Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81848
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李瑞庭(Anthony J.T. Lee)
dc.contributor.authorYing-Ciao Chenen
dc.contributor.author陳映樵zh_TW
dc.date.accessioned2022-11-25T03:04:58Z-
dc.date.available2026-07-01
dc.date.copyright2021-08-18
dc.date.issued2021
dc.date.submitted2021-07-15
dc.identifier.citationAli ME, Eusuf SS, Abdullah K, Choudhury FM, Culpepper JS, Sellis T (2018) The maximum trajectory coverage query in spatial databases. Proceedings of the VLDB Endowment 12(3):197–209. Aral S (2011) Commentary—Identifying social influence: A comment on opinion leadership and social contagion in new product diffusion. Marketing Science 30(2):217–223. Aral S, Walker D (2011) Creating social contagion through viral product design: A randomized trial of peer influence in networks. Management Science 57(9):1623–1639. Aslay C, Matakos A, Galbrun E, Gionis A (2018) Maximizing the diversity of exposure in a social network. Proceedings of the IEEE International Conference on Data Mining. 863–868. Chae I, Stephen AT, Bart Y, Yao D (2017) Spillover effects in seeded word-of-mouth marketing campaigns. Marketing Science 36(1):89–104. Chekuri C, Khanna S (2005) A polynomial time approximation scheme for the multiple knapsack problem. SIAM Journal on Computing 35(3):713–728. Chen CM, Delmas MA (2012) Measuring eco-inefficiency: A new frontier approach. Operations Research 60(5):1064–1079. Chu J, Manchanda P (2016) Quantifying cross and direct network effects in online consumer-to-consumer platforms. Marketing Science 35(6):870–893. Cobb CW, Douglas PH (1928) A theory of production. The American Economic Review 18(1):139–165. Colicev A, O’Connor P, Vinzi VE (2016) Is investing in social media really worth it? How brand actions and user actions influence brand value. Service Science 8(2):152–168. Dhyne E, Konings J, Van den bosch J, Vanormelingen S (2021) The return on information technology: Who benefits most? Information Systems Research 32(1):194–211. Edmonds J (1971) Matroids and the greedy algorithm. Mathematical Programming 1(1):127–136. Fang X, Hu PJ (2016) Top persuader prediction for social networks. MIS Quarterly 42(1):63–82. Feige U, Peleg D, Kortsarz G (2001) The dense k-subgraph problem. Algorithmica 29(3):410–421. Freberg K, Graham K, McGaughey K, Freberg LA (2011) Who are the social media influencers? A study of public perceptions of personality. Public Relations Review 37(1):90–92. Gelper S, van der Lans R, van Bruggen G (2021) Competition for attention in online social networks: Implications for seeding strategies. Management Science 67(2):1026–1047. Geppert H, Bhowmik S, Rothermel K (2021) Large-scale influence maximization with the influence maximization benchmarker suite. Proceedings of the ACM SIGMOD Joint International Workshop on Graph Data Management Experiences Systems and Network Data Analytics. 1–11. Hammar M, Karlsson R, Nilsson BJ (2013) Using maximum coverage to optimize recommendation systems in e-commerce. Proceedings of the ACM Conference on Recommender Systems. 265–272. Han M, Yan M, Cai Z, Li Y, Cai X, Yu J (2017) Influence maximization by probing partial communities in dynamic online social networks. Transactions on Emerging Telecommunications Technologies 28(4):e3054. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778. Iyengar R, Van den Bulte C, Valente TW (2011) Opinion leadership and social contagion in new product diffusion. Marketing Science 30(2):195–212. Jian YF, Lu WF (2020) The sector cover and transmission weighted greedy algorithm for connected target coverage in directional sensor networks. Proceedings of the International Conference on Networks, Communication and Computing. 125–130. Jones KS (1972) A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28(1):11–21. Katz E, Lazarsfeld PF (2017) Personal Influence: The part played by people in the flow of mass communications (Routledge, London). Keller E, Berry J (2003) The Influentials: One American in ten tells the other nine how to vote, where to eat, and what to buy (Simon and Schuster, New York). Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 137–146. Khuller S, Moss A, Naor JS (1999) The budgeted maximum coverage problem. Information Processing Letters 70(1):39–45. Kim S, Han J, Yoo S, Gerla M (2017) How are social influencers connected in instagram? Proceedings of the International Conference on Social Informatics. 257–264. Kim S, Jiang JY, Nakada M, Han J, Wang W (2020) Multimodal post attentive profiling for influencer marketing. Proceedings of The Web Conference. 2878–2884. Kundisch DO, Mittal N, Nault BR (2014) Research commentary—Using income accounting as the theoretical basis for measuring IT productivity. Information Systems Research 25(3):449–467. Leskovec J, Adamic LA, Huberman BA (2007) The dynamics of viral marketing. ACM Transactions on the Web 1(1):5-es. Li Z, Fang X, Bai X, Sheng ORL (2017) Utility-based link recommendation for online social networks. Management Science 63(6):1938–1952. Liu W, Zhang M, Luo Z, Cai Y (2017) An ensemble deep learning method for vehicle type classification on visual traffic surveillance sensors. IEEE Access 5:24417–24425. Lou C, Yuan S (2019) Influencer marketing: How message value and credibility affect consumer trust of branded content on social media. Journal of Interactive Advertising 19(1):58–73. Luo X, Zhang J, Duan W (2013) Social media and firm equity value. Information Systems Research 24(1):146–163. Ma B, Wei Q, Chen G, Zhang J, Guo X (2017) Content and structure coverage: Extracting a diverse information subset. INFORMS Journal on Computing 29(4):660–675. McCardle KF, Rajaram K, Tang CS (2009) A decision analysis tool for evaluating fundraising tiers. Decision Analysis 6(1):4–13. Mei Y, Zhao W, Yang J (2017) Influence maximization on twitter: A mechanism for effective marketing campaign. Proceedings of the IEEE International Conference on Communications. 1–6. Morone F, Makse HA (2015) Influence maximization in complex networks through optimal percolation. Nature 524(7563):65–68. Nagpal C, Dubey SR (2019) A performance evaluation of convolutional neural networks for face anti spoofing. Proceedings of the International Joint Conference on Neural Networks. 1–8. Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of approximations for maximizing submodular set functions—I. Mathematical Programming 14(1):265–294. Nguyen H, Calantone R, Krishnan R (2020) Influence of social media emotional word of mouth on institutional investors’ decisions and firm value. Management Science 66(2):887–910. Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: Bringing order to the web. (Stanford InfoLab). Parker G, Van Alstyne M (2018) Innovation, openness, and platform control. Management Science 64(7):3015–3032. Rogers EM (2010) Diffusion of innovations (Simon and Schuster, New York). Scott DM (2015) The new rules of marketing and PR: How to use social media, online video, mobile applications, blogs, news releases, and viral marketing to reach buyers directly (John Wiley Sons, New York). Stoica AA, Chaintreau A (2019) Fairness in social influence maximization. Proceedings of the World Wide Web Conference. 569–574. Sung CE, Ma HS, Huang JW (2020) Positive influence maximization and negative influence minimization in signed networks under competitive independent cascade model. Proceedings of the IEEE International Conference on Data Science and Advanced Analytics. 236–244. Tsugawa S, Ohsaki H (2017) On the robustness of influence maximization algorithms against non-adversarial perturbations. Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 91–94. Uratnik M (2016) Interactional service innovation with social media users. Service Science. Wang C (Alex), Zhang X (Michael), Hann IH (2018) Socially nudged: A quasi-experimental study of friends’ social influence in online product ratings. Information Systems Research 29(3):641–655. Zhang Y (2019) Diversifying seeds and audience in social influence maximization. Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 89–94. Zhou J, Chen YJ (2016) Targeted information release in social networks. Operations Research 64(3):721–735.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81848-
dc.description.abstract越來越多的公司行號在社群平台上創立自身的品牌帳號,或與具有影響力的網紅合作來宣傳品牌形象或產品,如何為公司選擇有影響力的網紅已成為一個重要的研究議題。但若合作的網紅具有類似的喜好,他們會有較多的共同粉絲,為了讓預算的效益最大化,所選擇的網紅,彼此間最好具備低相似度。因此,本研究提出一個架構,透過考慮網紅的影響力與相似度,從目標群體中找出高效益的網紅組合,使得組合中的網紅具高影響力且低相似度。首先,我們利用每位網紅所發佈、分享和喜歡的貼文來計算網紅間的相似度;接著,我們利用Cobb-Douglas生產函數和PageRank演算法建立影響力模型,計算每位網紅的影響力,所建立的影響力模型可調整各項參數,以滿足公司行號的需求;最後,我們提出一個方法,考慮網紅的影響力與彼此間的相似度,挑選出高效益的網紅組合。實驗結果顯示,我們的方法與最優解方法相近,並且優於其它比較方法。本研究不僅可以幫助公司選擇高效益的網紅組合,將預算運用效率最大化,還可以提供不同的影響力模型與不同的選擇方法來滿足公司行號的需求。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:04:58Z (GMT). No. of bitstreams: 1
U0001-1207202103500200.pdf: 1896438 bytes, checksum: 07b647f5713b765d352a41c4ce1c91ba (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsTable of Contents.......................i List of Figures.........................ii List of Tables..........................iii Chapter 1 Introduction..................1 Chapter 2 Related Work..................5 Chapter 3 The Proposed Framework........9 3.1 Similarity between Influencers.....9 3.2 Influence Model....................11 3.3 Influencer Selection Method........13 Chapter 4 Experimental Results..........18 4.1 Dataset............................18 4.2 Performance Evaluation.............21 4.3 Utility versus Budget..............26 4.4 Selected Examples..................28 Chapter 5 Conclusions and Future Work...32 References..............................35 Appendix A..............................40
dc.language.isoen
dc.subject影響力最大化zh_TW
dc.subject貪婪演算法zh_TW
dc.subjectCobb-Douglas生產函數zh_TW
dc.subject社群平台zh_TW
dc.subject網紅影響力zh_TW
dc.subjectgreedy algorithmen
dc.subjectinfluencer influenceen
dc.subjectinfluence maximizationen
dc.subjectCobb-Douglas production functionen
dc.subjectsocial media platformsen
dc.title從社群平台中找尋高效益的網紅組合zh_TW
dc.titleFinding High-Utility Influencers on Social Media Platformsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建錦(Hsin-Tsai Liu),盧信銘(Chih-Yang Tseng)
dc.subject.keyword網紅影響力,影響力最大化,Cobb-Douglas生產函數,貪婪演算法,社群平台,zh_TW
dc.subject.keywordinfluencer influence,influence maximization,Cobb-Douglas production function,greedy algorithm,social media platforms,en
dc.relation.page44
dc.identifier.doi10.6342/NTU202101394
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-16
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
dc.date.embargo-lift2026-07-01-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-1207202103500200.pdf
  此日期後於網路公開 2026-07-01
1.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved