Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81825
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee)
dc.contributor.authorYi-Ching Laien
dc.contributor.author賴怡靜zh_TW
dc.date.accessioned2022-11-25T03:04:27Z-
dc.date.available2024-08-09
dc.date.copyright2021-08-20
dc.date.issued2021
dc.date.submitted2021-07-29
dc.identifier.citation周立德. '物聯網與大數據.' http://www.myhome.net.tw/2017_04/p03.htm (accessed. IDC, 'Consumer Enthusiasm for Wearable Devices Drives the Market to 28.4% Growth in 2020, According to IDC,' 2021. [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=prUS47534521. J. J. Rodrigues et al., 'Enabling technologies for the internet of health things,' Ieee Access, vol. 6, pp. 13129-13141, 2018. M. Cheng et al., 'An review of flexible force sensors for human health monitoring,' Journal of Advanced Research, 2020. F. Xu et al., 'Recent developments for flexible pressure sensors: a review,' Micromachines, vol. 9, no. 11, p. 580, 2018. S. Y. Kim, S. Park, H. W. Park, D. H. Park, Y. Jeong, and D. H. Kim, 'Highly sensitive and multimodal all‐carbon skin sensors capable of simultaneously detecting tactile and biological stimuli,' Advanced materials, vol. 27, no. 28, pp. 4178-4185, 2015. S. Park et al., 'Stretchable energy‐harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes,' Advanced Materials, vol. 26, no. 43, pp. 7324-7332, 2014. X. Wang, F. Sun, G. Yin, Y. Wang, B. Liu, and M. Dong, 'Tactile-sensing based on flexible PVDF nanofibers via electrospinning: A review,' Sensors, vol. 18, no. 2, p. 330, 2018. Y. Zang, F. Zhang, C.-a. Di, and D. Zhu, 'Advances of flexible pressure sensors toward artificial intelligence and health care applications,' Materials Horizons, vol. 2, no. 2, pp. 140-156, 2015. L.-Q. Tao et al., 'Graphene-paper pressure sensor for detecting human motions,' ACS nano, vol. 11, no. 9, pp. 8790-8795, 2017. B. Zhuo, S. Chen, M. Zhao, and X. Guo, 'High sensitivity flexible capacitive pressure sensor using polydimethylsiloxane elastomer dielectric layer micro-structured by 3-D printed mold,' IEEE Journal of the Electron Devices Society, vol. 5, no. 3, pp. 219-223, 2017. Z. Chen et al., 'Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,' ACS nano, vol. 11, no. 5, pp. 4507-4513, 2017. Y. K. Fuh and B. S. Wang, 'Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition,' Nano Energy, vol. 30, pp. 677-683, 2016. J. Du, C. Gerdtman, and M. Lindén, 'Signal quality improvement algorithms for mems gyroscope-based human motion analysis systems: A systematic review,' Sensors, vol. 18, no. 4, p. 1123, 2018. H. Saito, T. Watanabe, and A. Arifin, 'Ankle and knee joint angle measurements during gait with wearable sensor system for rehabilitation,' in World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany, 2009: Springer, pp. 506-509. E. P. Doheny, T. G. Foran, and B. R. Greene, 'A single gyroscope method for spatial gait analysis,' in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010: IEEE, pp. 1300-1303. J. H. Bergmann, R. E. Mayagoitia, and I. C. Smith, 'A portable system for collecting anatomical joint angles during stair ascent: a comparison with an optical tracking device,' Dynamic Medicine, vol. 8, no. 1, pp. 1-7, 2009. R. Xu, S. Zhou, and W. J. Li, 'MEMS accelerometer based nonspecific-user hand gesture recognition,' IEEE sensors journal, vol. 12, no. 5, pp. 1166-1173, 2011. K. S. Kuang, W. J. Cantwell, and P. J. Scully, 'An evaluation of a novel plastic optical fibre sensor for axial strain and bend measurements,' Measurement Science and Technology, vol. 13, no. 10, p. 1523, 2002. N. Carbonaro, G. Dalle Mura, F. Lorussi, R. Paradiso, D. De Rossi, and A. Tognetti, 'Exploiting wearable goniometer technology for motion sensing gloves,' IEEE journal of biomedical and health informatics, vol. 18, no. 6, pp. 1788-1795, 2014. A. I. Faisal, S. Majumder, T. Mondal, D. Cowan, S. Naseh, and M. J. Deen, 'Monitoring methods of human body joints: State-of-the-art and research challenges,' Sensors, vol. 19, no. 11, p. 2629, 2019. W. Tao, T. Liu, R. Zheng, and H. Feng, 'Gait analysis using wearable sensors,' Sensors, vol. 12, no. 2, pp. 2255-2283, 2012. S. Z. Homayounfar and T. L. Andrew, 'Wearable sensors for monitoring human motion: A review on mechanisms, materials, and challenges,' SLAS TECHNOLOGY: Translating Life Sciences Innovation, vol. 25, no. 1, pp. 9-24, 2020. X. Wu, Y. Han, X. Zhang, Z. Zhou, and C. Lu, 'Large‐area compliant, low‐cost, and versatile pressure‐sensing platform based on microcrack‐designed carbon Black@ polyurethane sponge for human–machine interfacing,' Advanced Functional Materials, vol. 26, no. 34, pp. 6246-6256, 2016. H. Park et al., 'Stretchable array of highly sensitive pressure sensors consisting of polyaniline nanofibers and Au-coated polydimethylsiloxane micropillars,' ACS nano, vol. 9, no. 10, pp. 9974-9985, 2015. C. L. Choong et al., 'Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array,' Advanced materials, vol. 26, no. 21, pp. 3451-3458, 2014. S. Yao and Y. Zhu, 'Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires,' Nanoscale, vol. 6, no. 4, pp. 2345-2352, 2014. D. J. Cohen, D. Mitra, K. Peterson, and M. M. Maharbiz, 'A highly elastic, capacitive strain gauge based on percolating nanotube networks,' Nano letters, vol. 12, no. 4, pp. 1821-1825, 2012. A. Frutiger et al., 'Capacitive soft strain sensors via multicore–shell fiber printing,' Advanced Materials, vol. 27, no. 15, pp. 2440-2446, 2015. A. Wang, M. Hu, L. Zhou, and X. Qiang, 'Self-powered wearable pressure sensors with enhanced piezoelectric properties of aligned P (VDF-TrFE)/MWCNT composites for monitoring human physiological and muscle motion signs,' Nanomaterials, vol. 8, no. 12, p. 1021, 2018. W. Guo et al., 'Wireless piezoelectric devices based on electrospun PVDF/BaTiO 3 NW nanocomposite fibers for human motion monitoring,' Nanoscale, vol. 10, no. 37, pp. 17751-17760, 2018. M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, 'Techniques of EMG signal analysis: detection, processing, classification and applications,' Biological procedures online, vol. 8, no. 1, pp. 11-35, 2006. A. N. Foundation. 'Edward H. Lambert | American Neuromuscular Foundation.' https://www.neuromuscularfoundation.org/Donate/Legacy-Donations/Edward-H-Lambert (accessed. J. R. Daube and D. I. Rubin, 'Needle electromyography,' Muscle Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, vol. 39, no. 2, pp. 244-270, 2009. M. R. Al-Mulla, F. Sepulveda, and M. Colley, 'A review of non-invasive techniques to detect and predict localised muscle fatigue,' Sensors, vol. 11, no. 4, pp. 3545-3594, 2011. P. Konrad, 'The abc of emg,' A practical introduction to kinesiological electromyography, vol. 1, no. 2005, pp. 30-5, 2005. H. E. Huxley, 'Fifty years of muscle and the sliding filament hypothesis,' European journal of biochemistry, vol. 271, no. 8, pp. 1403-1415, 2004. W. L. STRAUS JR, 'The concept of nerve‐muscle specificity,' Biological Reviews, vol. 21, no. 2, pp. 75-91, 1946. A. QA. 'Skeletal Muscle-Nerve Supply , Anatomy QA.' https://anatomyqa.com/muscle-nerve-supply/ (accessed. M. Noreen Iftikhar, 'Slow-Twitch Muscle Fibers vs Fast-Twitch Muscle Fibers,' 2020. [Online]. Available: https://www.healthline.com/health/slow-twitch-muscle-fibers#slow-vs-fast. N. Nazmi, M. A. Abdul Rahman, S.-I. Yamamoto, S. A. Ahmad, H. Zamzuri, and S. A. Mazlan, 'A review of classification techniques of EMG signals during isotonic and isometric contractions,' Sensors, vol. 16, no. 8, p. 1304, 2016. R. Drake, A. W. Vogl, and A. W. Mitchell, Gray's Anatomy for Students Flash Cards E-Book. Elsevier Health Sciences, 2019. S. D. Mair, A. V. Seaber, R. R. Glisson, and W. E. Garrett JR, 'The role of fatigue in susceptibility to acute muscle strain injury,' The American Journal of Sports Medicine, vol. 24, no. 2, pp. 137-143, 1996. R. Merletti and P. J. Parker, Electromyography: physiology, engineering, and non-invasive applications. John Wiley Sons, 2004. B. K. Barry and R. M. Enoka, 'The neurobiology of muscle fatigue: 15 years later,' Integrative and comparative biology, vol. 47, no. 4, pp. 465-473, 2007. X. Song, H. Li, and W. Gao, 'MyoMonitor: Evaluating muscle fatigue with commodity smartphones,' Smart Health, vol. 19, p. 100175, 2021. M. Hagberg, 'Work load and fatigue in repetitive arm elevations,' Ergonomics, vol. 24, no. 7, pp. 543-555, 1981. J. S. Petrofsky, R. M. Glaser, C. A. Phillips, A. R. Lind, and C. Williams, 'Evaluation of the amplitude and frequency components of the surface EMG as an index of muscle fatigue,' Ergonomics, vol. 25, no. 3, pp. 213-223, 1982. C. J. De Luca, 'The use of surface electromyography in biomechanics,' Journal of applied biomechanics, vol. 13, no. 2, pp. 135-163, 1997. J. Shi, Q. Chang, and Y.-P. Zheng, 'Feasibility of controlling prosthetic hand using sonomyography signal in real time: preliminary study,' 2010. D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, 'Validation of near-infrared spectroscopy in humans,' Journal of Applied Physiology, vol. 77, no. 6, pp. 2740-2747, 1994. A. A. Rodriquez, J. C. Agre, E. R. Knudtson, T. M. Franke, and A. V. Ng, 'Acoustic myography compared to electromyography during isometric fatigue and recovery,' Muscle Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, vol. 16, no. 2, pp. 188-192, 1993. G. M. Graham, T. A. Thrasher, and M. R. Popovic, 'The effect of random modulation of functional electrical stimulation parameters on muscle fatigue,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 1, pp. 38-45, 2006. S. Negi, Y. Kumar, and V. Mishra, 'Feature extraction and classification for EMG signals using linear discriminant analysis,' in 2016 2nd International Conference on Advances in Computing, Communication, Automation (ICACCA)(Fall), 2016: IEEE, pp. 1-6. A. Phinyomark, P. Phukpattaranont, and C. Limsakul, 'Feature reduction and selection for EMG signal classification,' Expert systems with applications, vol. 39, no. 8, pp. 7420-7431, 2012. 陳振雄, '應用希爾伯特-黃轉換之訊號濾波研究,' Journal of Science and Engineering Technology, vol. 6, no. 1, pp. 75-84, 2010. A. Ballato, 'Piezoelectricity: history and new thrusts,' in 1996 IEEE Ultrasonics Symposium. Proceedings, 1996, vol. 1: IEEE, pp. 575-583. A. Manbachi and R. S. Cobbold, 'Development and application of piezoelectric materials for ultrasound generation and detection,' Ultrasound, vol. 19, no. 4, pp. 187-196, 2011. C. W. Guyton, 'Method of maintaining electric currents of constant frequency,' ed: Google Patents, 1923. A. Von Hippel, 'Ferroelectricity, domain structure, and phase transitions of barium titanate,' Reviews of Modern Physics, vol. 22, no. 3, p. 221, 1950. G. Shirane, E. Sawaguchi, and Y. Takagi, 'Dielectric properties of lead zirconate,' Physical review, vol. 84, no. 3, p. 476, 1951. S. Tadigadapa and K. Mateti, 'Piezoelectric MEMS sensors: state-of-the-art and perspectives,' Measurement Science and technology, vol. 20, no. 9, p. 092001, 2009. R. C. Smith, Smart material systems: model development. SIAM, 2005. K. S. Ramadan, D. Sameoto, and S. Evoy, 'A review of piezoelectric polymers as functional materials for electromechanical transducers,' Smart Materials and Structures, vol. 23, no. 3, p. 033001, 2014. R. Newnham, D. Skinner, and L. Cross, 'Connectivity and piezoelectric-pyroelectric composites,' Materials Research Bulletin, vol. 13, no. 5, pp. 525-536, 1978. T. E. o. E. Britannica. 'Dielectric | physics | Britannica.' https://global.britannica.com/science/dielectric (accessed. H. Jaffe, 'Piezoelectric ceramics,' Journal of the American Ceramic Society, vol. 41, no. 11, pp. 494-498, 1958. R. A. Kishore and S. Priya, 'A review on low-grade thermal energy harvesting: materials, methods and devices,' Materials, vol. 11, no. 8, p. 1433, 2018. W. Känzig, 'Ferroelectrics and antiferroeletrics,' Solid state physics, vol. 4, pp. 1-197, 1957. M. Stewart, M. G. Cain, and D. Hall, Ferroelectric hysteresis measurement and analysis. National Physical Laboratory Teddington, 1999. H. Khanbareh, 'Expanding the functionality of piezo-particulate composites,' 2016. T. Furukawa, 'Piezoelectricity and pyroelectricity in polymers,' IEEE transactions on electrical insulation, vol. 24, no. 3, pp. 375-394, 1989. A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, 'IEEE standard on piezoelectricity,' ed: Society, 1988. H. Kawai, 'The piezoelectricity of poly (vinylidene fluoride),' Japanese journal of applied physics, vol. 8, no. 7, p. 975, 1969. Q. Zhang, V. Bharti, and X. Zhao, 'Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer,' Science, vol. 280, no. 5372, pp. 2101-2104, 1998. E. Kabir, M. Khatun, L. Nasrin, M. J. Raihan, and M. Rahman, 'Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites,' Journal of Physics D: Applied Physics, vol. 50, no. 16, p. 163002, 2017. A. J. Lovinger, 'Poly (vinylidene fluoride),' in Developments in crystalline polymers—1: Springer, 1982, pp. 195-273. C. h. Du, B. K. Zhu, and Y. Y. Xu, 'Effects of stretching on crystalline phase structure and morphology of hard elastic PVDF fibers,' Journal of Applied Polymer Science, vol. 104, no. 4, pp. 2254-2259, 2007. Y. Higashihata, J. Sako, and T. Yagi, 'Piezoelectricity of vinylidene fluoride-trifluoroethylene copolymers,' Ferroelectrics, vol. 32, no. 1, pp. 85-92, 1981. J. Nunes-Pereira et al., 'Poly (vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications,' Polymer Testing, vol. 44, pp. 234-241, 2015. H. Ohigashi and K. Koga, 'Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor,' Japanese Journal of Applied Physics, vol. 21, no. 8A, p. L455, 1982. G. Ren, F. Cai, B. Li, J. Zheng, and C. Xu, 'Flexible pressure sensor based on a poly (VDF‐TrFE) nanofiber web,' Macromolecular Materials and Engineering, vol. 298, no. 5, pp. 541-546, 2013. W. Gilbert, On the Loadstone and Magnetic Bodies, and on the Great Magnet the Earth: A New Physiology, Demonstrated with Many Arguments and Experiments. Wiley, 1893. J. Zeleny, 'The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces,' Physical Review, vol. 3, no. 2, p. 69, 1914. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, 'A review on polymer nanofibers by electrospinning and their applications in nanocomposites,' Composites science and technology, vol. 63, no. 15, pp. 2223-2253, 2003. V. G. Drozin, 'The electrical dispersion of liquids as aerosols,' Journal of colloid science, vol. 10, no. 2, pp. 158-164, 1955. E. Yang et al., 'Nanofibrous smart fabrics from twisted yarns of electrospun piezopolymer,' ACS applied materials interfaces, vol. 9, no. 28, pp. 24220-24229, 2017. H. L. Simons, 'Process and apparatus for producing patterned non-woven fabrics,' ed: Google Patents, 1966. D. Li and Y. Xia, 'Electrospinning of nanofibers: reinventing the wheel?,' Advanced materials, vol. 16, no. 14, pp. 1151-1170, 2004. S. Lei, Z. Quan, H. Zhang, X. Qin, R. Wang, and J. Yu, 'Stable-jet length controlling electrospun fiber radius: Model and experiment,' Polymer, vol. 180, p. 121762, 2019. M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, 'Electrospinning and electrically forced jets. I. Stability theory,' Physics of fluids, vol. 13, no. 8, pp. 2201-2220, 2001. S. Park, K. Park, H. Yoon, J. Son, T. Min, and G. Kim, 'Apparatus for preparing electrospun nanofibers: designing an electrospinning process for nanofiber fabrication,' Polymer International, vol. 56, no. 11, pp. 1361-1366, 2007. B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, 'Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning,' Polymer, vol. 45, no. 6, pp. 1895-1902, 2004. N. Sasithorn, L. Martinová, J. Horáková, and R. Mongkholrattanasit, 'Fabrication of silk fibroin nanofibres by needleless electrospinning,' Electrospinning-Material, Techniques, and Biomedical Applications; Intech: London, UK, pp. 95-113, 2016. D. Li and Y. Xia, 'Direct fabrication of composite and ceramic hollow nanofibers by electrospinning,' Nano letters, vol. 4, no. 5, pp. 933-938, 2004. P. Gupta and G. L. Wilkes, 'Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach,' Polymer, vol. 44, no. 20, pp. 6353-6359, 2003. X. Lu, C. Wang, and Y. Wei, 'One‐dimensional composite nanomaterials: Synthesis by electrospinning and their applications,' Small, vol. 5, no. 21, pp. 2349-2370, 2009. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, and N. B. Tan, 'Controlled deposition of electrospun poly (ethylene oxide) fibers,' Polymer, vol. 42, no. 19, pp. 8163-8170, 2001. J. A. Matthews, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, 'Electrospinning of collagen nanofibers,' Biomacromolecules, vol. 3, no. 2, pp. 232-238, 2002. C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, 'Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering,' Biomaterials, vol. 25, no. 5, pp. 877-886, 2004. M. S. Khil, S. R. Bhattarai, H. Y. Kim, S. Z. Kim, and K. H. Lee, 'Novel fabricated matrix via electrospinning for tissue engineering,' Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, vol. 72, no. 1, pp. 117-124, 2005. 朱信融, '以靜電紡絲研製高排列性聚(偏氟乙烯-三氟乙烯)薄膜及相關複合膜應用之研究,' 碩士, 應用力學研究所, 國立臺灣大學, 台北市, 2016. [Online]. Available: https://hdl.handle.net/11296/pns4y4 柯君逸, '以靜電紡絲研製高排列性壓電薄膜壓力感測器及其指叉式電極之最佳化研究及開發,' 碩士, 應用力學研究所, 國立臺灣大學, 台北市, 2017. [Online]. Available: https://hdl.handle.net/11296/np7279 R. I. Mahdi, W. Gan, and W. H. Abd Majid, 'Hot plate annealing at a low temperature of a thin ferroelectric P (VDF-TrFE) film with an improved crystalline structure for sensors and actuators,' Sensors, vol. 14, no. 10, pp. 19115-19127, 2014. W. Grassi and D. Testi, 'Induction of waves on a horizontal water film by an impinging corona wind,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, no. 2, pp. 377-385, 2009. 劉柏辰, '可應用於人體肌肉量測的可撓式壓電感測貼布之開發,' 碩士, 應用力學研究所, 國立臺灣大學, 台北市, 2018. [Online]. Available: https://hdl.handle.net/11296/5uvqy5 T. Ohmi, S. Sudoh, and H. Mishima, 'Static charge removal with IPA solution,' IEEE Transactions on semiconductor manufacturing, vol. 7, no. 4, pp. 440-446, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81825-
dc.description.abstract"本論文旨在研發壓電肌肉感測貼布(Muscle-patch-sensor, MPS)之分析方式開發與驗證,以應用於人體肌肉做動時的體表形變量測。為製作高靈敏度且具可撓性感測器,選用聚(偏氯乙烯-三氯乙烯)(Poly(vinylidene fluoride-co-trifluoroethylene),P(VDF-TrFE))作為感測器之感測材料,此高分子壓電聚合物材料具有良好的力電耦合性質以及壓電效應,為能有效提升其拉伸應變範圍,本研究利用靜電紡絲製程,紡製出P(VDF-TrFE)的壓電纖維束,並使用拉伸系統對絲線做纖維重複拉伸製程,比較抗拉性質與纖維排列性,做出具可量測40%應變範圍之感測器。將絲線加上RTV矽橡膠作為基板,以銀紗線當作電極,可製做出長為10mm、寬為3mm、厚度為1mm的壓電肌肉感測貼片。再經過比較不同纖維線性化之絲線製程的壓電肌肉感測貼片,比較抗拉性質、耐久度測試,經實驗驗證最佳化的壓電感應貼布為絲線經過兩個小時40%應變之纖維線性化,在做成感測器後,需再經過三小時的40%應變拉伸才能使輸出訊號更穩定且線性。本研究並以所開發之壓電肌肉感測貼布對前臂肌肉進行肌肉疲勞實驗的測試,同時以市售的EMG(Electromyography)肌電圖量測做為對照組,將兩種的時域與頻域訊號進行分析比較,研究以壓電肌肉感測貼作為肌肉感測器的訊號分析方法,以量測肌肉實際形變所產生的訊號,並利用這些分析方式可得知肌肉疲勞的趨勢。當肌肉施力過久時,會產生肌肉疲勞,但在疲勞後因肌肉交換收縮與代償使得肌肉恢復肌力,而整體疲勞的趨勢為EMG-MF(Medium Frequency)下降、EMG-RMS(Root Mean Square)上升、IEMG(Integral electromyography)上升、MPS-MF下降、MPS-dRMS(Difference of Root Mean Square)下降、dIMPS(Difference of Integral Muscle-Patch-Sensor)下降,且MPS-dRMS與dIMPS有互相補償現象,此現象發生於低度疲勞,若兩者皆為負值時,則是高度疲勞,並發現縮短休息時間會使肌肉疲勞趨勢提前,另外男性受試者與女性受試者的差異為女性受試者會較早有高度疲勞且有較多疲勞週期,而影響肌肉表現的原因為個體化的差異、大腦的控制、肌纖維的傳遞速率、肌肉代償、肌肉疲勞等,此感測器證明高分子壓電微奈米絲線可以應用於肌肉形變量測,也具有潛力應用於虛擬實境、健康醫療及健身運動等相關領域。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:04:27Z (GMT). No. of bitstreams: 1
U0001-2807202112542800.pdf: 10204839 bytes, checksum: 4fc9d9a4902e7036998aed1b830e7e81 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 viii 表目錄 xiv Chapter 1 緒論 1 1.1 研究背景與動機 1 1.1.1 可撓式感測器介紹與應用 3 1.1.2 運動感測器應用 6 1.2 研究目標 8 1.3 論文架構 8 Chapter 2 肌肉與電訊號介紹 10 2.1 電刺激與EMG 10 2.1.1 EMG簡介 10 2.1.2 電刺激與肌肉收縮 11 2.2 肌肉運動狀況 12 2.2.1 肌肉的分類 12 2.2.2 前臂肌肉介紹 13 2.2.3 肌肉疲勞 15 2.3 電訊號分析方式 17 2.3.1 時域與頻率域分析 17 2.3.2 希爾伯特-黃轉換 19 Chapter 3 壓電材料與靜電紡絲 21 3.1 壓電材料 21 3.1.1 研究背景 21 3.1.2 壓電材料種類 21 3.1.3 介電、壓電、焦電、鐵電效應 24 3.1.4 壓電本構方程式 27 3.2 高分子壓電材料 30 3.2.1 PVDF 30 3.2.2 P(VDF-TrFE) 32 3.3 靜電紡絲 34 3.3.1 研究背景 34 3.3.2 原理與技術 34 3.3.3 靜電紡絲技術 36 3.3.4 靜電紡絲架設與環境參數 39 3.3.5 退火與極化製程 40 3.3.6 靜電紡絲參數使用 43 Chapter 4 研究方法與實驗設計 45 4.1 靜電紡絲製程 45 4.1.1 溶液配置 45 4.1.2 實驗架設 45 4.1.3 製程操作變數 46 4.1.4 靜電紡絲後處理 49 4.2 靜電紡絲性質測試 49 4.2.1 絲線纖維線性化之實驗架設 49 4.2.2 絲線抗拉性質 49 4.3 肌肉感應貼布製程與性質測試 50 4.3.1 肌肉感應貼布製程 50 4.3.2 不同纖維線性化程度肌肉感應貼布之性質量測 52 4.3.3 感測器理論推導 53 4.4 EMG量測與架設 56 4.4.1 前臂肌肉疲勞實驗之前置作業 57 4.4.2 前臂肌肉疲勞實驗之數據收集 59 4.4.3 定義實驗時間 61 Chapter 5 實驗結果與討論 62 5.1 靜電紡絲與肌肉感測貼布性質 62 5.1.1 靜電紡絲表面形貌與排列性 62 5.1.2 靜電紡絲之抗拉性質 63 5.1.3 靜電紡絲之晶格排列 63 5.1.4 MPS不同小時纖維線性化性質 64 5.1.5 MPS之抗拉性質 70 5.1.6 MPS耐久性 71 5.2 肌肉形變與訊號處理 73 5.2.1 前臂肌肉形變 73 5.2.2 EMG與MPS訊號 74 5.2.3 數據處理方式 75 5.2.4 MPS分析前臂肌肉形變 83 5.3 肌肉疲勞實驗結果 86 5.3.1 單一肌肉分析 86 5.3.2 肌群量測 89 5.3.3 肌群分析 103 Chapter 6 結論與未來展望 116 6.1 結論 116 6.2 未來展望 116 附錄 117 REFERENCE 125
dc.language.isozh-TW
dc.subject肌肉疲勞zh_TW
dc.subject壓電材料zh_TW
dc.subject聚(偏氯乙烯-三氟乙烯)zh_TW
dc.subject靜電紡絲zh_TW
dc.subject應變感測器zh_TW
dc.subject可撓式感測器zh_TW
dc.subject肌肉應變量測zh_TW
dc.subject表面肌電圖zh_TW
dc.subjectflexible sensorsen
dc.subjectmuscle fatigueen
dc.subjectsurface electromyographyen
dc.subjectmuscle strain measurementen
dc.subjectPiezoelectric materialsen
dc.subjectpoly(vinylidene chloride-trifluoroethylene)en
dc.subjectelectrospinningen
dc.subjectstrain sensorsen
dc.title以壓電肌肉感應貼布監測肌肉疲勞行為之分析方法開發與驗證zh_TW
dc.titleDevelopment and verification of a monitoring method for muscle fatigue using a piezoelectric muscle-patch-sensoren
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.coadvisor許聿翔(Yu-Hsiang Hsu)
dc.contributor.oralexamcommittee湯文慈(Hsin-Tsai Liu),宋家驥(Chih-Yang Tseng),林哲宇
dc.subject.keyword壓電材料,聚(偏氯乙烯-三氟乙烯),靜電紡絲,應變感測器,可撓式感測器,肌肉應變量測,表面肌電圖,肌肉疲勞,zh_TW
dc.subject.keywordPiezoelectric materials,poly(vinylidene chloride-trifluoroethylene),electrospinning,strain sensors,flexible sensors,muscle strain measurement,surface electromyography,muscle fatigue,en
dc.relation.page130
dc.identifier.doi10.6342/NTU202101846
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
dc.date.embargo-lift2024-08-09-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-2807202112542800.pdf9.97 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved