請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81834完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖秀娟(Vivian Hsiu-Chuan Liao) | |
| dc.contributor.author | Chun Ming How | en |
| dc.contributor.author | 侯俊銘 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:04:41Z | - |
| dc.date.available | 2024-01-31 | |
| dc.date.copyright | 2022-02-24 | |
| dc.date.issued | 2022 | |
| dc.date.submitted | 2022-01-26 | |
| dc.identifier.citation | Adeniyi, A.A., Okedeyi, O.O., and Yusuf, K.A. (2011). Flame ionization gas chromatographic determination of phthalate esters in water, surface sediments and fish species in the Ogun river catchments, Ketu, Lagos, Nigeria. Environ Monit Assess 172, 561-569. Akintola, A.A., and van Heemst, D. (2015). Insulin, aging, and the brain: mechanisms and implications. Front Endocrinol (Lausanne) 6, 13. Alcantar-Fernandez, J., Navarro, R.E., Salazar-Martinez, A.M., Perez-Andrade, M.E., and Miranda-Rios, J. (2018). Caenorhabditis elegans respond to high-glucose diets through a network of stress-responsive transcription factors. PLoS One 13, e0199888. Aloizou, A.-M., Siokas, V., Vogiatzi, C., Peristeri, E., Docea, A.O., Petrakis, D., Provatas, A., Folia, V., Chalkia, C., Vinceti, M., Wilks, M., Izotov B.N., Tsatsakis, A., Bogdanos, D.P., and Dardiotis, E. (2020). Pesticides, cognitive functions and dementia: a review. Toxicol Lett 326, 31-51. Alp, A.C., Yerlikaya, P. (2020). Phthalate ester migration into food: effect of packaging material and time. Eur Food Res Technol 246, 425-435. Amara, I., Salah, A., Timoumi, R., Annabi, E., Scuto, M., Trovato, A., Neffati, F., Calabrese, V., and Abid-Essefi, S. (2020). Effect of di(2-ethylhexyl) phthalate on Nrf2-regulated glutathione homeostasis in mouse kidney. Cell Stress Chaperones 25, 919-928. Anderson, L.A., Goodman, R.A., Holtzman, D., Posner, S.F., and Northridge, M.E. (2012). Aging in the United States: opportunities and challenges for public health. Am J Public Health 102, 393-395. Aranda, A., Sequedo, L., Tolosa, L., Quintas, G., Burello, E., Castell, J.V., and Gombau, L. (2013). Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol In Vitro 27, 954-963. Arey, R.N., Stein, G.M., Kaletsky, R., Kauffman, A., and Murphy, C.T. (2018) Activation of Gαq signaling enhances memory consolidation and slows cognitive decline. Neuron. 98, 562-574. Ardiel, E.L., and Rankin, C.H. (2010). An elegant mind: learning and memory in Caenorhabditis elegans. Learn Mem 17, 191-201. Ashrafi, K. (2007). Obesity and the regulation of fat metabolism. WormBook, 1-20. ATSDR (2022). Toxicological profile for Di(2-ethylhexyl)phthalate (DEHP). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Au, V., Li-Leger, E., Raymant, G., Flibotte, S., Chen, G., Martin, K., Fernando, L., Doell, C., Rosell, F.I., Wang, S., Edgley, M.L., Rougvie, A.E., Hutter, H., and Moerman, D.G. (2019). CRISPR/Cas9 methodology for the generation of knockout deletions in Caenorhabditis elegans. G3 (Bethesda) 9, 135-144. Avery, L., and You, Y.J. (2012). C. elegans feeding. WormBook, 1-23. Bansal, A., Kwon, E.S., Conte, D., Jr., Liu, H., Gilchrist, M.J., MacNeil, L.T., and Tissenbaum, H.A. (2014). Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan. Longev Healthspan 3, 5. Barakat, R., Lin, P.C., Park, C.J., Best-Popescu, C., Bakry, H.H., Abosalem, M.E., Abdelaleem, N.M., Flaws, J.A., and Ko, C. (2018). Prenatal exposure to DEHP induces neuronal degeneration and neurobehavioral abnormalities in adult male mice. Toxicol Sci 164, 439-452. Barriere, A., and Felix, M.A. (2014). Isolation of C. elegans and related nematodes. WormBook, 1-19. Bernhardt, E.S., Rosi, E.J., and Gessner, M.O. (2017). Synthetic chemicals as agents of global change. Front Ecol Environ 15, 84-90. Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1, 11-21. Bhattarai, K.R., Chaudhary, M., Kim, H.R., and Chae, H.J. (2020). Endoplasmic reticulum (ER) stress response failure in diseases. Trends Cell Biol 30, 672-675. Biemann, R., Navarrete Santos, A., Navarrete Santos, A., Riemann, D., Knelangen, J., Bluher, M., Koch, H., and Fischer, B. (2012). Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows. Biochem Biophys Res Commun 417, 747-752. Blackwell, T.K., Steinbaugh, M.J., Hourihan, J.M., Ewald, C.Y., and Isik, M. (2015). SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 88, 290-301. Brock, T.J., Browse, J., and Watts, J.L. (2007). Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics 176, 865-875. Brown, M., Dainty, S., Strudwick, N., Mihai, A.D., Watson, J.N., Dendooven, R., Paton, A.W., Paton, J.C., and Schroder, M. (2020). Endoplasmic reticulum stress causes insulin resistance by inhibiting delivery of newly synthesized insulin receptors to the cell surface. Mol Biol Cell 31, 2597-2629. Brown, M.K., and Naidoo, N. (2012). The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol 3, 263. Bulterijs, S., and Braeckman, B.P. (2020). Phenotypic screening in C. elegans as a tool for the discovery of new geroprotective drugs. Pharmaceuticals (Basel) 13, 164. Burns, A.R., Wallace, I.M., Wildenhain, J., Tyers, M., Giaever, G., Bader, G.D., Nislow, C., Cutler, S.R., and Roy, P.J. (2010). A predictive model for drug bioaccumulation and bioactivity in Caenorhabditis elegans. Nat Chem Biol 6, 549-557. Calahorro, F., Holden-Dye, L., and O'Connor, V. (2021). Impact of drug solvents on C. elegans pharyngeal pumping. Toxicol Rep 8, 1240-1247. Cao, X.-L. (2010). Phthalate esters in foods: sources, occurrence, and analytical methods. Compr Rev Food Sci Food Saf 9, 21-43. Carnevali, O., Tosti, L., Speciale, C., Peng, C., Zhu, Y., and Maradonna, F. (2010). DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis. PloS One 5, e10201. Casali, C., Malvicini, R., Erjavec, L., Parra, L., Artuch, A., and Fernandez Tome, M.C. (2020). X-box binding protein 1 (XBP1): A key protein for renal osmotic adaptation. Its role in lipogenic program regulation. Biochim Biophys Acta Mol Cell Biol Lipids 1865, 158616. Chang, C.H., Liao, H.X., Hsu, F.L., Ho, C.T., and Liao, V.H. (2019). N-ϒ-(l-Glutamyl)-l-Selenomethionine inhibits fat storage via the stearoyl-CoA desaturases FAT-6 and FAT-7 and the selenoprotein TRXR-1 in Caenorhabditis elegans. Mol Nutr Food Res 63, e1800784. Chang, H.C., Yang, H.C., Chang, H.Y., Yeh, C.J., Chen, H.H., Huang, K.C., and Pan, W.H. (2017). Morbid obesity in Taiwan: prevalence, trends, associated social demographics, and lifestyle factors. PloS One 12, e0169577. Cheke, L.G., Bonnici, H.M., Clayton, N.S., and Simons, J.S. (2017). Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain. Neuropsychologia 96, 137-149. Chen, H., Zhang, W., Rui, B.B., Yang, S.M., Xu, W.P., and Wei, W. (2016). Di(2-ethylhexyl) phthalate exacerbates non-alcoholic fatty liver in rats and its potential mechanisms. Environ Toxicol Pharmacol 42, 38-44. Chang, J.W., Lee, C.C., Pan, W.H., Chou, W.C., Huang, H.B., Chiang, H.C., and Huang, P.C. (2017). Estimated daily intake and cumulative risk assessment of phthalates in the general Taiwanese after the 2011 DEHP food scandal. Sci Rep 7, 45009. Chen, C.C., Wang, S.L., Wu, M.T., Wang, Y.H., Huang, P.C., Chen, B.H., Sun, C.W., Ho, C.K., Shih, Y.C., Shiu, M.N., Pan, W.H., Chen, M.L., Lee, C.C., and Hsiung, C.A. (2016a). Exposure estimation for risk assessment of the phthalate incident in Taiwan. PLoS One 11, e0151070. Chen, H., Zhang, W., Rui, B.B., Yang, S.M., Xu, W.P., and Wei, W. (2016b). Di(2-ethylhexyl) phthalate exacerbates non-alcoholic fatty liver in rats and its potential mechanisms. Environ Toxicol Pharmacol 42, 38-44. Chiang, C., Lewis, L.R., Borkowski, G., and Flaws, J.A. (2020). Late-life consequences of short-term exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate during adulthood in female mice. Reprod Toxicol 93, 28-42. Cho, S.C., Bhang, S.Y., Hong, Y.C., Shin, M.S., Kim, B.N., Kim, J.W., Yoo, H.J., Cho, I.H., and Kim, H.W. (2010). Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ Health Perspect 118, 1027-1032. Choi, K., Joo, H., Campbell, J.L., Jr., Clewell, R.A., Andersen, M.E., and Clewell, H.J., 3rd (2012). In vitro metabolism of di(2-ethylhexyl) phthalate (DEHP) by various tissues and cytochrome P450s of human and rat. Toxicol In Vitro 26, 315-322. Cirillo, T., Latini, G., Castaldi, M.A., Dipaola, L., Fasano, E., Esposito, F., Scognamiglio, G., Francesco, F.D., and Cobellis, L. (2015). Exposure to di-2-ethylhexyl phthalate, di-N-butyl phthalate and bisphenol A through infant formulas. J Agric Food Chem 63, 3303-3310. Clark, K., Cousins, I., and Mackay, D. (2003). Assessment of critical exposure pathways. In Staples CA (ed), The Handbook of Environmental Chemistry, Vol, 3, Part Q: Phthalate Esters, 227-262. Collins, J.J., Huang, C., Hughes, S., and Kornfeld, K. (2008). The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook, 1-21. Conte, D., Jr., MacNeil, L.T., Walhout, A.J., and Mello, C.C. (2015). RNA interference in Caenorhabditis elegans. Curr Protoc Mol Biol 109, 26 23 21-30. Corradetti, B., Stronati, A., Tosti, L., Manicardi, G., Carnevali, O., and Bizzaro, D. (2013). Bis-(2-ethylexhyl) phthalate impairs spermatogenesis in zebrafish (Danio rerio). Reprod Biol 13, 195-202. Corsi, A.K., Wightman, B., and Chalfie, M. (2015). A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200, 387-407. Corton, J.C., and Lapinskas, P.J. (2004). Peroxisome proliferator-activated receptors: mediators of phthalate ester-induced effects in the male reproductive tract? Toxicol Sci 83, 4-17. Cuenca, L., Shin, N., Lascarez-Lagunas, L.I., Martinez-Garcia, M., Nadarajan, S., Karthikraj, R., Kannan, K., and Colaiacovo, M.P. (2020). Environmentally-relevant exposure to diethylhexyl phthalate (DEHP) alters regulation of double-strand break formation and crossover designation leading to germline dysfunction in Caenorhabditis elegans. PLoS Genet 16, e1008529. Dales, R.E., Kauri, L.M., and Cakmak, S. (2018). The associations between phthalate exposure and insulin resistance, beta-cell function and blood glucose control in a population-based sample. Sci Total Environ 612, 1287-1292. David, R.M., Moore, M.R., Finney, D.C., and Guest, D. (2001). Reversibility of the chronic effects of di(2-ethylhexyl)phthalate. Toxicol Pathol 29, 430-439. De Falco, M., Forte, M., and Laforgia, V. (2015). Estrogenic and anti-androgenic endocrine disrupting chemicals and their impact on the male reproductive system. Front Environ Sci 3, 3. De Toni, L., Tisato, F., Seraglia, R., Roverso, M., Gandin, V., Marzano, C., Padrini, R., and Foresta, C. (2017). Phthalates and heavy metals as endocrine disruptors in food: A study on pre-packed coffee products. Toxicol Rep 4, 234-239. Deng, J., Dai, Y., Tang, H., and Pang, S. (2020). SKN-1 is a negative regulator of DAF-16 and somatic stress resistance in Caenorhabditis elegans. G3 (Bethesda) 10, 1707-1712. Deniaud, A., Sharaf el dein, O., Maillier, E., Poncet, D., Kroemer, G., Lemaire, C., and Brenner, C. (2008). Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27, 285-299. Desvergne, B., Feige, J.N., and Casals-Casas, C. (2009). PPAR-mediated activity of phthalates: A link to the obesity epidemic? Mol Cell Endocrinol 304, 43-48. DiLoreto, R., and Murphy, C.T. (2015). The cell biology of aging. Mol Biol Cell 26, 4524-4531. Ding, S., Zhuge, W., Yang, J., Wen, F., Xu, Z., Wang, X., and Zhuge, Q. (2017). Insulin resistance disrupts the interaction between AKT and the NMDA receptor and the inactivation of the CaMKIV/CREB pathway in minimal hepatic encephalopathy. Toxicol Sci 159, 290-306. Dludla, P.V., Jack, B., Viraragavan, A., Pheiffer, C., Johnson, R., Louw, J., and Muller, C.J.F. (2018). A dose-dependent effect of dimethyl sulfoxide on lipid content, cell viability and oxidative stress in 3T3-L1 adipocytes. Toxicol Rep 5, 1014-1020. Drummen, G.P., van Liebergen, L.C., Op den Kamp, J.A., and Post, J.A. (2002). C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med 33, 473-490. ECHA (2010). Review of new available information for bis (2-ethylhexyl) phthalate (DEHP). Edwards, L., McCray, N.L., VanNoy, B.N., Yau, A., Geller, R.J., Adamkiewicz, G., and Zota, A.R. (2021). Phthalate and novel plasticizer concentrations in food items from U.S. fast food chains: a preliminary analysis. J Expo Sci Environ Epidemiol. Edwards, S.L., Erdenebat, P., Morphis, A.C., Kumar, L., Wang, L., Chamera, T., Georgescu, C., Wren, J.D., and Li, J. (2021). Insulin/IGF-1 signaling and heat stress differentially regulate HSF1 activities in germline development. Cell Rep 36, 109623. EFSA Panel on Food Contact Materials, E., Aids, P., Silano, V., Barat Baviera, J.M., Bolognesi, C., Chesson, A., Cocconcelli, P.S., Crebelli, R., Gott, D.M., Grob, K., Lampi, E., Mortensen, A., Riviere, G., Steffensen, I.-L., Tlustos, C., Van Loveren, H., Vernis,L., Zorn, H., Cravedi, J.-P., Fortes, C., Pocßas, M.F.T., Waalkens-Berendsen, I., Wolfle, D., Arcella, D., Cascio, C., Castoldi, A.F., Volk, K., and Castle, L. (2019). Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials. EFSA Journal 17, e05838. Escorcia, W., Ruter, D.L., Nhan, J., and Curran, S.P. (2018). Quantification of lipid abundance and evaluation of lipid distribution in Caenorhabditis elegans by Nile Red and Oil Red O staining. J Vis Exp 133, e57352. Fang, H., Wang, J., and Lynch, A.R. (2016) Migration of di(2-ethylhexyl)phthalate (DEHP) and di-n-butylphthalate (DBP) from polypropylene food containers. Food Control 73, 1298-1302. Feng, W., Liu, Y., Ding, Y., Mao, G., Zhao, T., Chen, K., Qiu, X., Xu, T., Zhao, X., Wu, X., and Yang, L. (2020). Typical neurobehavioral methods and transcriptome analysis reveal the neurotoxicity and mechanisms of di(2-ethylhexyl) phthalate on pubertal male ICR mice with type 2 diabetes mellitus. Arch Toxicol 94, 1279-1302. Feng, Y.-L., Zhu, J., and Sensenstein, R. (2005). Development of a headspace solid-phase microextraction method combined with gas chromatography mass spectrometry for the determination of phthalate esters in cow milk. Anal Chim Acta 538, 41-48. Finkel, T., and Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247. Fromme, H., Gruber, L., Seckin, E., Raab, U., Zimmermann, S., Kiranoglu, M., Schlummer, M., Schwegler, U., Smolic, S., and Volkel, W. (2011). Phthalates and their metabolites in breast milk--results from the Bavarian Monitoring of Breast Milk (BAMBI). Environ Int 37, 715-722. Fu, S., Watkins, S.M., and Hotamisligil, G.S. (2012). The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab 15, 623-634. Garcia-Espineira, M.C., Tejeda-Benitez, L.P., and Olivero-Verbel, J. (2018). Toxic effects of bisphenol A, propyl paraben, and triclosan on Caenorhabditis elegans. Int J Environ Res Public Health 15, 684. Gerstbrein, B., Stamatas, G., Kollias, N., and Driscoll, M. (2005). In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4, 127-137. Ghosh, J., Das, J., Manna, P., and Sil, P.C. (2010). Hepatotoxicity of di-(2-ethylhexyl)phthalate is attributed to calcium aggravation, ROS-mediated mitochondrial depolarization, and ERK/NF-kappaB pathway activation. Free Radic Biol Med 49, 1779-1791. Giovanoulis, G., Bui, T., Xu, F., Papadopoulou, E., Padilla-Sanchez, J.A., Covaci, A., Haug, L.S., Cousins, A.P., Magner, J., Cousins, I.T., and de Wit, C.A. (2018). Multi-pathway human exposure assessment of phthalate esters and DINCH. Environ Int 112, 115-126. Giuliani, A., Zuccarini, M., Cichelli, A., Khan, H., and Reale, M. (2020). Critical review on the presence of phthalates in food and evidence of their biological impact. Int J Environ Res Public Health 17, 5655. Glisky, E.L. (2007). Changes in cognitive function in human aging. In Brain Aging: Models, Methods, and Mechanisms, D.R. Riddle, ed. (Boca Raton (FL)). Gobas, F.A.P.C., Mackintosh, C.E., Webster, G., Ikonomou, M., Parkerton, T.F., and Robillard, K. (2003). Bioaccumulation of phthalate esters in aquatic food-webs. In The Handbook of Environmental Chemistry, C.A. Staples, ed. (Berlin, Heidelberg: Springer), pp. 201-225. Grundy, S.M. (2008). Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28, 629-636. Guerendiain, M., Montes, R., Lopez-Belmonte, G., Martin-Matillas, M., Castellote, A.I., Martin-Bautista, E., Marti, A., Martinez, J.A., Moreno, L., Garagorri, J.M., Wärnberg, J., Caballero, J., Marcos, A., López-Sabater, M.C., Campoy, C.; and EVASYON Study Group (2018). Changes in plasma fatty acid composition are associated with improvements in obesity and related metabolic disorders: A therapeutic approach to overweight adolescents. Clin Nutr 37, 149-156. Guo, S. (2014). Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 220, T1-T23. Guo, Y., Alomirah, H., Cho, H.S., Minh, T.B., Mohd, M.A., Nakata, H., and Kannan, K. (2011a). Occurrence of phthalate metabolites in human urine from several Asian countries. Environ Sci Technol 45, 3138-3144. Guo, Y., and Kannan, K. (2012). Challenges encountered in the analysis of phthalate esters in foodstuffs and other biological matrices. Anal Bioanal Chem 404, 2539-2554. Guo, Y., Wu, Q., and Kannan, K. (2011b). Phthalate metabolites in urine from China, and implications for human exposures. Environ Int 37, 893-898. Haigis, M.C., and Yankner, B.A. (2010). The aging stress response. Mol Cell 40, 333-344. Halden, R.U. (2015). Epistemology of contaminants of emerging concern and literature meta-analysis. J Haz Mater 282, 2-9. Hammell, C.M., and Hannon, G.J. (2012). Inducing RNAi in C. elegans by feeding with dsRNA-expressing E. coli. Cold Spring Harb Protoc 2012, pdb.prot072348. Hannas, B.R., Lambright, C.S., Furr, J., Howdeshell, K.L., Wilson, V.S., and Gray, L.E., Jr. (2011). Dose-response assessment of fetal testosterone production and gene expression levels in rat testes following in utero exposure to diethylhexyl phthalate, diisobutyl phthalate, diisoheptyl phthalate, and diisononyl phthalate. Toxicol Sci 123, 206-216. Hartman, J.H., Widmayer, S.J., Bergemann, C.M., King, D.E., Morton, K.S., Romersi, R.F., Jameson, L.E., Leung, M.C.K., Andersen, E.C., Taubert, S., and Meyer, J.N. (2021). Xenobiotic metabolism and transport in Caenorhabditis elegans. J Toxicol Environ Health B Crit Rev 24, 51-94. Healy, S.D., and Jones, C.M. (2002). Animal learning and memory: an integration of cognition and ecology1. Zoology 105, 321-327. Heindel, J.J., Blumberg, B., Cave, M., Machtinger, R., Mantovani, A., Mendez, M.A., Nadal, A., Palanza, P., Panzica, G., Sargis, R., Vandenberg, L.N., and Vom Saal, F. (2017). Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 68, 3-33. Hoogewijs, D., Houthoofd, K., Matthijssens, F., Vandesompele, J., and Vanfleteren, J.R. (2008). Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol Biol 9, 9. How, C.M., Li, S.W., and Liao, V.H. (2018). Chronic exposure to triadimenol at environmentally relevant concentration adversely affects aging biomarkers in Caenorhabditis elegans associated with insulin/IGF-1 signaling pathway. Sci Total Environ 640-641, 485-492. How, C.M., Lin, T.A., and Liao, V.H. (2021). Early-life chronic di(2-ethylhexyl)phthalate exposure worsens age-related long-term associative memory decline associated with insulin/IGF-1 signaling and CRH-1/CREB in Caenorhabditis elegans. J Hazard Mater 417, 126044. How, C.M., Yen, P.L., Wei, C.C., Li, S.W., and Liao, V.H. (2019). Early life exposure to di(2-ethylhexyl)phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegans. Environ Pollut 251, 871-878. HSDB (2015). Bis-(2-ethylhexyl)phthalate (U.S. National Library of Medicine). Hsu, A.L., Murphy, C.T., and Kenyon, C. (2003). Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142-1145. Huang, C., Xiong, C., and Kornfeld, K. (2004). Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci USA 101, 8084-8089. Huang, C.F., and Wang, I.J. (2017). Changes in urinary phthalate metabolite levels before and after the phthalate contamination event and identification of exposure sources in a cohort of Taiwanese children. Int J Environ Res Public Health 14, 935. Huang, L.P., Lee, C.C., Hsu, P.C., and Shih, T.S. (2011). The association between semen quality in workers and the concentration of di(2-ethylhexyl) phthalate in polyvinyl chloride pellet plant air. Fertil Steril 96, 90-94. Huang, P.C., Tien, C.J., Sun, Y.M., Hsieh, C.Y., and Lee, C.C. (2008). Occurrence of phthalates in sediment and biota: relationship to aquatic factors and the biota-sediment accumulation factor. Chemosphere 73, 539-544. Huang, P.C., Tsai, C.H., Chen, C.C., Wu, M.T., Chen, M.L., Wang, S.L., Chen, B.H., Lee, C.C., Jaakkola, J.J.K., Wu, W.C., Chen, M.K., Hsiung, C.A., and RAPIT Group (2017). Intellectual evaluation of children exposed to phthalate-tainted products after the 2011 Taiwan phthalate episode. Environ Res 156, 158-166. Huang, Y., Sun, F., Tan, H., Deng, Y., Sun, Z., Chen, H., Li, J., and Chen, D. (2019). DEHP and DINP induce tissue- and gender-specific disturbances in fatty acid and lipidomic profiles in neonatal mice: A comparative study. Environ Sci Technol 53, 12812-12822. Hwang, L.C., Bai, C.H., and Chen, C.J. (2006). Prevalence of obesity and metabolic syndrome in Taiwan. J Formos Med Assoc 105, 626-635. IARC (2013). IARC monographs on the evaluation of carcinogenic risks to humans, No. 101: Di-(2-ethylhexyl) phthalate. In ARC Working Group on the Evaluation of Carcinogenic Risk to Humans Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-Water (Lyon, France). Inoue, H., Hisamoto, N., An, J.H., Oliveira, R.P., Nishida, E., Blackwell, T.K., and Matsumoto, K. (2005). The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes Dev 19, 2278-2283. Ito, Y., Kamijima, M., Hasegawa, C., Tagawa, M., Kawai, T., Miyake, M., Hayashi, Y., Naito, H., and Nakajima, T. (2014). Species and inter-individual differences in metabolic capacity of di(2-ethylhexyl)phthalate (DEHP) between human and mouse livers. Environ Health Prev Med 19, 117-125. James-Todd, T.M., Huang, T., Seely, E.W., and Saxena, A.R. (2016). The association between phthalates and metabolic syndrome: the National Health and Nutrition Examination Survey 2001-2010. Environ Health 15, 52. Johnson, A.A., and Stolzing, A. (2019). The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 18, e13048. Jornet-Martínez, N., Antón-Soriano, C., Campíns-Falcó, P. (2015). Estimation of the presence of unmetabolized dialkyl phthalates in untreated human urine by an on-line miniaturized reliable method. Sci Total Environ 532, 239-44. Kaldun, J.C., and Sprecher, S.G. (2019). Initiated by CREB: Resolving gene regulatory programs in learning and memory. Bioessays 41, 1900045. Kapulkin, W.J., Hiester, B.G., and Link, C.D. (2005). Compensatory regulation among ER chaperones in C. elegans. FEBS Lett 579, 3063-3068. Kambia, N., Farce, A., Belarbi, K., Gressier, B., Luyckx, M., Chavatte, P., and Dine, T. (2016). Docking study: PPARs interaction with the selected alternative plasticizers to di(2-ethylhexyl) phthalate. J Enzyme Inhib Med Chem 31, 448-455. Kambia, N., Renault, N., Dilly, S., Farce, A., Dine, T., Gressier, B., Luyckx, M., Brunet, C., and Chavatte, P. (2008). Molecular modelling of phthalates – PPARs interactions. J Enzyme Inhib Med Chem 23, 611-616. Kauffman, A., Parsons, L., Stein, G., Wills, A., Kaletsky, R., and Murphy, C. (2011). C. elegans positive butanone learning, short-term, and long-term associative memory assays. J Vis Exp 49, e2490 Kauffman, A.L., Ashraf, J.M., Corces-Zimmerman, M.R., Landis, J.N., and Murphy, C.T. (2010). Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age. PLoS Biol 8, e1000372. Kaur, J. (2014). A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014, 943162. Kim, E.J., Kim, J.W., and Lee, S.K. (2002). Inhibition of oocyte development in Japanese medaka (Oryzias latipes) exposed to di-2-ethylhexyl phthalate. Environ Int 28, 359-365. Kim, J.H., Park, H.Y., Bae, S., Lim, Y.H., and Hong, Y.C. (2013). Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly: a panel study. PLoS One 8, e71392. Kim, J.I., Hong, Y.C., Shin, C.H., Lee, Y.A., Lim, Y.H., and Kim, B.N. (2017). The effects of maternal and children phthalate exposure on the neurocognitive function of 6-year-old children. Environ Res 156, 519-525. Kimura, Y., Corcoran, E.E., Eto, K., Gengyo-Ando, K., Muramatsu, M.A., Kobayashi, R., Freedman, J.H., Mitani, S., Hagiwara, M., Means, A.R., and Tokumitsu, H. (2002). A CaMK cascade activates CRE-mediated transcription in neurons of Caenorhabditis elegans. EMBO Rep 3, 962-966. Kinney, C.A., Furlong, E.T., Kolpin, D.W., Zaugg, S.D., Burkhardt, M.R., Bossio, J.P., and Werner, S.L. (2010). Earthworms: diagnostic indicators of wastewater derived anthropogenic organic contaminants in terrestrial environments. In Contaminants of Emerging Concern in the Environment: Ecological and Human Health Considerations (American Chemical Society), pp. 297-317. Kluwe, W.M. (1982). Overview of phthalate ester pharmacokinetics in mammalian species. Environ Health Perspect 45, 3-9. Kniazeva, M., Sieber, M., McCauley, S., Zhang, K., Watts, J.L., and Han, M. (2003). Suppression of the ELO-2 FA elongation activity results in alterations of the fatty acid composition and multiple physiological defects, including abnormal ultradian rhythms, in Caenorhabditis elegans. Genetics 163, 159-169. Koch, H.M., Bolt, H.M., Preuss, R., and Angerer, J. (2005a). New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol 79, 367-376. Koch, H.M., Bolt, H.M., Preuss, R., Eckstein, R., Weisbach, V., and Angerer, J. (2005b). Intravenous exposure to di(2-ethylhexyl)phthalate (DEHP): metabolites of DEHP in urine after a voluntary platelet donation. Arch Toxicol 79, 689-693. Koch, H.M., Preuss, R., and Angerer, J. (2006). Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure-- an update and latest results. Int J Androl 29, 155-165; discussion 181-155. Koelle, M.R., and Horvitz, H.R. (1996). EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84, 115-125. Kourtis, N., Nikoletopoulou, V., and Tavernarakis, N. (2012). Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature 490, 213-218. Krebs, J., Agellon, L.B., and Michalak, M. (2015). Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochem Biophys Res Commun 460, 114-121. Kumar, M., Sarma, D.K., Shubham, S., Kumawat, M., Verma, V., Prakash, A., and Tiwari, R. (2020). Environmental endocrine-disrupting chemical exposure: Role in non-communicable diseases. Front Public Health 8, 553850. Kumsta, C., Chang, J.T., Schmalz, J., and Hansen, M. (2017). Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans. Nat Commun 8, 14337. Lai, C.H., Chou, C.Y., Ch'ang, L.Y., Liu, C.S., and Lin, W. (2000). Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res 10, 703-713. Lakhina, V., Arey, R.N., Kaletsky, R., Kauffman, A., Stein, G., Keyes, W., Xu, D., and Murphy, C.T. (2015). Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs. Neuron 85, 330-345. Latini, G., Del Vecchio, A., Massaro, M., Verrotti, A., and De Felice, C. (2006). Phthalate exposure and male infertility. Toxicology 226, 90-98. Le Magueresse-Battistoni, B., Labaronne, E., Vidal, H., and Naville, D. (2017). Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World J Biol Chem 8, 108-119. Le Magueresse-Battistoni, B., Vidal, H., and Naville, D. (2018). Environmental pollutants and metabolic disorders: the multi-exposure scenario of life. Front Endocrinol (Lausanne) 9, 582. Lee, A.H., Scapa, E.F., Cohen, D.E., and Glimcher, L.H. (2008). Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492-1496. Lee, D., Jeong, D.E., Son, H.G., Yamaoka, Y., Kim, H., Seo, K., Khan, A.A., Roh, T.Y., Moon, D.W., Lee, Y., and Lee, S.J.. (2015). SREBP and MDT-15 protect C. elegans from glucose-induced accelerated aging by preventing accumulation of saturated fat. Genes Dev 29, 2490-2503. Lee, Y.-M., Lee, J.-E., Choe, W., Kim, T., Lee, J.-Y., Kho, Y., Choi, K., and Zoh, K.-D. (2019). Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. Environ Int 126, 635-643. Lemmer, I.L., Willemsen, N., Hilal, N., and Bartelt, A. (2021). A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab 47, 101169. Lenaerts, I., Walker, G.A., Van Hoorebeke, L., Gems, D., and Vanfleteren, J.R. (2008). Dietary restriction of Caenorhabditis elegans by axenic culture reflects nutritional requirement for constituents provided by metabolically active microbes. J Gerontol A Biol Sci Med Sci 63, 242-252. Lertsirisopon, R., Soda, S., Sei, K., and Ike, M. (2009). Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation. J Environ Sci (China) 21, 285-290. Leung, M.C., Williams, P.L., Benedetto, A., Au, C., Helmcke, K.J., Aschner, M., and Meyer, J.N. (2008). Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106, 5-28. Li, S.T, Zhao, H.Q, Zhang, P., Liang, C.Y., Zhang, Y.P., Hsu, A.L., Dong, M.Q. (2019) DAF‐16 stabilizes the aging transcriptome and is activated in mid‐aged Caenorhabditis elegans to cope with internal stress. Aging Cell 18, e12896. Li, S.W., How, C.M., and Liao, V.H. (2018). Prolonged exposure of di(2-ethylhexyl) phthalate induces multigenerational toxic effects in Caenorhabditis elegans. Sci Total Environ 634, 260-266. Li, Y., and Paik, Y.K. (2011). A potential role for fatty acid biosynthesis genes during molting and cuticle formation in Caenorhabditis elegans. BMB Rep 44, 285-290. Liao, K.W., Chang, W.H., Chou, W.C., Huang, H.B., Waits, A., Chen, P.C., and Huang, P.C. (2021). Human biomonitoring reference values and characteristics of Phthalate exposure in the general population of Taiwan: Taiwan Environmental Survey for Toxicants 2013-2016. Int J Hyg Environ Health 235, 113769. Liao, V.H. (2018). Use of Caenorhabditis elegans to study the potential bioactivity of natural compounds. J Agric Food Chem 66, 1737-1742. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., and Abete, P. (2018). Oxidative stress, aging, and diseases. Clin Interv Aging 13, 757-772. Lin, C.Y., Chen, P.C., Hsieh, C.J., Chen, C.Y., Hu, A., Sung, F.C., Lee, H.L., and Su, T.C. (2017). Positive association be……… | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81834 | - |
| dc.description.abstract | 鄰苯二甲酸酯類 (phthalates) 常用於各種生活用品,造成環境與食品中的污染。由於鄰苯二甲酸二(2-乙基己基)酯 (DEHP) 常於食品、飲料、生物體及人體被檢測出,因此造成不容忽視的潛在的食品安全及健康危害。目前證據顯示暴露DEHP可能造成多種不良健康效應,包括過早衰老、肥胖以及認知能力受損等。然而目前對於DEHP透過何種生物調控機制造成上述毒性效應仍須進一步探討。 本研究的整體目標為探討暴露環境相關濃度DEHP對於老化、肥胖及記憶與學習所造成的影響及其生物調控機制,並利用模式生物秀麗隱桿線蟲 (C. elegans) 進行研究。本博士論文包含三個子目標:(1) 探討發育期間慢性暴露於DEHP對老化所造成的影響及其調控機制;(2) 探討慢性暴露DEHP誘導肥胖的效應及相關調控機制;及 (3) 探討發育期間慢性暴露於DEHP對C. elegans記憶與學習能力所造成的影響。 子目標 (1) 成果顯示,自L1時期慢性暴露於1.5 mg/L DEHP顯著造成整體健康狀態損傷,並縮短C. elegans之壽命。此外,DEHP也加劇C. elegans咽喉收縮與排泄行為隨老化過程之衰退。此外,DEHP亦造成老化相關指標如脂褐素 (lipofuscin)、脂質過氧化 (lipid peroxidation) 及氧化壓力累積增加。慢性暴露於DEHP也顯著抑制老化相關基因hsp-16.1、hsp-16.49及hsp-70之mRNA表達量。同時,本研究利用insulin/IGF-1 signaling (IIS) 相關基因 (daf-2、age-1、pdk-1、akt-1、akt-2及daf-16) 突變種C. elegans,發現IIS相關基因突變消除了DEHP所造成脂質過氧化累積增加效應,顯示IIS參與調控DEHP之毒性效應。另外,skn-1之突變則加劇DEHP所造成的脂質過氧化累積增加,顯示skn-1亦扮演關鍵角色。因此,發育期間慢性暴露於DEHP可能透過IIS及SKN-1加速C. elegans之老化,亦提供了可能的分子調控基礎。 本研究子目標 (2) 成果顯示早期生命暴露DEHP造成體內脂質及三酸甘油酯 (TG) 含量增加,且效應主要源自於DEHP而非其代謝物。此外,發育階段與暴露時機影響DEHP誘導TG累積增加之效應,且慢性暴露DEHP造成最顯著的效應。慢性暴露DEHP亦改變線蟲體內自由脂質與TG的脂肪酸組成,導致ω-6/ω-3脂肪酸比例增加。本研究發現,慢性暴露DEHP誘導TG增加的效應需脂質合成基因POD-2、FASN-1、FAT-6、FAT-7,以及SREBP同源轉錄因子SBP-1的參與。本研究亦發現慢性暴露環境相關濃度的DEHP誘導XBP-1所調控的內質網壓力,並驅動SBP-1表達增加。本研究成果顯示內質網壓力與SBP-1/SREBP調控的脂質合成可能與DEHP所誘導肥胖效應有關。 本研究子目標 (3) 成果顯示發育初期暴露DEHP抑制第0天成蟲的長期記憶能力。自L1幼蟲時期至第5天成蟲慢性暴露於DEHP,則導致長期記憶能力加速衰退。此外,本研究結果顯示DEHP對長期記憶隨老化衰退之效應與CREB同源轉錄因子CRH-1有關。將C. elegans IIS的唯一受體daf-2突變剔除後可逆轉DEHP對長期記憶能力的抑制,且此逆轉效應需daf-16的參與。同理,daf-2突變剔除後恢復原受到DEHP抑制的CRH-1表達量,且此效應需daf-16的參與。本子目標結果顯示發育初期及慢性暴露於DEHP透過CREB與IIS相關機制加速長期記憶隨老化的衰退。由於CREB與IIS皆在演化上具高度保守性,顯示DEHP亦可能對其他生物的長期記憶造成不良效應。 綜上所述,本博士論文成果顯示,於發育初期慢性暴露於環境相關濃度DEHP對線蟲造成老化相關生物指標表現下降、增加肥胖、以及惡化老化相關的學習與記憶衰退,且DEHP所造成的毒性效應與多種演化上保守的機制如IIS、SKN-1/NrF2、SBP-1/SREBP、內質網壓力及CRH-1/CREB有關。由於以上生物機制在演化上具高度保守性,表示DEHP也可能對其他物種造成相似毒性效應。此博士論文對於提供DEHP慢性毒性深入認知作出貢獻。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:04:41Z (GMT). No. of bitstreams: 1 U0001-2601202213335600.pdf: 3375669 bytes, checksum: 14f559f27fc6783b808785d6f5053483 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | "致謝 I Abstract III 摘要 VII Table of contents XI List of Figures XVII List of Tables XIX Abbreviations XXI Graphic Abstract XXIII 1. Motivation of study 2 2. Introduction 4 2.1 Phthalates as emerging pollutants 4 2.2 DEHP in the environment 7 2.3 DEHP in food and beverages 11 2.4 Adsorption, distribution, metabolism, and excretion of DEHP 12 2.5 Human exposure to DEHP 14 2.6 Toxicity of DEHP 17 2.6.1 DEHP and aging 20 2.6.2 DEHP and obesity 21 2.6.3 DEHP and learning and memory 24 2.7 Caenorhabditis elegans as model organism in toxicology 25 2.7.1 Using C. elegans to study the effects of DEHP on aging 28 2.7.2 Using C. elegans to study the effects of DEHP on obesity 29 2.7.3 Using C. elegans to study the effects of DEHP on learning and memory 30 3. Rationale and specific aims 31 3.1 Rationale 31 3.2 Specific aims 32 3.2.1 Specific aim 1: To elucidate the toxicity of chronic DEHP exposure on age-related declines in C. elegans and its underlying mechanisms 32 3.2.2 Specific aim 2: To investigate the obesogenic effects of DEHP and the underlying mechanisms 32 3.2.3 Specific aim 3: To decipher the toxicity of DEHP in age-related LTAM decline of C. elegans and the underlying mechanisms 33 4. Materials and methods 34 Experimental flowchart 34 4.1 Specific aim 1 36 4.1.1 Chemicals and dosage information 36 4.1.2 C. elegans strains, growth and exposure conditions 36 4.1.3 Locomotive behaviors assays 37 4.1.4 Total brood size assay 37 4.1.5 C. elegans lifespan assay 38 4.1.6 Defecation cycle and pharyngeal pumping rate assays 38 4.1.7 Measurement of lipofuscin, lipid peroxidation, and intracellular ROS 39 4.1.8 Quantitative real-time polymerase chain reaction analysis 40 4.1.9 Data analysis 41 4.2 Specific aim 2 42 4.2.1 Chemicals and worm strains 42 4.2.2 DEHP exposure scenarios and TG assay 42 4.2.3 Fixative Nile Red staining assay 43 4.2.4 Fatty acid composition analysis 44 4.2.5 RNAi feeding assay 45 4.2.6 Quantitative real-time reverse transcription polymerase chain reaction (PCR) assay ……………………………………………………………………………………45 4.2.7 hsp-4::GFP fluorescence assay 45 4.2.8 Data analysis 46 4.3 Specific aim 3 47 4.3.1 Chemicals 47 4.3.2 C. elegans strains and culture condition 47 4.3.3 Long-term associative memory (spaced) training assay 47 4.3.4 Chemotaxis assay and learning index 48 4.3.5 Quantitative real-time reverse transcription polymerase chain reaction (PCR) analysis ……………………………………………………………………………………49 4.3.6 Data analysis 50 5. Results and discussion 55 5.1 Specific aim 1 55 5.1.1 Early-life DEHP exposure adversely affects locomotive behaviors and reproduction in C. elegans 56 5.1.2 Chronic DEHP exposure shortens lifespan in C. elegans 57 5.1.3 Chronic DEHP exposure adversely affects defecation cycle and pharyngeal pumping rate in aged worms 58 5.1.4 Chronic DEHP exposure enhances accumulation of lipofuscin, lipid peroxidation, and intracellular ROS in aged worms 59 5.1.5 Chronic DEHP exposure down-regulates gene expression of hsp-16.1, hsp-16.49, and hsp-70 in aged worms 61 5.1.6 Chronic DEHP exposure affects lipid peroxidation associated with the IIS and SKN-1 ……………………………………………………………………………………62 5.2 Specific aim 2 79 5.2.1 Early-life DEHP exposure induces lipid accumulation in C. elegans 80 5.2.2 Chronic DEHP exposure significantly induces TG accumulation in C. elegans 81 5.2.3 Chronic DEHP exposure alters fatty acid composition in C. elegans 84 5.2.4 Roles of lipogenic genes in DEHP-induced TG accumulation. 85 5.2.5 SBP-1 is involved in DEHP-induced TG accumulation. 86 5.2.6 XBP-1-ER stress is associated with DEHP-induced TG accumulation. 88 5.3 Specific aim 3 112 5.3.1 Early-life DEHP exposure impairs LTAM in C. elegans 113 5.3.2 Chronic DEHP exposure worsens age-related LTAM decline in C. elegans 115 5.3.3 CRH-1 is involved in DEHP-induced LTAM decline 117 5.3.4 IIS is involved in age-related DEHP-induced LTAM decline 119 5.3.5 Effect of DEHP exposure on CRH-1 mRNA level in IIS-related mutants 121 5.4 Overall discussion 140 6. Conclusion and perspective 144 7. References 147 8. Appendix 183 8.1 Curriculum Vitae of the author 183" | |
| dc.language.iso | en | |
| dc.subject | 鄰苯二甲酸二 (2-乙基己基) 酯 | zh_TW |
| dc.subject | CRH-1/CREB | zh_TW |
| dc.subject | 學習與記憶衰退 | zh_TW |
| dc.subject | 內質網壓力 | zh_TW |
| dc.subject | SBP-1/SREBP | zh_TW |
| dc.subject | 脂質合成 | zh_TW |
| dc.subject | SKN-1/Nrf2 | zh_TW |
| dc.subject | insulin/IGF-1 signaling | zh_TW |
| dc.subject | 秀麗隱桿線蟲 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | insulin/IGF-1 signaling | en |
| dc.subject | SKN-1/Nrf2 | en |
| dc.subject | lipogenesis | en |
| dc.subject | SBP-1/SREBP | en |
| dc.subject | ER stress | en |
| dc.subject | learning and memory decline | en |
| dc.subject | CRH-1/CREB | en |
| dc.subject | DEHP | en |
| dc.subject | age-related declines | en |
| dc.subject | Caenorhabditis elegans | en |
| dc.title | 環境相關濃度鄰苯二甲酸二 (2-乙基己基) 酯對秀麗隱桿線蟲老化、肥胖、學習與記憶之毒性及調控機制探討 | zh_TW |
| dc.title | "Toxicity of environmentally relevant concentrations of di(2-ethylhexyl)phthalate on aging, obesity, learning and memory and the underlying mechanisms in Caenorhabditis elegans" | en |
| dc.date.schoolyear | 110-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0001-5219-3826 | |
| dc.contributor.oralexamcommittee | 廖中明(Yeur-Hur Lai),潘敏雄(Sung-Tsang Hsieh),何元順,劉逸軒,黃雯華 | |
| dc.subject.keyword | 鄰苯二甲酸二 (2-乙基己基) 酯,老化,秀麗隱桿線蟲,insulin/IGF-1 signaling,SKN-1/Nrf2,脂質合成,SBP-1/SREBP,內質網壓力,學習與記憶衰退,CRH-1/CREB, | zh_TW |
| dc.subject.keyword | DEHP,age-related declines,Caenorhabditis elegans,insulin/IGF-1 signaling,SKN-1/Nrf2,lipogenesis,SBP-1/SREBP,ER stress,learning and memory decline,CRH-1/CREB, | en |
| dc.relation.page | 186 | |
| dc.identifier.doi | 10.6342/NTU202200217 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2022-01-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-01-31 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2601202213335600.pdf | 3.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
