請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81809完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 溫進德(Jin-Der Wen) | |
| dc.contributor.author | Wei-Lin Lu | en |
| dc.contributor.author | 盧韋霖 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:04:05Z | - |
| dc.date.available | 2026-08-03 | |
| dc.date.copyright | 2021-11-17 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-03 | |
| dc.identifier.citation | 參考文獻 Aseev, L.V., Levandovskaya, A.A., Tchufistova, L.S., Scaptsova, N.V., and Boni, I.V. (2008). A new regulatory circuit in ribosomal protein operons: S2-mediated control of the rpsB-tsf expression in vivo. RNA 14, 1882-1894. Baranovskaya, M.D., Ugarov, V.I., Chetverina, H.V., and Chetverin, A.B. (2017). Removal of protein S1 from Escherichia coli ribosomes without the use of affinity chromatography. Anal Biochem 517, 53-55. Bycroft, M., Hubbard, T.J., Proctor, M., Freund, S.M., and Murzin, A.G. (1997). The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88, 235-242. Byrgazov, K., Manoharadas, S., Kaberdina, A.C., Vesper, O., and Moll, I. (2012). Direct interaction of the N-terminal domain of ribosomal protein S1 with protein S2 in Escherichia coli. PLoS One 7, e32702. Carter, A.P., Clemons, W.M., Jr., Brodersen, D.E., Morgan-Warren, R.J., Hartsch, T., Wimberly, B.T., and Ramakrishnan, V. (2001). Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291, 498-501. Cifuentes-Goches, J.C., Hernandez-Ancheyta, L., Guarneros, G., Oviedo, N., and Hernandez-Sanchez, J. (2019). Domains two and three of Escherichia coli ribosomal S1 protein confers 30S subunits a high affinity for downstream A/U-rich mRNAs. J Biochem 166, 29-40. Duval, M., Korepanov, A., Fuchsbauer, O., Fechter, P., Haller, A., Fabbretti, A., Choulier, L., Micura, R., Klaholz, B.P., Romby, P., et al. (2013). Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation. PLoS Biol 11, e1001731. Fabbretti, A., Pon, C.L., Hennelly, S.P., Hill, W.E., Lodmell, J.S., and Gualerzi, C.O. (2007). The real-time path of translation factor IF3 onto and off the ribosome. Mol Cell 25, 285-296. Farwell, M.A., Roberts, M.W., and Rabinowitz, J.C. (1992). The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Mol Microbiol 6, 3375-3383. Gualerzi, C., Pon, C.L., and Kaji, A. (1971). Initiation factor dependent release of aminoacyl-tRNAs from complexes of 30S ribosomal subunits, synthetic polynucleotide and aminoacyl tRNA. Biochem Biophys Res Commun 45, 1312-1319. Hartz, D., Binkley, J., Hollingsworth, T., and Gold, L. (1990). Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev 4, 1790-1800. Komarova, A.V., Tchufistova, L.S., Dreyfus, M., and Boni, I.V. (2005). AU-rich sequences within 5' untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J Bacteriol 187, 1344-1349. La Teana, A., Gualerzi, C.O., and Brimacombe, R. (1995). From stand-by to decoding site. Adjustment of the mRNA on the 30S ribosomal subunit under the influence of the initiation factors. RNA 1, 772-782. Lauber, M.A., Rappsilber, J., and Reilly, J.P. (2012). Dynamics of ribosomal protein S1 on a bacterial ribosome with cross-linking and mass spectrometry. Mol Cell Proteomics 11, 1965-1976. Marzi, S., Myasnikov, A.G., Serganov, A., Ehresmann, C., Romby, P., Yusupov, M., and Klaholz, B.P. (2007). Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130, 1019-1031. Milon, P., Maracci, C., Filonava, L., Gualerzi, C.O., and Rodnina, M.V. (2012). Real-time assembly landscape of bacterial 30S translation initiation complex. Nat Struct Mol Biol 19, 609-615. Petrelli, D., LaTeana, A., Garofalo, C., Spurio, R., Pon, C.L., and Gualerzi, C.O. (2001). Translation initiation factor IF3: two domains, five functions, one mechanism? EMBO J 20, 4560-4569. Philippe, C., Benard, L., Eyermann, F., Cachia, C., Kirillov, S.V., Portier, C., Ehresmann, B., and Ehresmann, C. (1994). Structural elements of rps0 mRNA involved in the modulation of translational initiation and regulation of E. coli ribosomal protein S15. Nucleic Acids Res 22, 2538-2546. Pon, C.L., Paci, M., Pawlik, R.T., and Gualerzi, C.O. (1985). Structure-function relationship in Escherichia coli initiation factors. Biochemical and biophysical characterization of the interaction between IF-2 and guanosine nucleotides. J Biol Chem 260, 8918-8924. Roy, B., Liu, Q., Shoji, S., and Fredrick, K. (2018). IF2 and unique features of initiator tRNA(fMet) help establish the translational reading frame. RNA biology 15, 604-613. Sengupta, J., Agrawal, R.K., and Frank, J. (2001). Visualization of protein S1 within the 30S ribosomal subunit and its interaction with messenger RNA. Proc Natl Acad Sci U S A 98, 11991-11996. Serganov, A., Ennifar, E., Portier, C., Ehresmann, B., and Ehresmann, C. (2002). Do mRNA and rRNA binding sites of E.coli ribosomal protein S15 share common structural determinants? J Mol Biol 320, 963-978. Shine, J., and Dalgarno, L. (1975). Determinant of cistron specificity in bacterial ribosomes. Nature 254, 34-38. Subramanian, A.R. (1983). Structure and functions of ribosomal protein S1. Prog Nucleic Acid Res Mol Biol 28, 101-142. Tedin, K., Resch, A., and Blasi, U. (1997). Requirements for ribosomal protein S1 for translation initiation of mRNAs with and without a 5' leader sequence. Mol Microbiol 25, 189-199. van de Meent, J.W., Bronson, J.E., Wiggins, C.H., and Gonzalez, R.L., Jr. (2014). Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments. Biophys J 106, 1327-1337. Wu, Y.J., Wu, C.H., Yeh, A.Y., and Wen, J.D. (2014). Folding a stable RNA pseudoknot through rearrangement of two hairpin structures. Nucleic Acids Res 42, 4505-4515. Förster, T. (1948). Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der physik, 437(1-2), 55-75. 張舒雅碩士論文 (2015) 胖韻馨碩士論文 (2017) 楊宜芳碩士論文 (2020) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81809 | - |
| dc.description.abstract | 原核細胞的mRNA在進行轉譯前,必須先與核醣體小次單元30S結合形成轉譯前起始複合物 (preinitiation complex),而這個結合的過程受到許多因素的影響。許多的mRNA在5’ untranslated region (5’UTR)的地方會有特別的二級結構,這些結構的改變可以影響30S與mRNA結合的難易度,進而作為轉譯的調節機制。以大腸桿菌的rpsO基因為例,rpsO mRNA的5’UTR能夠形成兩種不同結構,分別為偽結(pseudoknot)與雙髮夾(double hairpins),而這兩個結構能夠互相轉換,當mRNA處於雙髮夾構型時,Shine-Dalgarno序列(SD序列),會被埋在第二個髮夾中無法被30S辨識,而在偽結結構時,SD序列則是裸露出來的,因此一般認為偽結對於rpsO mRNA轉譯的調控較為重要。然而我們先前的實驗中,發現30S可能會結合到雙髮夾間的序列,並進一步解開下游的結構並辨識SD序列,在所有核醣體蛋白中,我們推測bS1可能給予30S解開二級結構的能力。bS1是30S上最大的核醣體蛋白,並且會參與轉譯的起始過程。有研究發現bS1具有RNA 伴蛋白 (chaperon)的功能,並且具有一定程度的解旋酶活性,能夠幫助30S解開mRNA的二級結構,讓轉譯可以順利進行。在本研究計畫中,我們分別純化30S、核醣體bS1蛋白與去除bS1的30S,再利用5’UTR已知能形成雙髮夾構型的mRNA,以單分子螢光共振能量轉移 (smFRET)的技術觀察bS1存在與否對於30S與mRNA結合的影響,進而了解bS1在轉譯前起始複合物的形成中所扮演的角色。 研究結果發現bS1單獨存在時與mRNA有著動態的結合,並且能夠解開下游結構。而在bS1不存在的情況下,30S便不具有與雙髮夾結構結合的能力,但其對偽結結構的結合能力並沒有受到太大的影響。因此我們推測在無法接觸到SD序列的情況下,bS1可以協助30S結合到雙髮夾結構的RNA上,並進一步解開下游二級結構,使轉譯可以起始。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:04:05Z (GMT). No. of bitstreams: 1 U0001-0308202115024600.pdf: 5802497 bytes, checksum: 4c7c6973966afec05c8aedb3e7862301 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | "目錄 口試委員審定書 ………………………………………………………..……………# 誌謝 i 摘要 ii Abstract iv 目錄 vi 圖目錄 viii 第一章 導論 1 1.1 轉譯起始 1 1.2 UTR結構的調節 1 1.3 核醣體bS1蛋白 2 1.4 單分子技術與螢光共振能量轉移 3 1.5 研究動機 4 第二章 實驗材料與方法 6 2.1材料 6 2.1.1勝任細胞品系 6 2.1.2質體 6 2.1.3引子 7 2.1.4藥品 8 2.1.5酵素 9 2.1.6 Kit 9 2.1.7 溶液 10 2.2 方法 12 2.2.1質體構築 12 2.2.1 bS1-His蛋白純化 14 2.2.1 bS1蛋白純化 15 2.2.2 核醣體去除bS1蛋白 16 2.2.3單分子螢光共振轉移實驗 (smFRET) 16 第三章 結果 19 3.1 bS1蛋白純化 19 3.1.1 bS1-His 19 3.1.2 bS1 19 3.2 核醣體去除bS1蛋白結果 19 3.3 RNA樣本製備 20 3.3.1 胞外轉錄 (in vitro transcription) 20 3.3.2 DNA探針與RNA黏合 20 3.4 bS1蛋白對於雙髮夾結構mRNA的影響 21 3.4.1 Stem 2的穩定度影響bS1結合的強度 21 3.4.2 縮短雙髮夾間的單股距離後,bS1仍然能夠結合 23 3.4.3 bS1結合單股的長度超過11個核苷酸 24 3.5 bS1與bS1-His性質比較 25 3.5.1 EMSA 25 3.5.2 FRET 25 3.6 30S與mRNA的結合 26 3.6.1 30S能夠結合mS1L並且解開下游二級結構 26 3.6.2 30S與mS2S的結合來自於bS1 27 3.6.3 30S結合RPSOutr之情形 28 3.7 去除bS1蛋白之30S與mRNA的結合 29 3.7.1 失去bS1的30S無法結合mS1L 29 3.7.2 失去bS1的30S仍然能夠結合RPSOutr,但結合微弱 29 3.7.3 強化過的SD序列能夠彌補失去的bS1 31 第四章 討論 32 參考文獻 37 圖目錄 圖1、pSP6mS1L質體示意圖與部分序列示意圖…………………………...………40 圖2、smFRET實驗操作……………………………………………………………..41 圖3、bS1-His純化之流洗分布,以及其SDS-PAGE結果……………...………….42 圖4、bS1純化之流洗分布,以及其SDS-PAGE結果………...…….……..……..43 圖5、核醣體去除bS1蛋白後進行SDS-PAGE分析結果.……………………..…..44 圖6、smFRET實驗使用之RNA…………………………………………...………46 圖7、實驗用之RNA與DNA探針黏合結果.……………………………………..47 圖8、mS1L結構示意圖、FRET分布直方圖與FRET隨時間變化圖…………..48 圖9、bS1存在時,mS1L FRET分布直方圖與FRET隨時間變化圖…….……..49 圖10、mS2S結構示意圖、FRET分布直方圖與FRET隨時間變化圖……....….50 圖11、bS1存在時,mS2S FRET分布直方圖與FRET隨時間變化圖……….…51 圖12、bS1之on rate與off rate隨濃度之變化圖……………….…………………52 圖13、mS1L-5nt結構示意圖、FRET分布直方圖與FRET隨時間變化圖…..…53 圖14、bS1存在時,mS1L-5nt FRET分布直方圖與FRET隨時間變化圖………54 圖15、RPSOlinker結構、FRET分布直方圖與FRET隨時間變化圖.…………..55 圖16、bS1存在時RPSOlinker FRET分布直方圖與FRET隨時間變化圖……..56 圖17、RPSOlinker15結構、FRET分布直方圖與FRET隨時間變化圖……......57 圖18、bS1存在時,RPSOlinker15 FRET分布直方圖與FRET隨時間變化圖...58 圖19、bS1-His與bS1 EMSA之比較………………………………………………59 圖20、bS1-His存在時,mS1L FRET分布直方圖,與FRET隨時間變化圖…….60 圖21、bS1-His與bS1經buffer流洗後mS1L FRET分布圖與FRET隨時間變化圖………………………………………………...………………………………..61 圖22、30S存在時,mS1L FRET分布直方圖,與FRET隨時間變化圖….……62 圖23、IF1,3與30S存在時,mS1L FRET分布直方圖,與FRET隨時間變化圖..63 圖24、30S存在時,mS2S FRET分布直方圖,與FRET隨時間變化圖……….64 圖25、IF1,3與30S存在時,mS2S FRET分布直方圖,與FRET隨時間變化圖..65 圖26、30S存在時,mS1L與mS2以HMM分析之結果………………………..66 圖27、RPSOutr結構、FRET分布直方圖與FRET隨時間變化圖………………68 圖28、30S存在時,RPSOutr FRET分布直方圖與FRET隨時間變化圖………..69 圖29、30SΔbS1存在時,mS1L FRET分布直方圖與FRET隨時間變化圖……..70 圖30、起始tRNA與30SΔbS1存在時,mS1L FRET分布直方圖與FRET隨時間變化圖……………………………………………………………………...……..71 圖31、30SΔbS1存在時,RPSOutr FRET分布直方圖與FRET隨時間變化圖…72 圖32、IF1,3與30SΔbS1存在時,RPSOutr FRET分布直方圖,與FRET隨時間變化圖……………………………………...……………………………………..73 圖33、0.03 μM bS1存在時,RPSOutr FRET分布直方圖與FRET隨時間變化圖.74 圖34、0.1 μM bS1存在時,RPSOutr FRET分布直方圖與FRET隨時間變化圖..75 圖35、mPKsSD結構、FRET分布直方圖與FRET隨時間變化圖………………76 圖36、30SΔbS1存在時,mPKsSD FRET分布直方圖與FRET隨時間變化圖…77 圖37、bS1在轉譯起始時之功能模型…………………….……………………….78 " | |
| dc.language.iso | zh-TW | |
| dc.subject | 轉譯起始 | zh_TW |
| dc.subject | 核醣體bS1蛋白 | zh_TW |
| dc.subject | 雙髮夾結構 | zh_TW |
| dc.subject | 單分子技術 | zh_TW |
| dc.subject | ribosomal protein bS1 | en |
| dc.subject | single molecule | en |
| dc.subject | translation initiation | en |
| dc.subject | double hairpins | en |
| dc.title | 核醣體bS1蛋白在轉譯起始階段之功能性研究 | zh_TW |
| dc.title | Functional Characterization of Ribosomal Protein bS1 in Translation Initiation | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李弘文(Hsin-Tsai Liu),李以仁(Chih-Yang Tseng) | |
| dc.subject.keyword | 核醣體bS1蛋白,雙髮夾結構,轉譯起始,單分子技術, | zh_TW |
| dc.subject.keyword | ribosomal protein bS1,double hairpins,translation initiation,single molecule, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU202102045 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-04 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-08-03 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0308202115024600.pdf 此日期後於網路公開 2026-08-03 | 5.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
