Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81829
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張崇毅(Chung-I Chang)
dc.contributor.authorFei Tengen
dc.contributor.author滕霏zh_TW
dc.date.accessioned2022-11-25T03:04:33Z-
dc.date.available2026-07-26
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-07-27
dc.identifier.citationBeebe, K.D., Shin, J., Peng, J., Chaudhury, C., Khera, J., and Pei, D. (2000). Substrate recognition through a PDZ domain in tail-specific protease. Biochemistry 39, 3149–3155. Chueh, C.-K., Som, N., Ke, L.-C., Ho, M.-R., Reddy, M., and Chang, C.-I. (2019). Structural Basis for the Differential Regulatory Roles of the PDZ Domain in C-Terminal Processing Proteases. MBio 10. Chufán, E.E., De, M., Eipper, B.A., Mains, R.E., and Amzel, L.M. (2009). Amidation of bioactive peptides: the structure of the lyase domain of the amidating enzyme. Structure 17, 965–973. Ernst, A., Appleton, B.A., Ivarsson, Y., Zhang, Y., Gfeller, D., Wiesmann, C., and Sidhu, S.S. (2014). A structural portrait of the PDZ domain family. J. Mol. Biol. 426, 3509–3519. Evans, P., and McCoy, A. (2008). An introduction to molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 64, 1–10. Greenfield, N.J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890. Hara, H., Nishimura, Y., Kato, J., Suzuki, H., Nagasawa, H., Suzuki, A., and Hirota, Y. (1989). Genetic analyses of processing involving C-terminal cleavage in penicillin-binding protein 3 of Escherichia coli. J. Bacteriol. 171, 5882–5889. Hara, H., Yamamoto, Y., Higashitani, A., Suzuki, H., and Nishimura, Y. (1991). Cloning, mapping, and characterization of the Escherichia coli prc gene, which is involved in C-terminal processing of penicillin-binding protein 3. J. Bacteriol. 173, 4799–4813. Hsu, P.-C., Chen, C.-S., Wang, S., Hashimoto, M., Huang, W.-C., and Teng, C.-H. (2020). Identification of MltG as a Prc Protease Substrate Whose Dysregulation Contributes to the Conditional Growth Defect of Prc-Deficient Escherichia coli. Frontiers in Microbiology 11. Huang, W.-C., Lin, C.-Y., Hashimoto, M., Wu, J.-J., Wang, M.-C., Lin, W.-H., Chen, C.-S., and Teng, C.-H. (2020). The role of the bacterial protease Prc in the uropathogenesis of extraintestinal pathogenic Escherichia coli. J. Biomed. Sci. 27, 14. Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J., and Mann, M. (2005). Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics 4, 1265–1272. Keiler, K.C., Waller, P.R., and Sauer, R.T. (1996). Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993. Kerr, C.H., Culham, D.E., Marom, D., and Wood, J.M. (2014). Salinity-dependent impacts of ProQ, Prc, and Spr deficiencies on Escherichia coli cell structure. J. Bacteriol. 196, 1286–1296. Koch, A.L., and Woeste, S. (1992). Elasticity of the sacculus of Escherichia coli. J. Bacteriol. 174, 4811–4819. Lamb, A.L., Kappock, T.J., and Silvaggi, N.R. (2015). You are lost without a map: Navigating the sea of protein structures. Biochim. Biophys. Acta 1854, 258–268. Liao, D.I., Qian, J., Chisholm, D.A., Jordan, D.B., and Diner, B.A. (2000). Crystal structures of the photosystem II D1 C-terminal processing protease. Nat. Struct. Biol. 7, 749–753. Marino, G., Eckhard, U., and Overall, C.M. (2015). Protein Termini and Their Modifications Revealed by Positional Proteomics. ACS Chem. Biol. 10, 1754–1764. Merkler, D.J. (1994). C-terminal amidated peptides: production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity. Enzyme Microb. Technol. 16, 450–456. Miller, S.I., and Salama, N.R. (2018). The gram-negative bacterial periplasm: Size matters. PLoS Biol. 16, e2004935. Nagasawa, H., Sakagami, Y., Suzuki, A., Suzuki, H., Hara, H., and Hirota, Y. (1989). Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli. J. Bacteriol. 171, 5890–5893. Sauvage, E., Derouaux, A., Fraipont, C., Joris, M., Herman, R., Rocaboy, M., Schloesser, M., Dumas, J., Kerff, F., Nguyen-Distèche, M., et al. (2014). Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS One 9, e98042. Silber, K.R., Keiler, K.C., and Sauer, R.T. (1992). Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. Proc. Natl. Acad. Sci. U. S. A. 89, 295–299. Singh, S.K., Parveen, S., SaiSree, L., and Reddy, M. (2015). Regulated proteolysis of a cross-link–specific peptidoglycan hydrolase contributes to bacterial morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 112, 10956–10961. Spiers, A., Lamb, H.K., Cocklin, S., Wheeler, K.A., Budworth, J., Dodds, A.L., Pallen, M.J., Maskell, D.J., Charles, I.G., and Hawkins, A.R. (2002). PDZ domains facilitate binding of high temperature requirement protease A (HtrA) and tail-specific protease (Tsp) to heterologous substrates through recognition of the small stable RNA A (ssrA)-encoded peptide. J. Biol. Chem. 277, 39443–39449. Su, M.-Y., Som, N., Wu, C.-Y., Su, S.-C., Kuo, Y.-T., Ke, L.-C., Ho, M.-R., Tzeng, S.-R., Teng, C.-H., Mengin-Lecreulx, D., et al. (2017). Structural basis of adaptor-mediated protein degradation by the tail-specific PDZ-protease Prc. Nat. Commun. 8, 1516. Terlizzi, M.E., Gribaudo, G., and Maffei, M.E. (2017). UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Frontiers in Microbiology 8. Urzhumtsev, A., Afonine, P.V., and Adams, P.D. (2013). from fundamentals to practice. Crystallography Rev. 19, 230–270. Wang, C.-Y., Wang, S.-W., Huang, W.-C., Kim, K.S., Chang, N.-S., Wang, Y.-H., Wu, M.-H., and Teng, C.-H. (2012). Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. Infect. Immun. 80, 3399–3409. Weiss, M.S. (2001). Global indicators of X-ray data quality. Journal of Applied Crystallography 34, 130–135.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81829-
dc.description.abstract細菌中的蛋白酶在其生理方面起到了重要的作用。而在大腸桿菌 (Escherichia coli) 中,具有 PDZ 結構域 (PDZ domain) 的末端專一性周質蛋白酶 Prc 亦不例外,它通過調節细胞内 MepS 的水平促進肽聚醣 (peptidoglycan),進而調控細胞壁合成。有研究顯示,Prc 對於細菌在42℃ 低渗透压的生存是必不可少的。此外,有些大腸桿菌對宿主有非常強的感染性跟致病力,而 Prc 缺乏的情況下,細菌可能沒有辦法逃逸宿主補體介導的殺傷,且對細菌的運動能力有所影響以致於降低細菌尿路定植能力。因此尋找 Prc 專一的抑制劑非常重要。在之前的研究中,尋找 Prc 的抑制劑的其中一個方法是體外水解實驗 (in vitro proteolytic assays by SDS-PAGE),但迄今為止,沒有很好的底物適用於大範圍快速篩選潛在的抑制劑。在這裡,我找到了一個複合物 Prc-fN160 ,並根據晶體學設計了一個不需配接器 NlpI 之底物 fN160。有趣的是 fN160 乃來自 於 Prc 長晶過程中自我降解所產生的片段。根據圓二色光譜,可知 fN160 是一個以α螺旋為主的蛋白質,其Tm值為48℃,是一個穩定且高產率的重組蛋白。通過體外水解實驗 (in vitro proteolytic assays by SDS-PAGE),證明 fN160 能在非常短時間內被 Prc 降解,因此可以更有效率於 Prc 的抑制劑篩選。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:04:33Z (GMT). No. of bitstreams: 1
U0001-2607202100165000.pdf: 14057599 bytes, checksum: 942fcf537c78eafef1615788531b00dd (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 ⅰ Acknowledgements ⅱ 中文摘要 ⅲ Abstract ⅳ List of Abbreviations ⅶ List of Figures ⅸ List of Tables ⅹ Chapter 1 Introduction 1-1 Cell envelope ………1 1-2 Prc ………1 1-3 Aims ………4 Chapter 2 Materials and Methods 2-1 Mutagenesis ………5 2.1.1 Gibson assembly ………5 2.1.2 Quikchange ………6 2-2 Expression and purification of protein ………7 2.2.1 Cell growth ………7 2.2.2 Purification of Prc and the fN series of proteins in E. coli …7 2-3 Crystallization and data collection ………8 2.3.1 Crystallization by vapor-diffusion method ………8 2.3.2 Crystal seeding ………9 2.3.3 Data collection ………10 2-4 Structure determination and refinement ………10 2-5 Degradation assay by SDS-PAGE ………11 2-6 Protein identification by mass spectrometry ………12 2-7 Circular Dichroism Experiments ………13 Chapter 3 Results 3-1 Structure of the Prc-fN160 complex ………14 3-2 Characteristics of the fN series of proteins ………16 Discussion ………18 Reference ………21 Figures ………24 Tables ………44
dc.language.isoen
dc.subjectPrczh_TW
dc.subjectPDZ 結構域zh_TW
dc.subjectsubstratezh_TW
dc.subject晶體結構zh_TW
dc.subject大腸桿菌zh_TW
dc.subjectcrystal structureen
dc.subjectPDZ domainen
dc.subjectcomplexen
dc.subjectsubstrateen
dc.subjectPrcen
dc.title以晶體學方法設計不需配接器的末端專一性蛋白酶 Prc 之底物zh_TW
dc.titleCrystallography-based design of an adaptor-independent protein substrate for the tail-specific protease Prc.en
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾秀如(Hsin-Tsai Liu),鄭惠春(Chih-Yang Tseng)
dc.subject.keywordPrc,substrate,晶體結構,大腸桿菌,PDZ 結構域,zh_TW
dc.subject.keywordPrc,substrate,complex,crystal structure,PDZ domain,en
dc.relation.page46
dc.identifier.doi10.6342/NTU202101734
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
dc.date.embargo-lift2026-07-26-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-2607202100165000.pdf
  此日期後於網路公開 2026-07-26
13.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved