Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81810
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭修伯(Hsiu-Po Kuo)
dc.contributor.authorWei-Jhih Liaoen
dc.contributor.author廖偉智zh_TW
dc.date.accessioned2022-11-25T03:04:06Z-
dc.date.available2023-12-31
dc.date.copyright2021-11-09
dc.date.issued2021
dc.date.submitted2021-08-04
dc.identifier.citationArena, U. 2012. Process and technological aspects of municipal solid waste gasification. A review, Waste Manag, 32: 625-39. Authier, O., M. Ferrer, G. Mauviel, A. E. Khalfi, and J. Lede. 2009. Wood Fast Pyrolysis: Comparison of Lagrangian and Eulerian Modeling Approaches with Experimental Measurements, Industrial Engineering Chemistry Research, 48: 4796-809. Bridgwater, A. V. 2018. Pyrolysis of solid biomass: Basics, processes and products. In, Energy from Organic Materials (Biomass): A Volume in the Encyclopedia of Sustainability Science and Technology, Second Edition (Springer). Czernik, S., and A. V. Bridgwater. 2004. Overview of applications of biomass fast pyrolysis oil. Eri, Q. T., B. L. Wang, J. Peng, X. J. Zhao, and T. Li. 2018. Detailed CFD modelling of fast pyrolysis of different biomass types in fluidized bed reactors, Canadian Journal of Chemical Engineering, 96: 2043-52. Geldart, D. 1973. Types of Gas Fluidization, Powder technology, 7: 285-92. Gidaspow, D. 1994. Multiphase flow and fluidization: continuum and kinetic theory descriptions (Academic press). Gomez-Barea, A., and B. Leckner. 2010. Modeling of biomass gasification in fluidized bed, Progress in Energy and Combustion Science, 36: 444-509. Grace, J. . 1986. Contacting modes and behaviour classification of gas—solid and other two‐phase suspensions, The Canadian Journal of Chemical Engineering, 64: 353-63. Gunn, D. J. 1978. Transfer of Heat or Mass to Particles in Fixed and Fluidized-Beds, International Journal of Heat and Mass Transfer, 21: 467-76. Hsu, T. A., M. R. Ladisch, and G. T. Tsao. 1980. Alcohol from Cellulose, Chemtech, 10: 315-19. Huber, G. W., S. Iborra, and A. Corma. 2006. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chem Rev, 106: 4044-98. Jalalifar, S., R. Abbassi, V. Garaniya, K. Hawboldt, and M. Ghiji. 2018. Parametric analysis of pyrolysis process on the product yields in a bubbling fluidized bed reactor, Fuel, 234: 616-25. Koufopanos, C. A., N. Papayannakos, G. Maschio, and A. Lucchesi. 1991. Modeling of the Pyrolysis of Biomass Particles - Studies on Kinetics, Thermal and Heat-Transfer Effects, Canadian Journal of Chemical Engineering, 69: 907-15. Kuo, H.P., and A. N. Huang. 2015. 你是風兒我是沙─流體化床.財團法人國家實驗研究院科技政策研究與資訊中心. Miller, R. S., and J Bellan. 1997. A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics, Combustion Science and Technology, 126: 97-137. Mohan, D., C. U. Pittman, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review, Energy Fuels, 20: 848-89. Pan, H., X. Z. Chen, X. F. Liang, L. T. Zhu, and Z. H. Luo. 2016. CFD simulations of gas–liquid–solid flow in fluidized bed reactors—A review, Powder Technology, 299: 235-58. Peterson, A. A., F. Vogel, R. P. Lachance, M. Froling, M. J. Antal, and J. W. Tester. 2008. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies, Energy Environmental Science, 1: 32-65. Ranzi, E., M. Corbetta, F. Manenti, and S. Pierucci. 2014. Kinetic modeling of the thermal degradation and combustion of biomass, Chemical Engineering Science, 110: 2-12. Ranzi, E., A. Cuoci, T. Faravelli, A. Frassoldati, G. Migliavacca, S. Pierucci, and S. Sommariva. 2008. Chemical Kinetics of Biomass Pyrolysis, Energy Fuels, 22: 4292-300. Syamlal, M., and T. J. Obrien. 1988. Simulation of Granular Layer Inversion in Liquid Fluidized-Beds, International Journal of Multiphase Flow, 14: 473-81. Taghipour, F., N. Ellis, and C. Wong. 2005. Experimental and computational study of gas–solid fluidized bed hydrodynamics, Chemical Engineering Science, 60: 6857-67. Tomiyama, A. 1998. Struggle with computational bubble dynamics, Multiphase Science Technology, 10: 369-405. Van der Stelt, M. J. C., H. Gerhauser, J. H. A. Kiel, and K. J. Ptasinski. 2011. Biomass upgrading by torrefaction for the production of biofuels: A review, Biomass bioenergy, 35: 3748-62. Wang, Y., and L. Yan. 2008. CFD studies on biomass thermochemical conversion, Int J Mol Sci, 9: 1108-30. Xiong, Q. G., S. Aramideh, and S. C. Kong. 2013. Modeling Effects of Operating Conditions on Biomass Fast Pyrolysis in Bubbling Fluidized Bed Reactors, Energy Fuels, 27: 5948-56. Xiong, Q. G., and S. C. Kong. 2014. Modeling effects of interphase transport coefficients on biomass pyrolysis in fluidized beds, Powder technology, 262: 96-105. Xue, Q., D. Dalluge, T. J. Heindel, R. O. Fox, and R. C. Brown. 2012. Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors, Fuel, 97: 757-69. Yang, H. P., R. Yan, H. P. Chen, D. H. Lee, and C. G. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86: 1781-88. Yang, H. P., R. Yan, H. P. Chen, C. G. Zheng, D. H. Lee, and D. T. Liang. 2006. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin, Energy Fuels, 20: 388-93. 李致廷. 2019. 氣泡式流體化床中生質物快速熱裂解之反應流體力學數值模擬, 長庚大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81810-
dc.description.abstract"本論文以計算流體力學(Computational Fluid Dynamics, CFD) 歐拉多相流模擬(Eulerian multiphase simulation)氣泡式流體化床中的生質物快速熱裂解行為,並採用了顆粒動力學理論(Kinetic theory of granular flows, KTGF)考慮固體相、Miller and Bellan (1997)反應動力學模型考慮生質物三成分(纖維素、半纖維素、木質部)的二階段熱裂解反應。研究分別採用3相模型(混合氣相、床質相、生質物相)與4相模型(混合氣相、床質相、生質物相、焦炭相)進行多相流模擬。當氣體流速為0.36 m/s,3相模擬、4相模型、實驗(Xue et al. 2012)的生質油、合成氣和焦炭的質量產率分別為70.8%、16.1%、13.1%;70.7%、16.2%、13.1%;71.7±1.4%、20.5±1.3%、13.5±1.5%,產率模擬結果得到實驗的驗證。細部模擬結果分析,發現現有系統設計有尚未轉化的活化木質素離開反應器,且二次熱裂解於空床區持續發生將生成的生質油裂解為合成氣,導致生質油產率無法再提升。 本研究為了提高生質油產率,嘗試透過改變底部進氣流速改變滯留時間、反應器上半部溫度增加活化木質素一次裂解、或加入螺旋導板增加活化木質素滯留時間。結果顯示,加入螺旋導板、底部進氣流速為0.56 m/s時,生質油的產率提高至75.4%,可較原有操作時的生質油產率提升6.6%。 "zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:04:06Z (GMT). No. of bitstreams: 1
U0001-0308202111324000.pdf: 15018720 bytes, checksum: 1b0c274956d5c88e61b613665674c5d0 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents目錄 目錄 i 圖目錄 iii 表目錄 xvi 第一章 緒論 1 第二章 文獻回顧 3 2.1 替代能源-生質物 3 2.2生質物組成 3 2.3 熱處理 5 2.3.1 焙燒 (Torrefaction) 6 2.3.2 氣化 (Gasification) 6 2.3.3 熱裂解 (Pyrolysis) 6 2.4 流體化床 8 2.5 快速熱裂解在流化床的模擬 11 2.5.1 多相流計算模型 11 2.5.2 熱裂解反應動力學模型 13 2.6 文獻中的生質物快速熱裂解的CFD模擬 17 第三章 模擬方法 21 3.1 反應器結構和邊界條件 22 3.2 尤拉多相流運動模型 24 3.3 顆粒動力學模擬 29 3.4 反應動力學 35 3.5建模計算方法 39 3.6 後處理 40 3.6.1產率 40 3.6.2物質分布、運動行為、溫度分布與反應發生 41 第四章 結果與討論 42 4.1 二維模擬 42 4.2 三維模擬 (3相與4相) 48 4.3 流體化氣速的影響 61 4.4 反應器上半部壁溫的影響 95 4.5 加入螺旋導板 124 第五章 結論 156 參考文獻 159
dc.language.isozh-TW
dc.subject氣泡式流體化床zh_TW
dc.subject計算流體力學zh_TW
dc.subject生質物快速熱裂解zh_TW
dc.subject歐拉多相模型zh_TW
dc.subjectComputational Fluid Dynamics (CFD)en
dc.subjectBubbling Fluidized Bed (BFB)en
dc.subjectEulerian multiphase modelingen
dc.subjectBiomass fast pyrolysisen
dc.title以CFD耦合反應動力學模擬生質物於氣泡式流化床反應器之快速熱裂解zh_TW
dc.titleModeling of Biomass Fast Pyrolysis in a Bubbling Fluidized Bed Using CFD Coupling Reaction Kineticsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林祥泰(Hsin-Tsai Liu),黃安婗(Chih-Yang Tseng)
dc.subject.keyword計算流體力學,生質物快速熱裂解,歐拉多相模型,氣泡式流體化床,zh_TW
dc.subject.keywordComputational Fluid Dynamics (CFD),Biomass fast pyrolysis,Eulerian multiphase modeling,Bubbling Fluidized Bed (BFB),en
dc.relation.page161
dc.identifier.doi10.6342/NTU202102030
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-05
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2023-12-31-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-0308202111324000.pdf14.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved