 9-15. doi:10.1016/j.mar……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81849 | - |
| dc.description.abstract | "塑膠微粒(Microplastics)被定義為小於5 mm 不溶於水的塑膠碎片,其中小於1 μm 者被稱作次微米塑膠微粒(Sub-Microplastic)。目前塑膠微粒廣布在環境水體如海洋、河川或是湖泊中,此外,在日常生活所會食用的蜂蜜、啤酒、食鹽以及牛奶中也有塑膠微粒的蹤跡。這些環境所檢測到的塑膠微粒粒徑大多都落在幾百或是幾千微米,且數目通常每公斤幾十到幾千顆塑膠微粒。然而近年來的研究發現,我們日常生活中外帶或外送食品時所使用的塑膠類食品容器(Food contact plastics, FCPs)接觸到高溫後可能會釋放數十億顆的次微米塑膠微粒。以毒理學的觀點來說,在同樣的重量濃度下,越小的顆粒具有越大的總表面積,且更有可能造成健康上的風險。 在過往的研究中,大多使用電子顯微鏡(Scanning electron microscope, SEM)進行計數,此方法固然可以眼見為憑,然而前處理需要先將塑膠微粒的懸浮液體乾燥,可能會對樣本產生影響。此外所選取的範圍相較於塑膠微粒散佈的區域,存在一定的統計抽樣誤差,且顯微鏡的計數方法較為耗費時間。再者過往研究中對於各類FCPs的加熱方法各異,所顯示的單位與觀察的粒徑範圍亦不盡相同,且大多專注在某一種材質或用途,故對於台灣市面上眾多的FCPs並無法進行完善的比較。 在本篇研究中,檢測了市面上常見不同材質的塑膠袋、塑膠碗、塑膠杯以及塑膠茶包,探討其在溫度控制95、70、25℃ 以及自然降溫狀況下的釋出情形,以比較不同材質或用途的FCPs之塑膠微粒釋出情況之異同,以及對於不同溫度和溫度控制情況測試,以了解溫度對FCPs釋出塑膠微粒的影響。此外觀察這些FCPs於加熱前後容器表面是否產生變化,以及濾出液中所含的微米及次微米塑膠微粒的型態。為了在液相的狀況下進行高通量的分析,本研究選用流式細胞儀(Flow cytometer, FCM)以及奈米追蹤分析(Nanoparticle tracking analysis, NTA)分別對於大的顆粒(200~2260 nm)和小顆粒(20~1000 nm)進行FCPs釋出塑膠微粒的總釋出量以及粒徑分布進行檢測。使用高解析度的場發射掃描式電子顯微鏡(Field emission scanning electron microscope, FM-SEM)分別在微米等級(10000X)及奈米等級(100000X)對於加熱前後的FCPs表面進行觀察以及FCPs濾出液中的塑膠微粒進行型態的觀察。在成分鑑定的部分,對未加熱的FCPs使用衰減全反射傅立葉紅外線轉換光譜(Attenuated total reflection fourier-transform infrared spectroscopy, ATR-FTIR)進行成分的鑑定以及分組,對於FCPs的濾出液使用拉曼光譜(Raman spectroscopy)進行成分的鑑定。 除了非用於盛裝高溫物質的材質後,經流式細胞儀(FCM)分析,可以發現聚丙烯(PP)材質平均來說單位面積會釋出最多塑膠微粒(4.39 × 105 particles/cm2)。而單次的FCP使用則是塑膠茶包平均會釋出最多的塑膠微粒(2.41 × 108 particles),其中又以聚乙烯混紡聚對苯二甲酸乙二醇酯(PE/PET)塑膠茶包的次微米塑膠微粒釋出量最高,經奈米追蹤分析(NTA)後,每次的使用可能會釋出1.03 × 1011 particles。此外高密度聚乙烯塑膠袋會釋出1.66 × 1010 particles,而聚丙烯的塑膠碗會釋出1.59 × 1010 particles。在FCM所檢測到的塑膠微粒九成以上為小於1 μm的次微米顆粒,而在NTA中又以小於200 nm 的顆粒占比較多,在塑膠袋中佔了52.42 %,塑膠碗81.41 %以及塑膠茶包93.20 %,此處顯示小顆粒重要性以及在分析上的必要性。而高低溫度的影響對於不同的FCPs來說不盡相同,但可以知道這些FCPs盛裝高溫物質的時候都會釋出大量的顆粒,且有溫度越高,所釋出的顆粒越多的傾向,其中塑膠碗雖不受溫度影響釋出量,但其在95、70及25 ℃的釋出量都相近,經FCM分析後,一次使用的情況下釋出量高達2.04 × 108 particles。在溫度控制與自然降溫的比較,除了塑膠袋在無溫度控制狀況下顆粒的釋出會減少,塑膠碗與塑膠茶包有無進行溫度控制的差別不大,顯示只要盛裝高溫物質就會有暴露塑膠微粒的風險。於加熱前後可以觀察到部分FCPs表面的裂縫增大或是扭曲變形,這可能導致塑膠顆粒因此釋出。而所釋出的顆粒型態大致上以碎片、顆粒狀的塑膠微粒為主。 總結來說,使用這些FCPs盛裝高溫物質會暴露幾千萬顆的塑膠微粒和幾十億顆的次微米塑膠微粒,且盛裝的溫度越高,所釋出的顆粒越多。在這些顆粒中,越小的顆粒占比越多。根據本研究的結果,不建議使用FCPs盛裝高溫的物質,且不建議使用聚丙烯(PP)材質的FCPs盛裝任何食物,以避免塑膠微粒暴露的風險。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:05:00Z (GMT). No. of bitstreams: 1 U0001-1107202123135300.pdf: 5274962 bytes, checksum: a6c4b791cf5a09ac03b1c4dc4a613cc7 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 摘要 iii Abstract vi 圖目錄 xii 表目錄 xiv 縮寫表 xvi 第一章 前言與研究目的 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 背景 3 2.1.1 塑膠微粒的定義 3 2.1.2 塑膠微粒的分布 4 2.1.3 塑膠微粒的毒性 6 2.2 檢出塑膠微粒的塑膠類食品容器 9 2.3 塑膠微粒的檢測方法 13 2.4 塑膠微粒檢測的研究限制 19 第三章 材料與方法 21 3.1 實驗流程與架構 21 3.2 材料 22 3.3 塑膠微粒的收集與分析 25 3.3.1 塑膠微粒釋出量分析與樣本製備 25 3.3.2 塑膠微粒形態學分析與樣本製備 33 3.3.3 塑膠微粒成分鑑定與樣本製備 34 第四章 結果 36 4.1 塑膠類食品容器的快速檢測 36 4.1.1 塑膠類食品容器加熱前之成分鑑定 36 4.1.2 塑膠類食品容器在高溫下釋出的塑膠微粒總釋出量與粗略粒徑分佈 38 4.1.3 塑膠類食品容器在高溫下釋出的次微米塑膠微粒粒徑、總釋出量後續分析的塑膠類食品容器篩選 41 4.2 塑膠類食品容器的後續分析 44 4.2.1塑膠類食品容器在高溫下次微米塑膠微粒的總釋出量及粒徑分布 44 4.2.2 塑膠類食品容器在不同溫度下釋出的塑膠微粒數目濃度 44 4.2.3 塑膠類食品容器在高溫下釋出的塑膠微粒的表徵 46 4.2.4 塑膠類食品容器濾出液的成分鑑定 47 第五章 討論 49 5.1 塑膠類食品容器塑膠微粒總釋出量、粒徑分布和材質、用途之關係 50 5.1.1 塑膠類食品容器塑膠微粒總釋出量和用途之關係 50 5.1.2 塑膠類食品容器塑膠微粒總釋出量和材質之關係 51 5.1.3 塑膠類食品容器塑膠微粒總釋出量和粒徑分布之關係 54 5.2 塑膠類食品容器釋放塑膠微粒總釋出量和溫度的關係 57 5.3 成分鑑定結果 60 5.4 塑膠微粒的收集方法 62 5.5 塑膠微粒的分析方法 63 5.6 研究限制 67 5.6.1 樣本選擇 67 5.6.2 製備濃縮 67 5.6.3 分析方法 68 5.7 研究及管理建議 69 第六章 結論 70 第七章 參考資料 71 | |
| dc.language.iso | zh-TW | |
| dc.subject | 溫度 | zh_TW |
| dc.subject | 次微米塑膠微粒 | zh_TW |
| dc.subject | 塑膠類食品容器 | zh_TW |
| dc.subject | 流式細胞儀 | zh_TW |
| dc.subject | 塑膠微粒 | zh_TW |
| dc.subject | flow cytometer | en |
| dc.subject | food contact plastics | en |
| dc.subject | microplastics | en |
| dc.subject | sub-microplastics | en |
| dc.subject | temperature | en |
| dc.title | 塑膠類食品容器釋放微米以及次微米塑膠微粒之評估 | zh_TW |
| dc.title | Study on the Release of Microplastics and Sub-Microplastics from Food Contact Plastics | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭伊倫(Hsin-Tsai Liu),吳焜裕(Chih-Yang Tseng),姜至剛 | |
| dc.subject.keyword | 塑膠類食品容器,塑膠微粒,次微米塑膠微粒,溫度,流式細胞儀, | zh_TW |
| dc.subject.keyword | food contact plastics,microplastics,sub-microplastics,temperature,flow cytometer, | en |
| dc.relation.page | 128 | |
| dc.identifier.doi | 10.6342/NTU202101393 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-07-13 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| dc.date.embargo-lift | 2023-01-01 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1107202123135300.pdf | 5.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
