Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81812
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許如君(Ju-Chun Hsu)
dc.contributor.authorHong-Ming Chaoen
dc.contributor.author趙鴻銘zh_TW
dc.date.accessioned2022-11-25T03:04:09Z-
dc.date.available2027-02-09
dc.date.copyright2022-02-21
dc.date.issued2022
dc.date.submitted2022-02-10
dc.identifier.citationAbbott WS. 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18: 265-267. doi: 10.1093/jee/18.2.265a Acharya R, Akintola AA, Malekera MJ, Kamulegeya P, Nyakunga KB, Mutimbu MK, Shrestha YK, Hemayet JSM, Hoat TX, Dao HT, Park J-H, Kim I, Nam M, Lee S-J, Kim S-M, Hwang H-S, Lee K-Y. 2021. Genetic relationship of fall armyworm (Spodoptera frugiperda) populations that invaded Africa and Asia. Insects 12: 439. doi: 10.3390/insects12050439 Adamczyk JJ, Leonard BR, Graves JB. 1999. Toxicity of selected insecticides to fall armyworms (Lepidoptera: Noctuidae) in laboratory bioassay studies. Fla Entomol 82: 230-236. doi: 10.2307/3496574 Aheer GM, Aziz MA, Hameed A, Ali A. 2009. Evaluation of resistance to different insecticides in field strains of Helicoverpa armigera (Lepidoptera: Noctuidae) in Punjab, Pakistan. Entomol Res 39: 159-167. doi: 10.1111/j.1748-5967.2009.00210.x Ahmad M, Arif MI, Naveed M. 2010. Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan. Pest Manag Sci 83: 409-420. doi: 10.1007/s10340-010-0311-8 Ahmad M, Sayyed A, Saleem M, Ahmad M. 2008. Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Prot 27: 1367-1372. doi: 10.1016/j.cropro.2008.05.003 Ana MM, Aldo JA-P, Elisa V, Christian LR-E, Philippe L, Benjamín G, Samuel P. 2017. Effects of ethanolic extracts of Argemone ochroleuca (Papaveraceae) on the food consumption and development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla Entomol 100: 339-345. doi: 10.1653/024.100.0232 [ARPD] Arthropod Pesticide Resistance Database. 2021. Spodoptera frugiperda. ARPD.https://www.pesticideresistance.org/display.php?page=species arId=200. Accessed 22 July. 2021. Ashley TR, Wiseman BR, Davis FM, Andrews KL. 1989. The fall armyworm: A bibliography. Fla Entomol 72: 152-202. doi: 10.2307/3494982 Assefa F, Ayalew D. 2019. Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review. Cogent Food Agric 5: 1. doi: 10.1080/23311932.2019.1641902 [BAPHIQ] Bureau of Animal and Plant Health Inspection and Quarantine. 2021. Spodoptera frugiperda. https://faw.baphiq.gov.tw/. Accessed 28 Feburary 2021. (In Chinese) Barros EC, Bacci L, Picanco MC, Martins JC, Rosado JF, Silva GA. 2015. Physiological selectivity and activity reduction of insecticides by rainfall to predatory wasps of Tuta absoluta. J Environ Sci Health B 50: 45-54. doi: 10.1080/03601234.2015.965621 Bentley D. 2007. Whole-genome re-sequencing. Curr Opin Genet Dev 16: 545-552. doi: 10.1016/j.gde.2006.10.009 Bernardi D, Salmeron E, Horikoshi RJ, Bernardi O, Dourado PM, Carvalho RA, Martinelli S, Head GP, Omoto C. 2015. Cross-resistance between Cry1 proteins in fall armyworm (Spodoptera frugiperda) may affect the durability of current pyramided Bt maize hybrids in Brazil. PLoS One 10: e0140130. doi: 10.1371/journal.pone.0140130 Bielza P, Espinosa PJ, Quinto V, Abellán J, Contreras J. 2007. Synergism studies with binary mixtures of pyrethroid, carbamate and organophosphate insecticides on Frankliniella occidentalis (Pergande). Pest Manag Sci 63: 84-89. doi: 10.1002/ps.1328 Biezanko CM, Ruffinelli A, Link D. 1974. Plantas y otras sustancias alimenticias de las orugas los leoidopteros uruduayos. Rev Centro Ciencias Rurais, Santa Maria 4: 107-148. Blanco CA, Pellegaud JG, Nava-Camberos U, Lugo-Barrera D, Vega-Aquino P, Coello J, Terán-vargas AP, Vargas-Camplis J. 2014. Maize pests in Mexico and challenges for the adoption of integrated pest management programs. J Integr Pest Manag 5(4): E1-E9, doi: 10.1603/IPM14006 Boaventura D, Martin M, Pozzebon A, Mota-Sanchez D, Nauen R. 2020. Monitoring of target-site mutations conferring insecticide resistance in Spodoptera frugiperda. Insects 11: 545. doi: 10.3390/insects11080545 Boaventura D, Buer B, Hamaekers N, Maiwald F, Nauen R. 2021. Toxicological and molecular profiling of insecticide resistance in a Brazilian strain of fall armyworm resistant to Bt Cry1 proteins. Pest Manag Sci 77: 3713-3726. doi: 10.1002/ps.6061 Bolzan A, Padovez FEO, do Nascimento ARB, Kaiser IS, Lira EC, Amaral FSA, Kanno RH, Malaquias JB, Omoto C. 2019. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Manag Sci 75: 2682-2689. doi: 10.1002/ps.5376 Buntin GD. 1986. A review of plant response to fall armyworm, Spodoptera frugiperda (J.E. Smith), injury in selected field and forage crops. Fla Entomol 69: 549-559. doi: 10.2307/3495389 [CABI] CABI invasive species compendium online data sheet. 2021. Spodoptera frugiperda. CABI. https://www.cabi.org/isc/datasheet/29810. Accessed 2 May 2021 Cahill M, Denholm I, Ross G, Gorman K, Johnston D. 1996. Relationship between bioassay data and the simulated field performance of insecticides against susceptible and resistant adult Bemisia tabaci (Homoptera: Aleyrodidae). Bull Entomol Res 86: 109-116. doi: 10.1017/S0007485300052330 Camillo M, Di Oliveira J, de Bueno A, Bueno R. 2005. Seeds treatment on maize for Spodoptera frugiperda control. Ecossistema 30: 59-63. Capinera JL. 2008. Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). pp 1409-1412. In: Capinera JL (ed). Encyclopedia of Entomology. Springer Netherlands, Dordrecht. Cardoso JT, Lázzar SMN. 2003. Comparative biology of Cycloneda sanguinea (Linnaeus, 1763) and Hippodamia convergens Guérin-Méneville, 1842 (Coleoptera, Coccinellidae) focusing on the control of Cinara spp. (Hemiptera, Aphididae). Rev Bras Entomol 47: 443-446. doi: 10.1590/S0085-56262003000300014 Carlson GR, Dhadialla TS, Hunter R, Jansson RK, Jany CS, Lidert Z, Slawecki RA. 2001. The chemical and biological properties of methoxyfenozide, a new insecticidal ecdysteroid agonist. Pest Manag Sci 57: 115-119. doi: 10.1002/1526-4998(200102)57:2<115::AID-PS245>3.0.CO;2-A Carneiro TR, Fernandes OA, Cruz I, Bueno RCOF. 2010. Functional response of Telenomus remus Nixon (Hymenoptera, Scelionidae) to Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) eggs: effect of female age. Rev Bras Entomol 54: 692-696. doi: 10.1590/S0085-56262010000400023 Carvalho RA, Omoto C, Field LM, Williamson MS, Bass C. 2013. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS One 8: e62268. doi: 10.1371/journal.pone.0062268 Casmuz A, Juarez L, Socías M, Murúa M, Prieto S, Medina S, Willink E. 2010. Revisión de los hospederos del gusano cogollero del maíz, Spodoptera frugiperda (Lepidoptera: Noctuidae). Rev Soc Entomol Argent 69: 209-231. Castro MT, Pitre HN. 1988. Development of fall armyworm, Spodoptera frugiperda, from Honduras and Mississippi on sorghum or corn in the laboratory. Fla Entomol 71: 49-56. doi: 10.4314/ijbcs.v13i2.35. Chang CC. 2015. Resistance of novel insecticides in diamondback moth (Plutella xylostella) in Taiwan. [thesis]. Taipei: National Taiwan University. 118 pp. doi: 10.6342%2fNTU.2015.01475 (in Chinese) Chao YH. 2017. Comparative transcriptome analysis of permethrin-resistant and propoxur-resistant Aedes aegypti [thesis]. Taichung: National Chung Hsing University. 72 pp. (in Chinese) Chapman JW, Williams T, Escribano A, Caballero P, Cave RD, Goulson D. 1999. Fitness consequences of cannibalism in the fall armyworm, Spodoptera frugiperda. Behav Ecol 10: 298-303. doi: 10.1093/beheco/10.3.298 Che-Mendoza A, Penilla RP, Rodríguez DA. 2009. Insecticide resistance and glutathione S-transferases in mosquitoes: A review. Afr J Biotechnol 8: 1386-1397. Chiang MY, Ku CY, Yang CM, Huang YB. 2019. Introduction of potential invasive pests: fall armyworm, Spodoptera frugiperda. Animal and Plant Quarantine Quarterly 61: 16-19. (in Chinese). De Groote H, Kimenju SC, Munyua B, Palmas S, Kassie M, Bruce A. 2020. Spread and impact of fall armyworm (Spodoptera frugiperda J.E. Smith) in maize production areas of Kenya. Agric Ecosyst Environ 292: 106804. doi: 10.1016/j.agee.2019.106804 de Lourdes Corrêa Figueiredo M, Cruz I, da Silva RB, Foster JE. 2015. Biological control with Trichogramma pretiosum increases organic maize productivity by 19.4%. Agron Sustain Dev 35: 1175-1183. doi: 10.1007/s13593-015-0312-3 do Nascimento ARB, Farias JR, Bernardi D, Horikoshi RJ, Omoto C. 2016. Genetic basis of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to the chitin synthesis inhibitor lufenuron. Pest Manag Sci 72: 810-815. doi: 10.1002/ps.4057 do Nascimento ARB. 2018. Exploiting next generation sequencing techniques (NGS) to identify molecular markers for monitoring the resistance of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) to insecticides and Bt proteins. [dissertation]. Piracicaba: University of São Paulo. doi: 10.11606/T.11.2019.tde-03012019-160052. (abstract) do Nascimento ARB, Corrêa Pavinato VA, Rodrigues JG, Silva-Brandão KL, Consoli FL, Michel A, Omoto C. 2021. There is more than chitin synthase in insect resistance to benzoylureas: molecular markers associated with teflubenzuron resistance in Spodoptera frugiperda. J Pest Sci: Published: 17 April 2021. doi: 10.1007/s10340-021-01373-4 Drmanac R, Labat I, Brukner I, Crkvenjakov R. 1989. Sequencing of megabase plus DNA by hybridization: theory of the method. Genomics 4: 114-128. doi: 10.1016/0888-7543(89)90290-5 Du Plessis H, Schlemmer ML, Van den Berg J. 2020. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 11: 228, doi: 10.3390/insects11040228 Early R, González-Moreno P, Murphy ST, Day R. 2018. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40: 25-50. doi: 10.3897/neobiota.40.28165 Fatoretto JC, Michel AP, Silva Filho MC, Silva N. 2017. Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. J Integr Pest Manag 8 : 17; 1-10. doi: 10.1093/jipm/pmx011 Faucon F, Dusfour I, Gaude T, Navratil V, Boyer F, Chandre F, Sirisopa P, Thanispong K, Juntarajumnong W, Poupardin R, Chareonviriyaphap T, Girod R, Corbel V, Reynaud S, David JP. 2015. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing. Genome Res 25:1347-1359. doi: 10.1101/gr.189225.115 Feng HT. 1987. Control economics of resistant diamondback moth-a field cage study. Plant Prot Bull 29: 175-184. (in Chinese) Figueiredo MLC, Martins-Dias AMP, Cruz I. 2006. Relationship between fall armyworm and their natural biological control agents in the maize crop. Pesqui Agropecu Bras 41: 1693-1698. (in Portuguese) Fu B, Li Q, Qiu H, Tang L, Zeng D, Liu K, Gao Y. 2018. Resistance development, stability, cross-resistance potential, biological fitness and biochemical mechanisms of spinetoram resistance in Thrips hawaiiensis (Thysanoptera: Thripidae). Pest Manag Sci 74: 1564-1574. doi: 10.1002/ps.4887 Garcia LC, Raetano CG, Leite LG. 2008. Application technology for the entomopathogenic nematodes Heterorhabditis indica and Steinernema sp. (Rhabditida: Heterorhabditidae and Steinernematidae) to control Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in corn. Neotrop Entomol 37: 305-311. doi: 10.1590/s1519-566x2008000300010 Gellatly KJ. 2015. RNAi validation of resistance genes and their interactions in the highly DDT-resistant 91-R strain of Drosophila melanogaster. Pestic Biochem Physiol 121: 107-115. doi: 10.1016/j.pestbp.2015.01.001 Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS One 11: e0165632. doi: 10.1371/journal.pone.0165632 Grant C, Jacobson R, Ilias A, Berger M, Vasakis E, Bielza P, Zimmer CT, Williamson MS, Ffrench-Constant RH, Vontas J, Roditakis E, Bass C. 2019. The evolution of multiple-insecticide resistance in UK populations of tomato leafminer, Tuta absoluta. Pest Manag Sci 75: 2079-2085. doi: 10.1002/ps.5381 Guan F, Zhang J, Shen H, Wang X, Padovan A, Walsh TK, Tay WT, Gordon KHJ, James W, Czepak C, Otim MH, Kachigamba D, Wu Y. 2021. Whole-genome sequencing to detect mutations associated with resistance to insecticides and Bt proteins in Spodoptera frugiperda. Insect Sci 28: 627-638. doi: 10.1111/1744-7917.12838 Gui F, Lan T, Zhao Y, Guo W, Dong Y, Fang D, Liu H, Li H, Wang H, Hao R, Cheng X, Li Y, Yang P, Sahu SK, Chen Y, Cheng L, He S, Liu P, Fan G, Lu H, Hu G, Dong W, Chen B, Jiang Y, Zhang Y, Xu H, Lin F, Slipper B, Postma A, Jackson M, Abate BA, Tesfaye K, Demie AL, Bayeleygne MD, Degefu DT, Chen F, Kuria PK, Kinyua ZM, Liu T-X, Yang H, Huang F, Liu X, Sheng J, Kang L. 2020. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell. doi: 10.1007/s13238-020-00795-7 Online ahead of print. Gunning RV, Moores GD, Devonshire AL. 1996. Insensitive acetylcholinesterase and resistance to thiodicarb in Australian Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Pestic Biochem Physiol 55: 21-28. doi: 10.1006/pest.1996.0031 Guo D, Luo J, Zhou Y, Xiao H, He K, Yin C, Xu J, Li F. 2017. ACE: an efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data. BMC Bioinform 18: 330. doi 10.1186/s12859-017-1741-6 Gutiérrez-Moreno R, Mota-Sanchez D, Blanco CA, Whalon ME, Terán-Santofimio H, Rodriguez-Maciel JC, DiFonzo C. 2019. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. J Econ Entomol 112: 792-802. doi: 10.1093/jee/toy372 Hamama H. 2014. Role of cytocrome P450 gene in insecticide susceptibility of the whitefly, Bemisia tabaci (Homoptera, Aleyrodidae) in Egyptian Governorates. Int J Biol 1(3): 62-71. Hart T, Komori HK, LaMere S, Podshivalova K, Salomon DR. 2013. Finding the active genes in deep RNA-seq gene expression studies. BMC Genom 14: 778. doi: 10.1186/1471-2164-14-778 Heiger DN, Cohen AS, Karger BL. 1990. Separation of DNA restriction fragments by high performance capillary electrophoresis with low and zero crosslinked polyacrylamide using continuous and pulsed electric fields. J Chromatogr A 516: 33-48. doi: 10.1016/S0021-9673(01)90202-X Heinoun K, Muhammad E, Abdullah Smadi H, Annahhas D, Abou Kubaa R. 2021. First record of fall armyworm (Spodoptera frugiperda) in Syria. Bull OEPP/EPPO Bull 51: 213-215. doi: 10.1111/epp.12735 Horikoshi RJ, Bernardi D, Bernardi O, Malaquias JB, Okuma DM, Miraldo LL, De Amaral FSAE, Omoto C. 2016. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management. Sci Rep 6: 34864. doi: 10.1038/srep34864 Hou DJ. 2012. Pyrethroid resistant mchanisms of the Oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). [thesis]. Taipei: National Taiwan University. 107 pp. (in Chinese) Hsieh CH. 2019. Molecular identification and population distribution of the new alien invasive fall armyworm (Spodoptera frugiperda). J Plant Med 61(4): 31. (abstract, in Chinese) Hsu JC, Feng HT, Huang YJ. 2002 Susceptibility of Thrips palmi to insecticides recommended in Taiwan. Formosan Entomol 22: 83-93. Hsu MC. 2018. Mechanisms of mevinphos resistance in diamondback moth, Plutella xylostella. [thesis]. Taichung: National Chung Hsing University. 41 pp. (in Chinese) Huang PH. 2018. The Relationships of Green Recruitment Practices and Organizational Attraction: The Mediating Effect of P-O fit and The Moderating Effect of Pro-environmental Attitude. [thesis]. Taichung: Tunghai University. 51 pp. (in Chinese) Huang H, Hu B, Hu S. 2019. The effects of UDP-glycosyltransferases on chlorpyrifos susceptibility to Spodoptera exigua. J Nanjing Univ Nat Sci 42: 448-455. doi: 10.7685/jnau.201810003 [ICAR] Indian Council of Agricultural Research. 2019. Fall Armyworm: Diagnosis and Management. https://iimr.icar.gov.in/fall-armyworm-management/. Accessed 27. Aug. 2021. [IRAC] Insecticide Resistance Action Committee. 2011. IRAC Susceptibility Test Methods Series. Method No: 020. Version: 3.2. https://iraconline.org/ methods/spodoptera-helicoverpa-heliothis-larvae/. Accessed 2 May 2021. Irving H, Wondji CS. 2017. Investigating knockdown resistance (kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles funestus across Africa. BMC Genetics 18: 76. doi: 10.1186/s12863-017-0539-x Ishaaya I, Navon A, Gurevitz E. 1986. Comparative toxicity of chlorfluazuron (IKI-7899) and cypermethrin to Spodoptera littoralis, Lobesia botrana and Drosophila melanogaster. J Crop Prot 5: 385-388. doi: 10.1016/0261-2194(86)90069-4 Jacobs A, Vuuren A, Rong IH. 2018. Characterisation of the fall armyworm (Spodoptera frugiperda J.E. Smith) (Lepidoptera: Noctuidae) from South Africa. Afr Entomol 26: 45-49. doi: 10.4001/003.026.0045 Jamil SZ, Saranum MM, Hudin LJS, Wan Ali WKA 2021. First incidence of the invasive fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797) attacking maize in Malaysia. Bioinvasions Rec 10: 81-90. doi: 10.3391/bir.2021.10.1.10 Jouraku A, Kuwazaki S, Iida H, Ohta I, Kusano H, Takagi M, Yokoyama T, Kubota N, Shibao M, Shirotsuka K, Iwasaki A, Takezawa Y, Takeda M. 2019. T929I and K1774N mutation pair and M918L single mutation identified in the voltage-gated sodium channel gene of pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae) in Japan. Pestic Biochem Physiol 158: 77-87. doi: 10.1016/j.pestbp.2019.04.012 Juarez MT, Twigg RW, Timmermans MCP. 2004. Specification of adaxial cell fate during maize leaf development. Development 131: 4533-4544. doi: 10.1242/dev.01328 Juárez ML, Murúa MG, García MG, Ontivero M, Vera MT, Vilardi JC, Groot AT, Castagnaro AP, Gastaminza G, Willink E. 2012. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J Econ Entomol 105: 573-582. doi: 10.1603/EC11184 Kakumani PK, Malhotra P, Mukherjee SK, Bhatnagar RK. 2014. A draft genome assembly of the army worm, Spodoptera frugiperda. Genomics 104: 134-143. doi: 10.1016/j.ygeno.2014.06.005 Kao SS, Hsieh FC. 2003. Cloning and application of local Bacillus thurillgiellsis insecticidal crystal protein genes. Plant Prot Bull Spec Publ New 5 (Proceedings of the Workshop on Plant Protection Management for Sustainable Development: Technology and New Dimension): 249-258. (in Chinese) Kerns DL, Palumbo JC, Tellez T. 1998. Resistance of field strains of beet armyworm (Lepidoptera: Noctuidae) from Arizona and California to carbamate insecticides. J Econ Entomol 91: 1038-1043. doi: 10.1093/jee/91.5.1038 Khan HAA, Akram W, Shehzad K, Shaalan EA. 2011. First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasites Vectors 4: 146. doi: 10.1186/1756-3305-4-146 Khatri S, Pakuwal P, Khanal S. 2020. Integrated pest management of fall armyworm infestations in maize fields in Nepal: A review. Arch Agron Soil Sci 5: 583-591. doi: 10.26832/24566632.2020.0504023 Kumela T, Simiyu J, Sisay B, Likhayo P, Mendesil E, Gohole L, Tefera T. 2018. Farmers' knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int J Pest Manag 65: 1-9. doi: 10.1080/09670874.2017.1423129 Kuo TCY, Hu CC, Chien TY, Chen MJM, Feng HT, Chen LFO, Chen CY, Hsu JC. 2015. Discovery of genes related to formothion resistance in oriental fruit fly (Bactrocera dorsalis) by a constrained functional genomics analysis. Insect Mol Biol 24: 338-347. doi: 10.1111/imb.12161 Laminou SA, Ba MN, Karimoune L, Doumma A, Muniappan R. 2020. Parasitism of locally recruited egg parasitoids of the fall armyworm in Africa. Insects 11: 430. doi: 10.3390/insects11070430 Lee GS, Seo BY, Lee JH, Wonhoon L. 2020. First report of the fall armyworm, Spodoptera frugiperda (Smith, 1797) (Lepidoptera, Noctuidae), a new migratory pest in Korea. Korean J Appl Entomol 59: 73-78. doi: 10.5656/KSAE.2020.02.0.006 Lee SU, Chuang YK. 2010. The evolution and development of DNA sequencing technology. J Biomed Lab Sci 22: 49-58. (in Chinese) Leon-Garcia I, Rodríguez-Leyva E, Ortega L, Solis-Aguilar J. 2012. Insecticide susceptibility of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) associated with turfgrass at Quintana Roo, México. Agrocienc Urug 46: 279-287. (in Spanish) LeOra Software. 2002. POLO-Plus, a user's guide to probit or logic analysis. LeOra Software, Berkeley, CA. Lin J, Hung C, Sun C-N. 1989. Teflubenzuron resistance and microsomal monooxygenases in larvae of the diamondback moth. Pestic Biochem Physiol 35: 20-25. doi: 10.1016/0048-3575%2889%2990098-9 Lin, SC, Kuang YH, Li Y, Chiang MY, Hsieh CH, Chuang WP. 2019 Evaluating the growth of fall armyworm larvae feeding on four weed species. Weed Science Bulletin 40: 91-98.doi: 10.6274%2fWSSROC.201912_40(2).0001 (in Chinese) Lira EC, Bolzan A, do Nascimento ARB, Amaral FSA, Kanno RH, Kaiser IS, Omoto C. 2020. Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spinetoram: inheritance and cross-resistance to spinosad. Pest Manag Sci 76: 2674-2680. doi: 10.1002/ps.5812 Loke WH, Ashley TR. 1984. Behavioral and biological responses of Cotesia marginiventris to kairomones of the fall armyworm, Spodoptera frugiperda. J. Chem Ecol 10: 521-529. doi: 10.1007/bf00988097 Luginbill P. 1928. The fall army worm. Technical Bulletins No. 34. United States Department of Agriculture. 91 pp. Lundgren JG, Razzak AA, Wiedenmann RN. 2004. Population responses and food consumption by predators Coleomegilla maculata and Harmonia axyridis (Coleoptera: Coccinellidae) during anthesis in an Illinois cornfield. Environ Entomol 33: 958-963. doi: 10.1603/0046-225X-33.4.958 Luo Y, Zhang M. 2011. Environmental modeling and exposure assessment of sediment-associated pyrethroids in an agricultural watershed. PLoS One 6: e15794-e15794. doi: 10.1371/journal.pone.0015794 Ma J, Wang YP, Wu MF, Gao BY, Liu J, Lee GS, Otuka A, Hu G. 2019. High risk of the fall armyworm invading Japan and the Korean Peninsula via overseas migration. J Appl Entomol 143: 911-920. doi: 10.1111/jen.12679 Machado EP, dos S. Rodrigues Junior GL, Führ FM, Zago SL, Marques LH, Santos AC, Nowatzki T, Dahmer ML, Omoto C, Bernardi O. 2020. Cross-crop resistance of Spodoptera frugiperda selected on Bt maize to genetically-modified soybean expressing Cry1Ac and Cry1F proteins in Brazil. Sci Rep 10: 10080. doi: 10.1111/jen.12679 Maino JL, Schouten R, Overton K, Day R, Ekesi S, Bett B, Barton M, Gregg PC, Umina PA, Reynolds OL. 2021. Regional and seasonal activity predictions for fall armyworm in Australia. Curr Opin Insect Sci 1: 100010. doi: 10.1016/j.cris.2021.100010 Malo M, Hore J. 2020. The emerging menace of fall armyworm (Spodoptera frugiperda JE Smith) in maize: A call for attention and action. J Entomol Zool Stud 8: 455-465. Mardis ER. 2008. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9: 387-402. doi: 10.1146/annurev.genom.9.081307.164359 Masaki T, Yasokawa N, Tohnishi M, Nishimatsu T, Tsubata K, Inoue K, Motoba K, Hirooka T. 2006. Flubendiamide, a novel Ca2+ channel modulator, reveals evidence for functional cooperation between Ca2+ pumps and Ca2+ release. Mol Pharmacol 69: 1733-1739. doi: 10.1124/mol.105.020339 Maxam AM, Gilbert W. 1977. A new method for sequencing DNA. Proc Natl Acad Sci USA 74: 560-564. doi: 10.1073/pnas.74.2.560 Meagher RL, Nuessly GS, Nagoshi RN, Hay-Roe MM. 2016. Parasitoids attacking fall armyworm (Lepidoptera: Noctuidae) in sweet corn habitats. Biol Control 95: 66-72. doi: 10.1016/j.biocontrol.2016.01.006 Meihls LN, Huynh MP, Ludwick DC, Coudron TA, French BW, Shelby KS, Hitchon AJ, Smith JL, Schaafsma AW, Pereira AE, Hibbard BE. 2018. Comparison of six artificial diets for western corn rootworm bioassays and rearing. J Econ Entomol 111: 2727-2733. doi: 10.1093/jee/toy268 Melamede RJ. 1989. Automatable process for sequencing nucleotide. United States Patent Number: US 4863849. Molina-Ochoa J, Lezama-Gutierrez R, Gonzalez-Ramirez M, Lopez-Edwards M, Rodriguez-Vega MA, Arceo-Palacios F. 2003. Pathogens and parasitic nematodes associated with populations of fall armyworm (Lepidoptera: Noctuidae) larvae in Mexico. Fla Entomol 86: 244-253. doi: 10.1653/0015-4040(2003)086[0244:PAPNAW]2.0.CO;2 Montezano DG, Specht A, Sosa-Gomez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, Peterson JA, Hunt TE. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26: 286-300. doi: 10.4001/003.026.0286 Moscardini VF, Marques LH, Santos AC, Rossetto J, Silva OABN, Rampazzo PE, Castro BA. 2020. Efficacy of Bacillus thuringiensis (Bt) maize expressing Cry1F, Cry1A.105, Cry2Ab2 and Vip3Aa20 proteins to manage the fall armyworm (Lepidoptera: Noctuidae) in Brazil. J Crop Prot 137: 105269. doi: 10.1016/j.cropro.2020.105269 Muraro DS, Garlet CG, Godoy DN, Cossa GE, Rodrigues Junior GLdS, Stacke RF, Medeiros SLP, Guedes JVC, Bernardi O. 2019. Laboratory and field survival of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Bt and non-Bt maize and its susceptibility to insecticides. Pest Manag Sci 75: 2202-2210. doi: 10.1002/ps.5347 Murúa MG, Nagoshi RN, dos Santos DA, Hay-Roe MM, Meagher RL, Vilardi JC. 2015. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J Econ Entomol 108: 2305-2315. doi: 10.1093/jee/tov203 Nagoshi RN. 2010. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann Entomol Soc Am 103: 283-292. doi: 10.1603/AN09046 Nagoshi RN. 2019. Evidence that a major subpopulation of fall armyworm found in the Western Hemisphere is rare or absent in Africa, which may limit the range of crops at risk of infestation. PLoS One14: e0208966. doi: 10.1371/journal.pone.0208966 Nagoshi RN, Silvie P, Meagher RL, Lopez J, Machado V. 2007. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida. Ann Entomol Soc Am 100: 394-402. doi: 10.1603/0013-8746(2007)100[394:IACOFA]2.0.CO;2 Nagoshi RN, Htain NN, Boughton D, Zhang L, Xiao Y, Nagoshi BY, Mota-Sanchez D. 2020. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci Rep 10: 1421. https://www.nature.com/articles/s41598-020-58249-3 Nagoshi RN, Koffi D, Agboka K, Adjevi AKM, Meagher RL, Goergen G. 2021. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PloS One 16: e0253528-e0253528. doi: 10.1371/journal.pone.0253528 Narahashi T, Tsunoo A, Yoshii M. 1987. Characterization of two types of calcium channels in mouse neuroblastoma cells. J Physiol Paris 383: 231-249. doi: 10.1113/jphysiol.1987.sp016406 Okuma DM, Bernardi D, Horikoshi RJ, Bernardi O, Silva AP, Omoto C. 2018. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. Pest Manag Sci 74: 1441-1448. doi: 10.1002/ps.4829 Orr N, Shaffner AJ, Richey Crouse GD. 2009. Novel mode of action of spinosad: Receptor binding studies demonstrating lack of interaction with known insecticidal target sites. Pestic Biochem Physiol 95: 1-5. doi: 10.1016/J.PESTBP.2009.04.009 Pfeifer GP, Steigerwald SD, Mueller PR, Wold B, Riggs AD. 1989. Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246: 810-813. doi: 10.1126/science.2814502 Pinto J, Palomino M, Mendoza-Uribe L, Sinti C, Liebman KA, Lenhart A. 2019. Susceptibility to insecticides and resistance mechanisms in three populations of Aedes aegypti from Peru. Parasites Vectors 12: 494. doi: 10.1186/s13071-019-3739-6 Pitre HN. 1986. Chemical control of the fall armyworm (Lepidoptera: Noctuidae): An update. Fla Entomol 69: 570-578. doi: 10.2307/3495392 Polanczyk RA, Silva RFPd, Fiuza LM. 2000. Effectiveness of Bacillus thuringiensis strains against Spodoptera frugiperda (Lepidoptera: Noctuidae). Braz J Microbiol 31: 164-166. doi: 10.1590/S1517-83822000000300003 Prapanthadara L, Reunkum W, Leelapat P, Suwan W, Yanola J, Somboon P. 2005. Glutathione S-transferase isoenzymes and the DDTase activity in two DDT-resistant strains of Aedes aegypti. Dengue Bull 29: 183-191. Prasanna BM, Huesing JE, Eddy R, Peschke VM (eds). 2018. Fall armyworm in Africa: a guide for integrated pest management. First edition. CIMMYT and USAID. 120 pp. Qin YJ, Yang DC, Kang DL, Zhao ZH, Zhao ZH, Yand PY, Li ZH. 2020. Potential economic loss assessment of maize industry caused by fall armyworm (Spodoptera frugiperda) in China. Plant Prot 46: 69-73. (in Chinese) Ramasamy M, Ramesh R. 2020. Occurrence, damage pattern and biology of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on fodder crops and green amaranth in Goa, India. Phytoparasitica 48: 15-23. doi: 10.1007/s12600-019-00771-w Ribeiro LDP, Ansante TF, Vendramim JD. 2016. Effect of ethanolic extract from Annona mucosa seeds on development and feeding behavior of Spodoptera frugiperda. Bragantia 75: 322-330. doi: 10.1590/1678-4499.473 Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P. 1996. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242: 84-89. doi: 10.1006/abio.1996.0432 Rowland A, Miners JO, Mackenzie PI. 2013. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 45: 1121-1132. doi: 10.1016/j.biocel.2013.02.019 Rwomushana I, Bateman M, Beale T, Beseh P, Cameron K, Chiluba M, Clottey V, Davis T, Day R, Early R, Godwin J, González-Moreno P, Kansiime M, Kenis M, Makale F, Idah M, Murphy S, Nunda W, Phiri N, Tambo J. 2018. Fall armyworm: impacts and implications for Africa: Evidence Note Update, CAB International. Retrieved from https://www.invasive‐species.org/wp‐content/uploads/sites/2/2019/02/FAW‐Evidence‐Note‐October‐2018.pdf. Salgado VL. 1998. Studies on the mode of action of spinosad: Insect symptoms and Physiological correlates. Pestic Biochem Physiol 60: 91-102. doi: 10.1006/pest.1998.2332 Salgado VL, Sheets JJ, Watson GB, Schmidt AL. 1998. Studies on the mode of action of spinosad: The internal effective concentration and the concentration dependence of neural excitation. Pestic Biochem Physiol. 60: 103-110. doi: 10.1006/pest.1998.2332 Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463-5467. doi: 10.1073/pnas.74.12.5463 Santos-Amaya OF, Tavares CS, Rodrigues JV, Campos SO, Guedes RN, Alves AP, Pereira EJ. 2016. Fitness costs and stability of Cry1Fa resistance in Brazilian populations of Spodoptera frugiperda: Fitness costs and stability of Cry1Fa resistance in Spodoptera frugiperda. Pest Manag Sci 73: 35-43. doi: 10.1002/ps.4312 Sari A, Buchori D, Nurkomar I. 2020. The potential of Telenomus remus Nixon (Hymenoptera: Scelinoidae) as biocontrol agent for the new fall armyworm S. frugiperda (Lepidoptera: Noctuidae) in Indonesia. Planta Tropika: J Agro Sci 8(2): 69-74. doi: 10.18196/pt.2020.116.-69-74 Sattelle D, Cordova D, Cheek T. 2008. Insect ryanodine receptors: molecular targets for novel pest control chemicals. Invert Neurosci 8: 107-119. doi: 10.1007/s10158-008-0076-4 Schuler TH, Martinez-Torres D, Thompson AJ, Denholm I, Devonshire AL, Duce IR, Williamson MS. 1998. Toxicological, electrophysiological, and molecular characterisation of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pestic Bioche………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81812-
dc.description.abstract"秋行軍蟲 (Spodoptera frugiperda (J.E. Smith)) 為一全球重要經濟害蟲,已有超過一百個國家記錄到秋行軍蟲入侵,其危害已造成全球重大經濟損失。目前針對秋行軍蟲為害最主要防治方法仍以藥劑防治為主,而全球已有多起報導指出秋行軍蟲對多種藥劑產生抗藥性,因此本研究首先測試臺灣五個地區 (金門、花蓮、雲林、嘉義、台南) 及兩實驗室品系 (Lab-Y、Lab-P) 的秋行軍蟲,分析其對目前三種現行防治藥劑賜諾特 (spinetoram)、諾伐隆 (novaluron) 以及剋安勃 (chlorantraniliprole) 及三種防治鱗翅目害蟲的滅芬諾 (methoxyfenozide)、賽安勃 (cyantraniliprole) 及賽速安勃 (chlorantraniliprole + thiamethoxam) 的感受性現況,結果顯示賜諾特為本次實驗感受性最高之藥劑,其半致死濃度 (LC50) 及百分之90致死濃度 (LC90) 均小於3 mg/L;金門與雲林地區與室內品系相比對剋安勃的感受性,其抗性倍數 (resistance ratio) 達到10倍以上,且金門地區對二醯胺類藥劑 (diamides) 之半致死濃度均有較高之情形。三種現行防治藥劑除賜諾特外,剋安勃及諾伐隆之LC90均高於田間所推薦防治施用濃度,而三種防治鱗翅目害蟲藥劑之LC90同樣高於防治施用之濃度。進一步針對全球已知秋行軍蟲與三類殺蟲劑相關的作用標的抗性點突變,進行上述五處地點及桃園地區秋行軍蟲族群進行檢測,臺灣地區秋行軍蟲在各地均有檢測到一個乙醯膽鹼酯酶 (acetylcholinesterase) 抗性點突變 (F290V),且花蓮、金門、台南、嘉義地區所檢測頻度達到50% 以上,而其餘兩位置A201S、G227A及發生於電壓門控鈉離子通道 (voltage-gated sodium channel) 抗性點突變T929I、L932F 及 L1014F及作用於魚尼丁受體 (ryanodine receptor) 抗性點突變I4790L及G4946E均沒有在所採樣地區被檢測到。於2021年採集自花蓮之秋行軍蟲幼蟲 (F0) 進行三作用機制點突變驗證,以現行登記濃度 (1000倍稀釋) 之硫敵克 (thiodicarb)、剋安勃 (2500倍稀釋),再以2倍登記濃度 (400倍稀釋) 護賽寧 (flucythrinate)處理,經後72小時剋安勃死亡率達87 % 最高,硫敵克及護賽寧分別為 86 % 及67 %,各處理72小時後存活之蟲體再進行相關作用機制點突變檢測,結果僅在硫敵克處理後檢測到在乙醯膽鹼酯酶抗性點突變F290V具有 60 % 的點突變頻度。本研究最後以2019年雲林地區採集之秋行軍蟲F1及間隔一年於原地採集之FN與雲林採集帶回實驗室飼養之第九代 (F9) 之秋行軍蟲進行轉錄組定序,每個樣本獲得約6 G轉錄體,並找出現有代謝抗藥性相關顯著差異表現 (log2 FPKM ratio > 1) 基因,雲林採集F1與F9比較後共發現數條如細胞色素P450 (cytochrome P450, CYP)、穀胱甘肽S-轉移酶 (glutathione S-transferase, GST) 及羧酸酯酶 (carboxylesterase) 等基因具有顯著差異表現,雲林原地採集FN與F9比較後同樣數條如CYP、GST及二磷酸葡萄糖醛酸基轉移酶 (UDP-glucuronosyltransferase) 等顯著差異表現基因,推測這些具有顯著差異表現之代謝酵素可能與抗藥性有關。本研究結果除可提供田間防治秋行軍蟲用藥參考,並且可作為未來國內秋行軍蟲抗藥性相關研究更深入探討的基礎、抗性管理及增加秋行軍蟲防治藥劑之方向。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:04:09Z (GMT). No. of bitstreams: 1
U0001-0602202213404000.pdf: 2303505 bytes, checksum: ee32d0dc9338b027b1c91ff0ea973186 (MD5)
Previous issue date: 2022
en
dc.description.tableofcontents"口試委員會審定書i 誌謝ii 中文摘要iii 英文摘要v 目錄vii 表次x 圖次xi 附錄次xii 壹、前言 1 貳、往昔研究 3 一、秋行軍蟲之簡介 3 (一) 秋行軍蟲之形態學及生物學 3 (二) 秋行軍蟲經濟重要性 5 (三) 秋行軍蟲全球散播及臺灣因應措施 5 (四) 秋行軍蟲防治措施 6 (五) 秋行軍蟲對殺蟲劑的抗藥性 8 二、殺蟲劑之簡介 9 (一) 硫敵克之分類及作用機制 10 (二) 護賽寧、依芬寧分類及作用機制 10 (三) 賜諾特之分類及作用機制 11 (四) 蘇力菌之分類及作用機制 12 (五) 諾伐隆之分類及作用機制 12 (六) 二醯胺類藥劑之分類及作用機制 13 (七) 滅芬諾之分類及作用機制 13 三、次世代定序 (Next Generation Sequencing, NGS) 在抗藥性研究之簡介 14 (一) DNA定序發展歷程 14 (二) 次世代定序發展與應用 14 參、材料與方法 16 一、供試蟲源採集及飼養 16 二、藥劑來源與配置 16 三、化學藥劑對秋行軍蟲感受性檢定 17 四、秋行軍蟲於作用標的抗性基因點突變檢測 18 (一) Total RNA萃取 18 (二) 反轉錄cDNA 19 (三) 聚合酶鏈鎖反應 20 (四) 利用桑格 (Sanger) 定序檢測作用位置是否有點突變情形發生 20 五、整理藥劑在不同壓力程度下秋行軍蟲基因的表現量差異..........................20 (一) RNA萃取 20 (二) 註釋結果分析 20 六、統計分析 21 肆、結果 22 一、不同地區秋行軍蟲對藥劑之感受性 22 二、田間秋行軍蟲抗性基因點突變之測定 23 三、藥劑在不同壓力下秋行軍蟲基因差異表現 24 四、GO與 KEGG 代謝途徑的比對註釋分析結果 24 伍、討論 27 一、臺灣地區秋行軍蟲對六種殺蟲劑之感受性 27 二、臺灣地區秋行軍蟲於作用標的抗性基因點突變頻度 29 三、抗藥性相關顯著表現基因分析 30 陸、結論 33 柒、引用文獻 58 捌、附錄 78 表次 表一、2019-2021年間於臺灣不同地區採集秋行軍蟲資訊 34 表二、進行室內品系秋行軍蟲對六種測試藥劑試驗之感受性結果 35 表三、進行田間品系秋行軍蟲對六種測試藥劑試驗之感受性結果 36 表四、以皮爾森相關性比較六種殺蟲劑間對秋行軍蟲田間族群抗性程度相關性 38 表五、以史比爾曼等級相關性比較秋行軍蟲於不同地區間對藥劑抗性程度相關性 39 表六、臺灣地區秋行軍蟲不同作用機制點突變基因頻度檢測結果 40 表七、秋行軍蟲驗證藥劑試驗結果 41 表八、秋行軍蟲雲林F9及FN品系之間具有顯著表現之主要代謝酵素數量及分群 42 表九、秋行軍蟲雲林F9及F1品系之間具有顯著表現之主要代謝酵素數量及分群 43 圖次 圖一、室內品系(Lab-Y) 對不同濃度賽速安處理之死亡情形 44 圖二、將 PCR 反應之含AChE1點突變基因片段產物以瓊脂凝膠進行水平電泳結果 45 圖三、秋行軍蟲與有機磷或胺基甲酸鹽類藥劑抗性相關點突變在AChE1上已知三處點突變及各田間地區品系檢測結果 46 圖四、秋行軍蟲與合成除蟲菊類藥劑抗性相關點突變在VGSC上已知三處點突變及各田間地區品系檢測結果 47 圖五、將 PCR 反應之含VGSC點突變基因片段產物以瓊脂凝膠進行水平電泳結果圖 48 圖六、將 PCR 反應之含RyR點突變基因片段產物以瓊脂凝膠進行水平電泳結果圖 49 圖七、秋行軍蟲與二醯胺類藥劑抗性相關點突變在RyR上已知兩處點突變及各田間地區品系檢測結果 50 圖八、次世代定序中秋行軍蟲具有顯著性表現基因數量 51 圖九、比較雲林F1和雲林F9具有差異表現基因之顯著GO分類圖 52 圖十、比較雲林FN和雲林F9具有差異表現基因之顯著GO分類圖 53 圖十一、GO中與現有已知抗藥性相關中表現量具有顯著性差異的秋行軍蟲基因數量 54 圖十二、比較雲林F1和雲林F9差異表現基因之顯著KEGG分類圖 55 圖十三、比較雲林FN和雲林F9差異表現基因之顯著KEGG分類圖 56 圖十四、KEGG分析結果中與現有已知抗藥性相關中表現量具有顯著性差異的秋行軍蟲基因數量 57 "
dc.language.isozh-TW
dc.subject轉錄體定序zh_TW
dc.subject點突變zh_TW
dc.subject秋行軍蟲zh_TW
dc.subject抗藥性zh_TW
dc.subject感受性zh_TW
dc.subjectRNA-Seqen
dc.subjectSpodoptera frugiperdaen
dc.subjectsusceptibilityen
dc.subjectpoint mutationen
dc.subjectinsecticide resistanceen
dc.title臺灣地區秋行軍蟲對藥劑感受性與抗藥性機制研究zh_TW
dc.titleThe susceptibility to the insecticides and resistance mechanisms of Spodoptera frugiperda in Taiwanen
dc.date.schoolyear110-1
dc.description.degree碩士
dc.contributor.coadvisor吳文哲(Wen-Jer Wu)
dc.contributor.oralexamcommittee戴淑美(Benny Kwok-Kan Chan),林彥伯(Chih-Yu Chiu),楊永裕
dc.subject.keyword秋行軍蟲,感受性,點突變,抗藥性,轉錄體定序,zh_TW
dc.subject.keywordSpodoptera frugiperda,susceptibility,point mutation,insecticide resistance,RNA-Seq,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202200297
dc.rights.note同意授權(全球公開)
dc.date.accepted2022-02-11
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物醫學碩士學位學程zh_TW
dc.date.embargo-lift2027-02-09-
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
U0001-0602202213404000.pdf
  此日期後於網路公開 2027-02-09
2.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved