Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81835
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李篤中(Duu-Jong Lee)
dc.contributor.authorTzu-Chieh Linen
dc.contributor.author林子傑zh_TW
dc.date.accessioned2022-11-25T03:04:43Z-
dc.date.available2023-07-24
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-07-24
dc.identifier.citation[1] Zhang X., Li Z., Liu K. and Jiang L., Bioinspired Multifunctional Foam with Self‐Cleaning and Oil/Water Separation, Adv. Funct. Mater. 2013. 23, 2881-2886 [2] Boo C., Lee J. and Menachem E., Omniphobic Polyvinylidene Fluoride (PVDF) Membrane for Desalination of Shale Gas Produced Water by Membrane Distillation, Environ. Sci. Technol. 2016. 50, 12275-12282 [3] Wang H., Zhang C., Zhou B., Zhang Z., Shen J. and Du A., Hydrophobic Silica Nanorod Arrays Vertically Grown on Melamine Foams for Oil/Water Separation, Appl. Nano Mater. 2020. 3, 1479-1488 [4] Jayaprakash S., Kavithaa L. and Sarper S., An overview of oil-water separation using gas flotation systems, Chemosphere 2016. 144, 671-680 [5] Lü T., Qi D., Zhang D., Fu K., Li Y. and Zhao H., Fabrication of recyclable multi-responsive magnetic nanoparticles for emulsified oil-water separation, J. of C. Prod., 2020. 255, 120293 [6] Shang Q., Liu C. and Zhou Y., One-pot fabrication of robust hydrophobia and superoleophilic cotton fabrics for effective oil-water separation, J. Coat. Technol. Res., 2018. 15, 65-75 [7] Love D., Madhabendra R. and Partha S., Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation, Ad. Com. and Hy. Mat. 2018. 1, 135-148 [8] Singh A. K. and Singh J. K., An efficient use of waste PE for hydrophobic surface coating and its application on cotton fibers for oil-water separator, Pro. in Org. Co., 2019. 131, 301–310 [9] Love D., Dibya D. B. and Partha S., Methyltrichlorosilane functionalized silica nanoparticles-treated superhydrophobic cotton for oil-water separation, J. Coat. Technol. Res. 2019. 16, 1021-1032 [10] Arun K. S. and Jayant K. S., An efficient use of waste PE for hydrophobic surface coating and its application on cotton fibers for oil-water separator, Pro. in Org. Coat. 2019. 131, 301-310 [11] Yang Y., Li X., Zheng X., Chen Z., Zhou Q. and Chen Y., 3D‐Printed Biomimetic Super‐Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation, Adv. Mater. 2018. 30, 1704912 [12] Nurul A. I., Nurin W. M. Z., Zaira Z. C. and Mohd R. J., Grafting of straight alkyl chain improved the hydrophobicity and tribological performance of graphene oxide in oil as lubricant, Jo. of Mol. Liq. 2020. 319, 114276 [13] Gu J., Jiang W., Wang F., Chen M., Mao J. and Xie T., Facile removal of oils from water surfaces through highly hydrophobic and magnetic polymer nanocomposites, Appl. Sur. Sci. 2014. 301, 492-499 [14] Cho Y. K., Park E. J. and Kim Y. D., Removal of oil by gelation using hydrophobic silica nanoparticles, Jo. of Ind. And Eng. Che. 2014. 20, 1231-1235 [15] Lin T. C. and Lee D. J., Cotton fabrics modified for use in oil/water separation:a perspective review, Cellulose 2021. [16] Chen W., Vikram K., Thomas N. H. C., Siti S. R. and Jerry Y. Y. H., Surface hydrophobicity: effect of alkyl chain length and network homogeneity, Fron. of Che. Sci. and Eng. 2021. 15, 90-98 [17] Hongxia W., Hua Z., Adrian G., Jian F., Haitao N., Jie D. and Tong L., Robust, electro-conductive, self-healing superamphiphobic fabric prepared by one-step vapour-phase polymerisation of poly(3,4-ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane, Soft Matter. 2013. 9, 277-282 [18] Pan G., Xiao X. and Ye Z., Fabrication of stable superhydrophobic coating on fabric with mechanical durability, UV resistance and high oil-water separation efficiency, Sur. and Coat. Tech.,c2019. 360, 318-328 [19] Yang D., Di H., Yi Y. D., Q. Zhang ,Feng C. and Qiang F., Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation, Che. Eng. Jo., 2020. 379, 122391 [20] Kazuo T. and Yoshiki C., Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS), J. Mater. Chem. 2012. 22, 1733-1746 [21] Lin F., Wang Z., Shen Y., Tang L., Zhang P., Wang Y., Chen Y., Huang B. and Lu B., Natural skin-inspired versatile cellulose biomimetic hydrogels, J. Mater. Chem. A. 2019. 7, 26442-26455 [22] Kim S., Gim T. and Kang S. M., Versatile, Tannic Acid-Mediated Surface PEGylation for Marine Antifouling Applications, ACS Appl. Mater. Interfaces 2015. 7, 6412–6416 [23] Li Y., Feng Z., He Y., Fan Y., Ma J. and Yin X., Facile way in fabricating a cotton fabric membrane for switchable oil/water separation and water purification, Appl. Sur. Sci. 2018. 411, 500-507 [24] Yan X., Zhu X., Ruan Y., Xing T., Chen G. and Zhou C., Biomimetic, dopamine-modified superhydrophobic cotton fabric for oil–water separation, Cellulose 2020. 27, 7873-7885 [25] Wang Z., Ji S., Zhang J., Liu Q., He F., Peng S. and Li Y., Tannic acid encountering ovalbumin: a green and mild strategy for superhydrophilic and underwater superoleophobic modification of various hydrophobic membranes for oil/water separation, J. Mate. Chem. A 2018. 6, 13959−13967 [26] Feng S, Li M, Zhang S, Zhang Y, Wang B, Wu L (2019) Superoleophobic micro-nanostructure surface formation of PVDF membranes by tannin and a condensed silane coupling agent. RSC Adv 9: 32021–32026 [27] Gu S., Yang L., Huang W., Bu Y., Chen D., Huang J., Zhou Y. and Xu W., Fabrication of hydrophobic cotton fabrics inspired by polyphenol chemistry, Cellulose 2017. 24, 2635–2646 [28] Sun Y., Huang J., Zhao J. and Guo Z., Fabrication of durable self-repairing superhydrophobic fabrics via a fluorinate-free waterborne biomimetic silicification strategy, New J. Chem. 2019. 43, 5032-5038 [29] He Y., Chen Q., Zhang Y. Zhoa Y. and Chen L., H2O2‑Triggered Rapid Deposition of Poly(caffeic acid) Coatings: A Mechanism-Based Entry to Versatile and High-Efficient Molecular Separation, ACS Appl. Mater. Interfaces 2020. 12, 52104−52115 [30] Sun M., Guo H., Zheng J., Wang Y., Liu X., Li Q., Wang R. and Jia X., Hydrophobic octadecylamine-polyphenol film coated slow released urea via one-step spraying co-deposition, Pol. Te. 2020. 91, 106831 [31] Lui Y., Tang J., Wang R., Lu H., Li L., Kong Y., Qi K. and Xin J. H., Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles, Jo. of Mat. Che., J. Mater. Chem. 2007.17, 1071-1078 [32] Shao Y., Zhao J., Fan Y., Wan Z., Lu L., Zhang Z., Ming W. and Ren L., Shape Memory Superhydrophobic Surface with Switchable Transition between“Lotus Effect” to “Rose Petal Effect”, Ch. Eng. Jo. 2020. 382, 122989 [33] Gregory D. B. and Bharat B., Rice- and Butterfly-Wing Effect Inspired Self-Cleaning and Low Drag Micro/Nanopatterned Surfaces in Water, Oil, and Air Flow. Nanoscale 2014. 6, 76−96 [34] Sanjay S. L., Rajaram S. S., Vishnu S. K., Bhosale A.K., A. M. Kumar, Kishor K. S., Ruimin X. and Liu S., Self-cleaning superhydrophobic coatings: Potential industrial applications, Pro. in org. Co. 2019. 128, 52-58 [35] Lim J. I., Kang M. J. and Lee W. K., Lotus-leaf-like structured chitosan–polyvinyl pyrrolidone films as an anti-adhesion barrier, Appl. Sur. Sci. 2014. 320, 614-619 [36] Fang Y., Sun G., Bi Y. and Zhi H., Multiple-dimensional micro/nano structural models for hydrophobicity of butterfly wing surfaces and coupling mechanism, Sci. Bul. 2015. 60, 256-263 [37] Kerstin K., Bharat B. , Jung Y. C. and Wilhelm B., Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter, 2009. 5, 1386-1393 [38] Daniel E. and Bharat B., Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles, Jo. of Col. and Int. Sci. 2012. 368, 584-591 [39] Zhang W., Yu Z., Chen Z. and Li M., Preparation of super-hydrophobic Cu/Ni coating with micro-nano hierarchical structure, Mat. Let. 2012. 67, 327-330 [40] Dai S., Zhang D., Shi Q., Han X., Wang S. and Du Z., Biomimetic fabrication and tunable wetting properties of three-dimensional hierarchical ZnO structures by combining soft lithography templated with lotus leaf and hydrothermal treatments, CrystEngComm. 2013. 15, 5417–5424 [41] Andrew K., Li Z., Caitlyn C., Rebecca M., Shonali D., Vahid V., Zhou F., Brian D., Liu H., and Li L., Study on the Surface Energy of Graphene by Contact Angle Measurements, Langmuir 2014. 30, 8598–8606 [42] Krasowska M., Zawala J. and Malysa K. Air at hydrophobic surfaces and kinetics of three phase contact formation, Adv. in Coll. and Int. Sci. 2009. 147–148, 155–169 [43] Kwok D.Y. and Neumann A.W., Contact angle measurement and contact angle interpretation. Adv. in Col. and Int. Sci. 1999. 81, 167-249 [44] Arun K. S. and Jayant K. S., Fabrication of durable super-repellent surfaces on cotton fabric with liquids of varying surface tension: Low surface energy and high roughness, Appl. Sur. Sci. 2017. 416, 639-648 [45] Zhuang Y. X. and Ole H., Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings, Langmuir 2009. 25(10), 5437–5441 [46] Wu S., Calculation of interfacial tension in polymer systems, J. Pol. Sci.: Part C 1971. 34, 19-30 [47] Shannon M. N. and Magnus N., Surface Energy and Wettability of Spin-Coated Thin Films of Lignin Isolated from Wood, Langmuir 2010. 26(8), 5484-5490 [48] Owens D. K. and Wendt R. C., Estimation of the surface free energy of polymers, Jo of Appl. Pol. Sci. 1969. 13, 1741-1747 [49] Pinho E. and Soares G., Functionalization of cotton cellulose for improved wound healing, J. Mater. Chem. B 2018. 6, 1887--1898 [50] He T., Zhao H., Liu Y., Zhao C., Wang L., Wang H., Zhao Y. and Wang H., Facile fabrication of superhydrophobic Titanium dioxide-composited cotton fabrics to realize oil-water separation with efficiently photocatalytic degradation for water-soluble pollutants, Col. and Sur. A, 2020. 585(20), 124080 [51] Mai Z., Xiong Z., Shu X. , Liu X., Zhang H., Yin X. , Zhou Y., Liu M., Zhang M., Xu W. and Chen D., Multifunctionalization of cotton fabrics with polyvinylsilsesquioxane/ZnO composite coatings, Car. Pol., 2018. 199(1), 516-525 [52] Yang M., Liu W., Liang L., Jiang C., Liu C., Xie Y., Shi H., Zhang F. and Pi K., A mild strategy to construct superhydrophobic cotton with dual self-cleaning and oil–water separation abilities based on TiO2 and POSS via thiol-ene click reaction, Cellulose 2020. 27, 2847-2857 [53] He Y., Wan M., Wang Z., Zhang X., Zhao Y. and Sun L., Fabrication and characterization of degradable and durable fluoride-free super-hydrophobic cotton fabrics for oil/water separation, Sur. and Co. Tech., 2019. 378, 125079 [54] Wang J., Geng G., Wang A., Liu X., Du J., Zou Z., Zhang S. and Han F., Double biomimetic fabrication of robustly superhydrophobic cotton fiber and its application in oil spill cleanup, Ind. Cro. And Pro. 2015. 77, 36-43 [55] Marcin P., Hieronim M.and Agnieszka D., Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process, Appl. Sur. Sci. 2016. 387, 163-174 [56] Ricardo M., Josep M. T., Kan C. W., and Petar J., Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions, ACS Appl. Mater. Interfaces 2017. 9, 5513–5521 [57] Dawid P., Agnieszka M. and Ewa A., POSS-modified UV-curable coatings with improved scratch hardness and hydrophobicity, Pro. in Org. Coat. 2016. 100, 165-172 [58] Huang S., Zhang Y., Shi J. and Huang W., Superhydrophobic particles derived from nature-inspired polyphenol chemistry for liquid marble formation and oil spills treatment, ACS Sustain. Chem. Eng. 2016. 4, 676−681. [59] Liu F., Ma M., Zang D., Gao Z. and Wang C., Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation, Carbohyd. Polym. 2014. 97, 59–64. [60] Zhang M., Wang C., Wang S. and Li J.. Fabrication of superhydrophobic cotton textiles for water–oil separation based on drop-coating route, Carbohyd. Polym. 2013. 97, 59−64 [61] Xu B., Cai Z., Wang W. and Ge F., Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification, Sur. and Coat. Tech. 2010. 20, 1556-1561 [62] Boticas I., Dias D., Ferreira1 D., Magalhães P., Silva R., Fangueiro R. 2019. Superhydrophobic cotton fabrics based on ZnO nanoparticles functionalization, SN App. Sci. 2019. 1, 1376 [63] Li S., Huang J., Ge M., Cao C., Deng S., Zhang S., Chen G., Zhang K., Salem S. A. and Lai Y., Robust Flower‐Like TiO2@Cotton Fabrics with Special Wettability for Effective Self‐Cleaning and Versatile Oil/Water Separation, Adv. Mater. Interfaces 2015. 2, 1500220 [64] Zhang J., France P., Arseni R., Saswati D., Zhao J. and William V. O., Hydrophobic cotton fabric coated by a thin nanoparticulate plasma film, Jo. of App. Poly. Sci. 2003. 88, 1473-1481 [65] Shen L., Pan Y. and Fu H., Fabrication of UV curable coating for super hydrophobic cotton fabrics, Appl. Poly. 2019. 59, 452-459 [66] Cao C., Ge M., Huang J., Li S., Deng S., Zhang S., Chen Z., Zhang K., Salem S. A. D. and Lai Y., Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation, Jo. of Mat. Che. A 2016. 4, 12179–12187 [67] Guo H, Yang J., Xu T., Zhao W., Zhang J., Zhu Y., Wen C., Li Q., Sui X. and Zhang L., A Robust Cotton Textile-Based Material for High-Flux Oil−Water Separation, ACS Appl. Mater. Interfaces 2019. 11, 13704−13713 [68] Sourav M., Sukanta P., Ananya C. and Jayanta M., Fabrication of fluoropolymer-modified hydrophobic functionalization of cotton fabric by admicellar polymerization, Sur. Eng. 2019. 110, 1-8 [69] Yu Y., Wang Q., Yuan J., Fan X., Wang P. and Cui L., Hydrophobic modification of cotton fabric with octadecylamine via laccase/TEMPO mediated grafting, Car. Poly. 2016. 137, 549-555 [70] Gao Q., Zhu Q., Guo Y., and Yang C. Q., Formation of Highly Hydrophobic Surfaces on Cotton and Polyester Fabrics Using Silica Sol Nanoparticles and Nonfluorinated Alkylsilane, Ind. Eng. Chem. Res. 2009. 48, 9797–9803 [71] Gu Z. Z., Akira F. and Osamu S., Patterning of a Colloidal Crystal Film on a Modified Hydrophilic and Hydrophobic Surface, Ind. Eng. Chem. Res. 2009. 48, 9797–9803 [72] Wang C., Yao T., Wu J., Ma C., Fan Z., Wang Z., Cheng Y., Lin Q. and Yang B., Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl. Mater. Interf. 2009. 11, 2613−2617. [73] Muhammad Z. K., Vijay B., Jiri M., Azam A. and Martina V., Superhydrophobicity, UV protection and oil/water separation properties of fly ash/Trimethoxy(octadecyl)silane coated cotton fabrics, Carb. Poly. 2018. 202, 571-580 [74] Qi Y., Chen S. and Zhang J., Fluorine modification on titanium dioxide particles: Improving the anti-icing performance through a very hydrophobic surface. Appl. Surf. Sci. 2019. 476, 161−173 [75] Xue Q., Cao H., Meng F., Quan M. and Gong Y. K., Cell membrane mimetic coating immobilized by mussel-inspired adhesion on commercial ultrafiltration membrane to enhance antifouling performance, Jo. of Mem. Sci. 2017., 528(15), 1-10 [76] Lee H., Shara M. D., William M. M. and Philip B. M., Mussel-inspired surface chemistry for multifunctional coatings, Science, 2007. 318(5849), 426–430 [77] Hu M. X., Yang Q. and Xu Z. K., Enhancing the hydrophilicity of polypropylene microporous membranesby the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators, Jo. of Mem. Sci., 2006 285(1-2), 196–205 [78] Chen X., Huang G., An C., Feng R., Yao Y., Zhao S., Huang C. and Wu Y., Plasma-induced poly(acrylic acid)-TiO2 coated polyvinylidenefluoridemembrane for produced water treatment: Synchrotron X-Ray,optimization, and insight studies, Jo. of Cle. Prod., 2019. 227(1), 772-783 [79] Zhang R. X., Braeken L., Luis P., Wang X. L. and Bart Van der Bruggen, Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine, Jo. of Mem. Sci., 2013. 437, 179-188 [80] Yang J., Xu H., Zhang L., Zhong Y., Sui X. and Mao Z., Lasting superhydrophobicity and antibacterial activity of Cu nanoparticles immobilized on the surface of dopamine modified cotton fabrics, Sur. And Co. Tech., 2017. 309(15), 149-154 [81] Zhoa X., Jia N., Cheng L., Liu L. and Gao C., Dopamine-induced biomimetic mineralization for in situ developing antifouling hybrid membrane, Jo. of Mem. Sci., 2018. 560(15), 47-57 [82] Zeng G., Ye Z., He Y., Yang X., Ma J., Shi H. and Feng Z., Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater, Che. Eng. Jo., 2017. 323(1) 572-583 [83] Liu Y., Gan D., Chen M., Ma L., Yang B., Li L., Zhu M. and Tu W., Bioinspired dopamine modulating graphene oxide nanocomposite membrane interposed by super-hydrophilic UiO-66 with enhanced water permeability, Sep. and Pur. Tech., 2020. 253(15), 117552 [84] Muchtar S., Wahab M. Y.,, Mulyati S., Arahman N. and Riza M., Superior fouling resistant PVDF membrane with enhanced filtration performance fabricated by combined blending and the self-polymerization approach of dopamine, Jo. of W. Pro. Eng., 2019. 28, 293-299 [85] Chen S., Chen Y., Lei Y. and Yin Y., Novel strategy in enhancing stability and corrosion resistance for hydrophobic functional films on copper surfaces, Elec. Com., 2009. 11, 1675-1679 [86] Dan Z., Guolin Z., Chung Z., Yuhe W. and Zhu L., Preparation and characterization of wear-resistant superhydrophobic cotton fabrics, Pro. In Org. Co., 2019. 134, 226-233 [87] Qiu W. Z., Yang H C. and Xu Z. K., Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification, Adv. in Co. and Int. Sci., 2018. 256, 111-125 [88] Chen S., Xie Y., Xiao T., Zhao W., Li J. and Zhao C., Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface, Chem. Eng. Jo., 2018. 337(1), 122-132 [89] Liao C., Xu Q., Wu C., Fang D., Chen S., Chen S., Luo J. and Li L., Core–shell nano-structured carbon composites based on tannic acid for lithium-ion batteries, J. Mater. Chem. A 2016. 4, 17215-17224 [90] Zhang M., Cheng C., Guo C., Jin L., Liu L., Li M., Shang L., Lui Y. and Ao Y., Co-depositing bio-inspired tannic acid-aminopropyltriethoxysilane coating onto carbon fiber for excellent interfacial adhesion of epoxy composites,Co,. Sci. and Tech., 2021 204(1), 109639 [91] Peng H., Wang D. and Fu S., Tannic acid-assisted green exfoliation and functionalization of MoS2 nanosheets: Significantly improve the mechanical and flame-retardant properties of polyacrylonitrile composite fibers, Che. Eng. Jo., 2020. 384, 123288 [92] Wang T., Ma B., Jin A., Li X., Zhang X., Wang W. and Cai Y., Facile loading of Ag nanoparticles onto magnetic microsphere by the aid of a tannic acid-Metal polymer layer to synthesize magnetic disinfectant with high antibacterial activity, Jo. of Haz. Mat., 2018. 342(15), 392-400 [93] Kim T.Y., Cha S.H., Cho S. and Park Y., Tannic acid-mediated green synthesis of antibacterial silver nanoparticles, Arch. Pharm. Res., 2016. 39, 465–473 [94] İlhami G., Zübeyr H., Mahfuz E. and Hassan Y. A., Radical scavenging and antioxidant activity of tannic acid, Ar. Jo. of Che., 2010. 2(1), 43-53 [95] Jiao S., Jin J. and Wang L., Tannic acid functionalized N-doped graphene modified glassy carbon electrode for the determination of bisphenol A in food package, Tal. 2014. 122, 140-144 [96] Zhang Z. Y., Zheng Y. D., He.W., Yang Y. Y., Xie Y. J., Feng Z. X. and Qiao K., A biocompatible bacterial cellulose/tannic acid composite with antibacterial and anti-biofilm activities for biomedical applications Mat. Sci. and Eng., 2020. 106, 110249 [97] Lim M. Y., Choi. Y. S., Kim J., Kim. K., Shin H., Kim J. J., Shin D. M. and Lee J. C., Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine, Jo. of Mem. Sci., 2017. 521(1), 1-9 [98] Zhang X., My D. D., Philip C., Adrian S., Greg G. Q., Leif L., Peter L. and Shantha K., Chemical Modification of Gelatin by a Natural Phenolic Cross-linker, Tannic Acid, J. Agric. Food Chem. 2010. 58(11), 6809–6815 [99] Viyapuri R., Thomas A. W., Chee C. Y. and Praveena N., Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid, Cellulose 2015. 22, 2529-2541 [100] Xu Y., Guo D., Li Y., Xioa Y., Shen L., Li R. Jiao Y. and Lin H., Manipulating the mussel-inspired co-deposition of tannic acid and amine for fabrication of nanofiltration membranes with an enhanced separation performance, Jo. of Col. and Int. Sci., 2020. 565(1), 23-34 [101] Li Y., Shi S., Cao H. and Cao R., Robust antifouling anion exchange membranes modified by graphene oxide (GO)-enhanced Co-deposition of tannic acid and polyethyleneimine, 2021. 625, 119111 [102] Li Q., Liao Z., Fang X., Xie J., Ni L., Wang D., Qi J., Sun X., Wang L. and Li J., Tannic acid assisted interfacial polymerization based loose thin-film composite NF membrane for dye/salt separation, Desalination, 2020. 479(1), 114343 [103] Zhang X., Ren P. F., Yang H. C., Wan L.S. and Xu Z. K., Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes, App. Sur. Sci., 2016. 360(1) 291-297 [104] Tham H. M. and Chung T. S., One-step cross-linking and tannic acid modification of polyacrylonitrile hollow fibers for organic solvent nanofiltration, Jo. of Mem. Sci., 2020. 610, 118294. [105] Huang Y., Lin Q., Yu Y. and Yu W., Functionalization of wood fibers based on immobilization of tannic acid and in situ complexation of Fe (II) ions, Appl. Sur. Sci., 2020. 510(30), 145436 [106] Xu G., Dicky P., Zhang B., Xu L., Neoh K. G. and Kang E. T., Tannic acid anchored layer-by-layer covalent deposition of parasin I peptide for antifouling and antimicrobial coatings, RSC Adv., 2016. 6, 14809 [107] Wang Z., Ji S., He F., Cao M., Peng S. and Li Y., One-step transformation of highly hydrophobic membranes into superhydrophilic and underwater superoleophobic ones for high-efficiency separation of oil-in-water emulsions, J. Mater. Chem. A, 2018. 6, 3391-3396 [108] Bu Y., Zhang S., Cai Y., Yang Y., Ma S., Huang J., Yang H., Ye D., Zhou Y., Xu W. and Gu S., Fabrication of durable antibacterial and superhydrophobic textiles via in situ synthesis of silver nanoparticle on tannic acid-coated viscose textiles, Cellulose, 2018. 26, 2109-2122 [109] Shang Q., Hu L., Yang X., Hu Y., Bo C., Pan Z., Ren X., Liu C. and Zhou Y., Superhydrophobic cotton fabric coated with tannic acid/polyhedral oligomeric silsesquioxane for highly effective oil/water separation, Pro. In Or. Co., 2021. 154, 106191 [110] Zahouily M., Abrouki Y., Bahlaouan B., Rayadh A. and Sebti S., Hydroxyapatite: new efficient catalyst for the Michael addition, Cat. Com. 2003. 4(10) 521-524 [111] Zhu Y., Jeremiah P. M., Viresh H. and Rawai P., Squaramide‐Catalyzed Enantioselective Michael Addition of Diphenyl Phosphite to Nitroalkenes, Angew. Chem. 2010. 122, 157-160 [112] Chatani S., Devatha P. N. and Christopher N. B., Relative reactivity and selectivity of vinyl sulfones and acrylates towards the thiol–Michael addition reaction and polymerization, Pol. Chem. 2013. 4, 1048-1055 [113] Brian D. M., Kalpana V., Kevin M. M. and Timothy E. L., Michael addition reactions in macromolecular design for emerging technologies, Prog. Polym. Sci. 2006. 31, 487–531 [114] Andrew M. and Jeffrey H., Network Formation and Degradation Behavior of Hydrogels Formed by Michael-Type Addition Reactions, Bio. 2005. 6(1), 290–301 [115] Devatha P. N., Maciej P., Shunsuke C., Gong T., Xi W., Christopher R. F. and Christopher N. B., The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry, Chem. Mater. 2014. 26, 724−744 [116] Li G. Z., Rajan K. R., Alexander H. S., Gregory R., Cyrille B., Tong Z., Thomas P. D., C. Remzi B. and David M. H., Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts, Poly. Che. 2010. 1, 1196-1204 [117] Moorthy N. V. G., Rajendar D., and Sunil V. P., Formal Synthesis of (+)-Lasubine II and (−)-Subcosine II via Organocatalytic Michael Addition of a Ketone to an α-Nitrostyrene, Org. Lett. 2015. 17(21), 5312–5315 [118] Wang Y., Li P., Liang X. and Ye J., Base–Base Bifunctional Catalysis: A Practical Strategy for Asymmetric Michael Addition of Malonates to α,β‐Unsaturated, Aldehydes, Adv. Synth. Catal. 2008. 350, 1383–1389 [119] David M., Silvia D., Pablo B., Rosario F. and José M. L., Synthesis of enantioenriched azo compounds: organocatalytic Michael addition of formaldehyde N-tert-butyl hydrazone to nitroalkenes, Org. Biomol. Chem., 2013. 11, 326-335 [120] Xi W., Peng H., Alan A. S., Christopher J. K., Jeffery W. S., and Christopher N. B., Spatial and Temporal Control of Thiol-Michael Addition via Photocaged Superbase in Photopatterning and Two-Stage Polymer Networks Formation, Macromolecules 2014. 47, 6159–6165 [121] Christian H., Mihaiela C. S., Anders D. and Anzar K., Aza‐Michael addition reaction: Post‐polymerization modification and preparation of PEI/PEG‐based polyester hydrogels from enzymatically synthesized reactive polymers, Pol. Che. 2015. 53, 745-749 [122] Han S. C., He W. D., Li J., Li L. Y., Sun X. L., Zhang B. Y. and Pan T. T., Reducible polyethylenimine hydrogels with disulfide crosslinkers prepared by michael addition chemistry as drug delivery carriers: Synthesis, properties, and in vitro release, Pol. Che. 2009. 47, 4047-4082 [123] Liu J., Li J., Yu F., Zhao Y. X., Mo X. M. and Pan J. F., In situ forming hydrogel of natural polysaccharides through Schiff base reaction for soft tissue adhesive and hemostasis, Int. Jo. of Bio.Macro. 2020. 147, 653-666 [124] Hossein N., Fariba S. and Khadigeh R., Mild and convenient one pot synthesis of Schiff bases in the presence of P2O5/Al2O3 as new catalyst under solvent-free conditions, Jo. of Mol. Cat. 2006. 260, 100-104 [125] Jia Y. and Li J., Molecular Assembly of Schiff Base Interactions: Construction and Application, Chem. Rev. 2015. 115, 1597−1621 [126] Jia Y., Fei J., Cui Y., Yang Y., Gao L. and Li J., pH-responsive polysaccharide microcapsules through covalent bonding assembly, ) Chem. Commun. 2011. 47, 1175-1177 [127] Xin Y. and Yuan J., Schiff’s base as a stimuli-responsive linker in polymer chemistry, Polym. Chem. 2012. 3, 3045 [128] Xiang S., Yang J., Cui Z., Qin S. and Qin Q., Preparation of hollow fiber membrane via grafting tannic acid and its influence on microstructure, permeability and anti-fouling, Mat. Let. 2021. 285, 129095 [129] Xu J., Liu Y. and Hsu S. H., Hydrogels Based on Schiff Base Linkages for Biomedical Applications, Mol. 2019. 24(16), 3005 [130] Ding Y. H., Floren M. and Tan W., Mussel-inspired polydopamine for bio-surface functionalization, Bio. and Bio., 2016. 2(4), 121-136 [131] Liu X., Cao J., Li H. Li J., Jin Q.,Ren K. and Ji J., Mussel-Inspired Polydopamine: A Biocompatible and Ultrastable Coating for Nanoparticles in Vivo, ACS Nano, 2013. 7(10), 9384-9395 [132] Ryou M. H., Lee Y. M., Park J.K. and Choi J. W., Mussel‐Inspired Polydopamine‐Treated Polyethylene Separators for High‐Power Li‐Ion Batteries, Adv. Mater., 2011. 23, 3066–3070 [133] Chen Y. and Liu Q., Oxidant-induced plant phenol surface chemistry for multifunctionalcoatings: Mechanism and potential applications, Jo. of Mem. Sci. 2019. 570-571, 176-183 [134] Jiang C., Liu W., Yang M., Liu C., He S., Xie Y. and Wang Z., Robust multifunctional superhydrophobic fabric with UV induced reversible wettability, photocatalytic self-cleaning property, and oil-water separation via thiol-ene click chemistry, Appl. Surf. Sci. 2019. 463, 34−44. [135] Jannatun N., Taraqqi-A-Kamal, A., Rehman R., Kuker J. and Kumar Lahiri S., A facile cross-linking approach to fabricate durable and self-healing superhydrophobic coatings of SiO2-PVA@PDMS on cotton textile, Euro. Poly. Jour. 2020. 134(5), 109836 [136] Li Y., Zhang Y., Zou C. and Shao J., Study of plasma-induced graft polymerization of stearyl methacrylate on cotton fabric substrates, App. Sur. Sci. 2015. 357, 2327-2332 [137] Du X., Li L., Li J., Yang C., Frenkel N., Welle A., Heissler S., Nefedov A., Grunze M. and Levkin P. A., UV‐Triggered Dopamine Polymerization: Control of Polymerization, Surface Coating, and Photopatterning, Adv. Mater., 2014. 26, 8029–8033 [138] Cai J., Huang J., Ge M., Iocozzia J.,Lin Z., Zhang K. Q. and Lai Y., Immobilization of Pt Nanoparticles via Rapid and Reusable Electropolymerization of Dopamine on TiO2 Nanotube Arrays for Reversible SERS Substrates and Nonenzymatic Glucose Sensors, Small 2017. 13, 1604240 [139] Lee M., Lee S. H., Oh I. K. and Lee H., Microwave‐Accelerated Rapid, Chemical Oxidant‐Free, Material‐Independent Surface Chemistry of Poly(dopamine), Small 2017. 13, 1600443 [140] Zhang C., Li H. N., Du Y., Ma M. Q., and Xu Z. K., CuSO4/H2O2-Triggered Polydopamine/Poly(sulfobetaine methacrylate) Coatings for Antifouling Membrane Surfaces, Langmuir, 2017. 33, 1210−1216 [141] Zhang C., Ou Y., Lei W.Xi, Wan L. S., Ji J. and Xu Z. K., CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability, Angew.Chem. Int. Ed., 2016. 55,3054 –3057 [142] Farid B. S., Zhang H., Vanessa T., Alexander W., Nicolas P. and Pavel A. L., UV-Triggered Polymerization, Deposition, and Patterning of Plant Phenolic Compounds, Adv. Funct. Mater. 2017. 27, 1700127 [143] Charles E. H. and Christopher N. B., Thiol–Ene Click Chemistry, Angew. Chem. Int. Ed. 2010. 49, 1540-1573 [144] Alexander K. T. S., Richard A. F., and Robin L. G., Thiol-ene Click Reaction as a General Route to Functional Trialkoxysilanes for Surface Coating Applications, J. Am. Chem. Soc. 2011. 133, 11026–11029 [145] Ke Y., Xingyi H., Ming Z., Liyuan X., Toshikatsu T., and Pingkai J., Combining RAFT Polymerization and Thiol−Ene Click Reaction for Core−Shell Structured Polymer@BaTiO3 Nanodielectrics with High Dielectric Constant, Low Dielectric Loss, and High Energy Storage Capability, ACS Appl. Mater. Interfaces 2014. 6, 1812-1822 [146] Di S., Wei W. and Dan Y., Preparation of fluorine-free water repellent finishing via thiol-ene click reaction on cotton fabrics, Mat. Let. 2016. 185, 514-518 [147] Mustafa U., Mehmet A. T., Yusuf Y., Influence of Type of Initiation on Thiol–Ene ‘‘Click’’ Chemistry, Macromol. Chem. Phys. 2010. 211, 103–110 [148] Oğuz T. and Michael A. R. M., The thiol-ene (click) reaction for the synthesis of plant oil derived polymers, Eur. J. Lipid Sci. Technol. 2013. 115, 41–54 [149] Lei X., Yanyan Z., Yujing Z., Shen D., Jie Z. and Shengyu F., Preparation and characterization of novel UV-curing silicone rubber viathiol-ene reaction, Mat. Let. 2013. 103, 425-427 [150] Amanda B., Mack B., Tanner H., Mohammad I. H., T. Grant G., Kevin N. W., and Christy W. W., Superhydrophobic Functionalization of Cotton Fabric via Reactive Dye Chemistry and a Thiol−ene Click Reaction, : Ind. Eng. Chem. Res. 2019. 58, 22534−22540 [151] Bin L., Xiaoran D., Zhongxi X., Ziyong C., Piaoping Y. and Jun L., Thiol–Ene Click Reaction as a Facile and General Approach for Surface Functionalization of Colloidal Nanocrystals, Adv. Mater. 2017. 29, 1604878 [152] Andrew B. L., Thiol-ene “click” reactions and recent applications in polymer and materials synthesis, Polym. Chem. 2010. 1, 17-36 [153] Maarten v. D., Dirk T. S. R., Rob M. J. L., Cornelus F. v. N. and Wim E. H., Synthesis and Applications of Biomedical and Pharmaceutical Polymers via Click Chemistry Methodologies, Bioconjugate Chem. 2009. 20, 2001–2016 [154] Kazuo T. a………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81835-
dc.description.abstract本文對改質棉布應用在油水分離提供了觀點回顧。 首先描述了棉布表面疏水性的原理並介紹了產生超疏水表面的基礎理論。 然後對親水性棉布改質為疏水性棉布的製備方法進行了回顧和討論。本文提出了根據文獻結論設計出的新製備方法、總結測試方法、全面技術經濟以及永續性分析的必要性。棉布測試展示了流體和表面相互作用在不同應用場景下對確定油水混合物分離效率的重要關鍵。 POSS改質棉布又稱為POSS-CT是通過硫醇-烯加成反應合成,表現出粗糙與水接觸角為142.82±1.17°的疏水表面。POSS-CT用於清除浮油具有0.96 g/g的吸油能力幾乎是純棉布的 3 倍。 單步驟製備的TA-ODA、TA-HDA 和 TA-TDA 是用單寧酸 (TA) 與十八烷基胺 (ODA)、十六烷基胺 (HDA) 和十四烷基胺 (TDA)透過麥可加成/希夫鹼反應分別鍵結。 此外,用 5mM CuSO4 和 19.6mM H2O2 改質 60 分鐘表現出142.87±0.53°、135.99±1.15°和133.27±1.15°的水接觸角,水接觸角隨著烷基胺長度的減少而降低。 TA-ODA、TA-HDA和TA-TDA擁有1.01 g/g、1.00 g/g和0.96 g/g吸油量表現出和POSS改質棉布一樣出色的浮油清除能力。 與POSS-CT相比,單寧酸改質棉布成本低、製造流程簡單、合成溶劑具永續性,更適合於實際應用。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:04:43Z (GMT). No. of bitstreams: 1
U0001-2007202123263100.pdf: 4895991 bytes, checksum: 15f207e54b48171fd9dcc75e4e7bacb6 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"口試委員審定書 ⅰ ACKNOWLEDGEMENTS ⅱ ABSTRACT ⅲ 摘要 ⅴ Content ⅵ List of Figures ⅹ List of Tables ⅻⅰ Chapter 1 Introduction 1 Chapter 2 Literature review 5 2.1 Hydrophobicity 5 2.2 The evaluation of surface energy of hydrophobicity 6 2.3 The characteristic of cotton 8 2.4 Hydrophobicity modification of cotton fabric for oil/water separation 9 2.5 Natural inspired method 10 2.6 Michael addition reaction 15 2.7 Schiff base reaction 15 2.8. CuSO4/H2O2-triggered reaction 16 2.9. Thiol-ene click reaction 18 2.10. Polyhedral oligomeric silsesquioxane (POSS) 19 Chapter 3 Material and Experiment methods 21 3.1. Material 21 3.2. Preparation of as-preprared cotton fabric 22 3.3. Fabrication of POSS-modified cotton fabric 22 3.4. Fabrication of tannic acid-modified cotton fabrics 22 3.5. Characterization and instrumentation 24 3.5.1 Fourier Transform Infrared Spectroscopy (FTIR) 24 3.5.2 Nuclear Magnetic Resonance (NMR) 24 3.5.3 X-ray Photoelectron Spectroscopy (XPS) 24 3.5.4 Field-emission Scanning Electron Microscope (FE-SEM) 24 3.5.5 Static Contact angle measurement 25 3.5.6 Ultraviolet-visible spectroscopy (UV-vis) 25 3.5.7 Absorption capacity 25 3.5.8 Oil absorption capacity 25 Chapter 4 Result and discussion 27 4.1 POSS-modified cotton fabric 27 4.1.1 The functional groups of cotton fabric, SH-CT and POSS-CT 27 4.1.2 The structure of POSS, MPTES and POSS-CT 28 4.1.3 The binding energy of cotton, SH-CT and POSS-CT 29 4.1.4 The morphology of surface for cotton fabric, SH-CT and POSS-CT 31 4.1.5 Contact angle measurements 32 4.1.6 Water contact angle for POSS-CT 33 4.1.7 Oil absorption capacity 35 4.2 Tannic acid-modified cotton fabrics 37 4.2.1 The functional groups of cotton fabric and tannic acid-modified cotton fabrics 37 4.2.2 The structure of tannic acid, long chain alkyl amine and tannic acid-modified cotton fabrics 38 4.2.3 The binding energy of cotton fabric, TA-TDA, TA-HDA and TA-ODA 41 4.2.4 The morphology of surface for fabrics 43 4.2.5 Contact angle measurements 45 4.2.6 Anti-wetting ability 48 4.2.7 Effects of reaction parameters for alkylamine grafting 49 4.2.8 Oil absorption capacity 52 4.3 The comparison of reaction conditions and performance for TA-ODA and POSS-CT 55 Chapter 5 Conclusions 56 References 58 List of Figures Figure 2-1. The image (a) of the lotus leaf effect [31]. SEM image of 6 lotus-leaf-like structures (b) from carbon nanotubes [31] and rose –petal-like structure (c) of modified surface [32]. Figure 2-2. Schematic of three phase contact line 6 Figure 2-3. The chemical structure of cotton 8 Figure 2-4. Schematic of fabrication of superhydrophobic cotton fabric 10 via dip coating [60] Figure 2-5. Schematic of formation of hierarchical structure by grafting long chain alkyl compound 10 Figure 2-6. The structure of tannic acid 12 Figure 2-7. Schematic of complexation and Michael addition/Schiff base 13 reaction for tannic acid Figure 2-8. Mechanism of Michael addition/Schiff base reaction between tannic acid and amine 13 Figure 2-9. Schematic of hierarchical structure for tannic acid hybrid coating 14 Figure 2-10. Schematic of secondary reaction for tannic acid-modified hydrophobic cotton fabrics [28, 108, 109] 14 Figure 2-11. Schematic of Michael addition reaction [113] 15 Figure 2-12. Schematic of Schiff base reaction [127] 16 Figure 2-13. Schematic of CuSO4/H2O2-triggered oxidation of dopamine 17 Figure 2-14. Schematic of CuSO4/H2O2-triggered oxidation of tannic acid 18 Figure 2-15. Schematic of thiol-ene click reaction 19 Figure 2-16. The chemical structure of POSS 20 Figure 3-1. Schematic of two stage fabrication process of POSS-CT 23 Figure 3-2. Schematic of the adopted reactions in this work. The two step 23 reactions were performed in the same reactor to establish one-pot modification Figure 3-3. The absorption test (a) Test I (b) Test II 26 Figure 4-1. The FTIR spectra of cotton fabric, SH-CT and POSS-CT 27 Figure 4-2. The 1H NMR spectra of POSS, MPTES nad POSS-CT 28 Figure 4-3. The XPS spectra of POSS-CT. (a) wide scanning; (b) binding energy for C1s 30 Figure 4-4. FE-SEM images (a-c) and EDS spectra (d-f) of cotton fabrics. (a, d) cotton fabric; (b, e) SH-CT; (c, f) POSS-CT 31 Figure 4-5. The wetting envelope of POSS-CT, PTFE, and those for water, gasoline, diesel, and kerosene 32 Figure 4-6. Effects of reaction parameters on water contact angles for POSS-CT.(a) Effects of POSS concentration on water contact angles for 1 hr reaction time; (b) effects of reaction time to water contact angle with 1.6% w/w POSS concentration; (c) effects of contact time on water contact angle. POSS-CT modified by 1.6% w/w POSS for 1 hr 34 Figure 4-7. The FTIR spectra of cotton fabric, TA-TDA, TA-HDA, TA-ODA 37 Figure 4-8. The 1H NMR spectra of TDA, HDA, ODA and tannic acid 39 Figure 4-9. The 1H NMR spectra of TA-TDA, TA-HDA and TA-ODA 40 Figure 4-10. The XPS spectra of C1s for cotton fabric (a), TA-TDA (b), TA-HDA (c) and TA-ODA (d) 42 Figure 4-11. FE-SEM images (a-d) and EDS spectra (e-h) of cotton fabrics. 44 (a,e) Pristine; (b,f) TA-TDA; (c,g) TA-HDA; (d,h) TA-ODA. Figure 4-12. The wetting envelope of TA-ODA, TA-HDA and TA-TDA cotton fabrics, PTFE, and those for water, gasoline, diesel, and kerosene 46 Figure 4-13. The wetting resistance of TA-ODA, TA-HDA and TA-TDA 48 Figure 4-14. Effects of reaction parameters on contact angles water droplets on the modified cotton fabrics. (a) 5 mM CuSO4, 19.6 mM H2O2, pH 8.5; (b) no CuSO4, no H2O2, pH 8.5 (c) TA-ODA, no CuSO4, pH 8.5; (d) TA-ODA, 19.6mM H2O2, pH 8.5; (e) TA-ODA, 5 mM CuSO4, 19.6 mM H2O2 51 List of Tables Table 1. The comparison of price for dopamine hydrochloride and tannic acid 3 Table 2. The comparison of reaction conditions for TA grafting modification tests 3 Table 3. The comparison of price for long chain alkyl compound, POSS, and MPTES 4 Table 4 Measurement results and calculations for POSS-CT fabrics 36 Table 5. The binding energy value of C1s for pristine and modified cotton fabrics 42 Table 6. The contact angles of modified cotton fabrics with water and 47 diiodomethane droplets. Table 7. The absorption capacity of fabrics for water and hexane in Test I 54 and Test II. Table 8. The absorption capacity of fabrics modified with 5mM/19.6mM of 54 CuSO4/H2O2 in 10 min for water and hexane in Test II Table 9. The absorption capacity of fabrics modified with no CuSO4/H2O2 in 54 10 min for water and hexane in Test II Table 10. The comparison of reaction condition and performance for TA-ODA and POSS-CT 55 Table 11. The comparison of price for tannic acid, alkylamine, POSS and MPTES 57 "
dc.language.isoen
dc.subject棉布zh_TW
dc.subject疏水性zh_TW
dc.subject烷基胺zh_TW
dc.subjectPOSSzh_TW
dc.subject油水分離zh_TW
dc.subject單寧酸zh_TW
dc.subject測試zh_TW
dc.subjecttestingen
dc.subjectCotton fabricsen
dc.subjecthydrophobicityen
dc.subjecttannic aciden
dc.subjectalkylamineen
dc.subjectPOSSen
dc.subjectoil/water separationen
dc.title單寧酸/多面體矽氧烷寡聚物改質疏水化棉布進行油水分離zh_TW
dc.titleHydrophobicity modification for cotton fabrics by tannic acid/POSS for oil/water separationen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴君義(Hsin-Tsai Liu),黃志彬(Chih-Yang Tseng),朱曉萍
dc.subject.keyword棉布,疏水性,單寧酸,烷基胺,POSS,油水分離,測試,zh_TW
dc.subject.keywordCotton fabrics,hydrophobicity,tannic acid,alkylamine,POSS,oil/water separation,testing,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202101615
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2023-07-24-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2007202123263100.pdf4.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved