請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81807完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁偉立(Wei-Li Liang) | |
| dc.contributor.author | Wei-Chen Hsiao | en |
| dc.contributor.author | 蕭維震 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:04:03Z | - |
| dc.date.available | 2026-08-10 | |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-10 | |
| dc.identifier.citation | 丁澈士 (2008) 河濱濕地伏流水帶之調查研究,行政院國家科學委員會專題研究計畫成果報告:NSC 96-2313-B-020-015。 王志豪 (2005) 溪頭森林集水區地下水文特性之研究,國立臺灣大學森林環境暨資源學系博士論文。 王相華、潘富俊、劉景國、于幼新、洪聖峰 (2000) 台灣北部福山試驗林永久樣區之植物社會分類及梯度分析,臺灣林業科學,15(3),411-428。 江崇榮、汪中和 (2002) 以氫氧同位素組成探討屏東平原之地下水補注源,經濟部中央地質調查所彙刊,15,49-67。 江崇榮、黃智昭、陳瑞娥、費立沅 (2004) 屏東平原地下水補注量及抽水量之評估,經濟部中央地質調查所彙刊,17,21-51。 呂宗烜、梁偉立 (2014) 應用簡易貫入試驗及大地比電阻法推估崩積地土壤岩層界面,中華水土保持學報,45(4),234-242。 林光清、洪富文、程煒兒、蔣先覺、張雲翔 (1996) 福山試驗林土壤調查與分類,臺灣林業科學,11(2),159-174。 張振生 (2000) 哈盆溪上游伏流水動態研究,國立臺灣大學森林環境暨資源學系博士論文。 張智欽 (2000) 水文環境變遷與地下水位變化之關係-兼論員山地區缺水問題,宜蘭技術學報 4,147-161。 陳信雄 (1996) 哈盆溪集水區伏流水動態之研究(一),臺灣實驗林研究報告,10(3),1-18。 陳信雄、張振生 (1998) 哈盆溪集水區伏流水動態研究(二)伏流水之追蹤與檢層,臺大實驗林研究報告,12(1),1-13。 陳信雄、楊蔚宇、張振生 (1999a) 哈盆溪集水區伏流水動態研究(三),臺大實驗林研究報告 13(2),119-128。 陳信雄、楊蔚宇、張振生 (1999b) 哈盆溪集水區伏流水動態研究(四),臺大實驗林研究報告 13(4),279-293。 陳振宇、劉維則、許家祥 (2017) 使用QPESUMS 雨量資料建立崩塌災害預警模式,中華水土保持學報,48(1),44-55。 游志弘、孫建平 (2015) 河道伏流水特性及其對地表逕流水質之影響,農業工程學報,61(2),47-60。 經濟部水利署 (2009) 研訂鑿井技術參考手冊及行政管理作業要點(草案)總報告書, 水利署水利規劃試驗所。 經濟部水利署 (2015) 臺灣地區伏流水調查規劃參考手冊(草案),水利署水利規劃試驗所。 經濟部水利署 (2018) 河道伏流水取水布置試驗研究,水利署水利規劃試驗所。 詹孟浚、梁偉立 (2014) 以坡地土壤厚度及垂直結構探討淺層崩塌潛勢區位,中華水土保持學報 45(2), 85-94. 鄭名宏、梁偉立 (2019) 應用簡易動力貫入法判釋地層結構,中華水土保持學報,50(1),22-31。 賴彥任、張振生、魏聰輝、洪志遠 (2010) 溪頭大學坑集水區之崩積層地下水特性探討,臺大實驗林研究報告,24(2),109-121。 Alley, W.M., Healy, R.W., LaBaugh, J.W. and Reilly, T.E. (2002) Flow and storage in groundwater systems. American Association for the Advancement of Science 296(5575), 1985-1990. Ameli, A.A., Gabrielli, C., Morgenstern, U. and McDonnell, J.J. (2018) Groundwater subsidy from headwaters to their parent water watershed: A combined field‐modeling approach. Water Resources Research 54(7), 5110-5125. Anderson, A.E., Weiler, M., Alila, Y. and Hudson, R.O. (2010) Piezometric response in zones of a watershed with lateral preferential flow as a first-order control on subsurface flow. Hydrological Processes 24(16), 2237-2247. Bachmair, S. and Weiler, M. (2012) Hillslope characteristics as controls of subsurface flow variability. Hydrology and Earth System Sciences 16(10), 3699-3715. Banks, E.W., Simmons, C.T., Love, A.J., Cranswick, R., Werner, A.D., Bestland, E.A., Wood, M. and Wilson, T. (2009) Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: a conceptual model (Australia). Hydrogeology Journal 17(8), 1969-1989. Banks, E.W., Simmons, C.T., Love, A.J. and Shand, P. (2011) Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: Implications for regional scale water quantity and quality. Journal of Hydrology 404(1-2), 30-49. Bencala, K.E. (2000) Hyporheic zone hydrological processes. Hydrological Processes 14(15), 2797–2798. Beven, K.J. and Kirkby, M.J. (1979) A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological Sciences Bulletin 24(1), 43-69. Bishop, K., Seibert, J., Nyberg, L. and Rodhe, A. (2011) Water storage in a till catchment. II: Implications of transmissivity feedback for flow paths and turnover times. Hydrological Processes 25(25), 3950-3959. Blumstock, M., Tetzlaff, D., Dick, J.J., Nuetzmann, G. and Soulsby, C. (2016) Spatial organization of groundwater dynamics and streamflow response from different hydropedological units in a montane catchment. Hydrological Processes 30(21), 3735-3753. Brunner, P., Cook, P.G. and Simmons, C.T. (2009) Hydrogeologic controls on disconnection between surface water and groundwater. Water Resources Research 45(1). Buffington, J.M. and Tonina, D. (2009) Hyporheic Exchange in Mountain Rivers II: Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange. Geography Compass 3(3), 1038-1062. Burt, T.P. and McDonnell, J.J. (2015) Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. Water Resources Research 51(8), 5919-5928. Buss, S., Cai, Z., Cardenas, B., Fleckenstein, J., Hannah, D., Heppell, K., Hulme, P., Ibrahim, T., Kaeser, D., Krause, S., Lawler, D., Lerner, D., Mant, J., Malcolm, I., Old, G., Parkin, G., Pickup, R., Pinay, G., Porter, J., Rhodes, G., Ritchie, A., Riley, J., Robertson, A., Sear, D., Shields, B., Smith, J., Tellam, J. and Wood, P. (2009) The Hyporheic Handbook: A handbook on the groundwater-surface water interface and hyporheic zone for environmental managers, p. 264, Environment Agency, Bristol, UK. Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A.J., Chen, M.-C. and Chapman, H. (2011) Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth and Planetary Science Letters 303(1-2), 48-58. Chen, C.Y. and Fujita, M. (2013) An analysis of rainfall-based warning systems for sediment disasters in Japan and Taiwan. International Journal of Erosion Control Engineering 6(2), 47-57. Gabrielli, C.P. and McDonnell, J.J. (2012) An inexpensive and portable drill rig for bedrock groundwater studies in headwater catchments. Hydrological Processes 26(4), 622-632. Gabrielli, C.P., McDonnell, J.J. and Jarvis, W.T. (2012) The role of bedrock groundwater in rainfall–runoff response at hillslope and catchment scales. Journal of Hydrology 450-451, 117-133. Gabrielli, C.P., Morgenstern, U., Stewart, M.K. and McDonnell, J.J. (2018) Contrasting groundwater and streamflow ages at the Maimai Watershed. Water Resources Research 54, 3937–3957. Hale, V.C., McDonnell, J.J., Stewart, M.K., Solomon, D.K., Doolitte, J., Ice, G.G. and Pack, R.T. (2016) Effect of bedrock permeability on stream base flow mean transit time scaling relations: 2. Process study of storage and release. Water Resources Research 52, 1375–1397. Haria, A.H. and Shand, P. (2006) Near-stream soil water–groundwater coupling in the headwaters of the Afon Hafren, Wales: Implications for surface water quality. Journal of Hydrology 331(3-4), 567-579. Harlan, R.L., Kolm, K.E. and Gutentag, E.D. (1989) Water-well design and construction, Elsevier, Amsterdam. Haught, D.R.W. and Meerveld, H.J. (2011) Spatial variation in transient water table responses: differences between an upper and lower hillslope zone. Hydrological Processes 25(25), 3866-3877. Hayashi, M. (2020) Alpine hydrogeology: The critical role of groundwater in sourcing the headwaters of the world. Groundwater 58(4), 498-510. Hsu, S.M., Hsu, J.P., Ke, C.C., Lin, Y.T. and Huang, C.C. (2020) Rock mass permeability classification schemes to facilitate groundwater availability assessment in mountainous areas: a case study in Jhuoshuei river basin of Taiwan. Geosciences Journal 24(2), 209-224. Hsu, S.M. and Li, J.F. (2020) Analysis and quantification of groundwater recession characteristics in regolith-bedrock aquifers: a case study in the mid- and upper-Choshuei river basin in central Taiwan. Environmental Earth Sciences 79(5). Kosugi, K.i., Fujimoto, M., Katsura, S.y., Kato, H., Sando, Y. and Mizuyama, T. (2011) Localized bedrock aquifer distribution explains discharge from a headwater catchment. Water Resources Research 47(7). Kosugi, K.i., Katsura, S.y., Mizuyama, T., Okunaka, S. and Mizutani, T. (2008) Anomalous behavior of soil mantle groundwater demonstrates the major effects of bedrock groundwater on surface hydrological processes. Water Resources Research 44(1). Lehmann, R. and Totsche, K.U. (2020) Multi-directional flow dynamics shape groundwater quality in sloping bedrock strata. Journal of Hydrology 580. Lewandowski, J., Lischeid, G. and Nützmann, G. (2009) Drivers of water level fluctuations and hydrological exchange between groundwater and surface water at the lowland River Spree (Germany): field study and statistical analyses. Hydrological Processes 23(15), 2117-2128. Liang, W.L. (2020) Dynamics of pore water pressure at the soil–bedrock interface recorded during a rainfall-induced shallow landslide in a steep natural forested headwater catchment, Taiwan. Journal of Hydrology 587, 125003. Liang, W.L. and Chan, M.C. (2017) Spatial and temporal variations in the effects of soil depth and topographic wetness index of bedrock topography on subsurface saturation generation in a steep natural forested headwater catchment. Journal of Hydrology 546, 405–418. MacDonald (1988) An inexpensive, portable system for drilling into subsurface layers. Soil Science Society of America Journal 52(6), 1817-1819. MacDonald, A.M., Lapworth, D.J., Hughes, A.G., Auton, C.A., Maurice, L., Finlayson, A. and Gooddy, D.C. (2014) Groundwater, flooding and hydrological functioning in the Findhorn floodplain, Scotland. Hydrology Research 45(6), 755-773. Malzone, J.M., Anseeuw, S.K., Lowry, C.S. and Allen-King, R. (2016) Temporal hyporheic zone response to water table fluctuations. Groundwater 54(2), 274-285. Martin, S., Klingler, S., Dietrich, P., Leven, C. and Cirpka, O.A. (2020) Structural controls on the hydrogeological functioning of a floodplain. Hydrogeology Journal 28(8), 2675-2696. McDonnell, J.J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M.L., Selker, J. and Weiler, M. (2007) Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resources Research 43(7), W07301. Morris, B.L., Lawrence, A.R.L., Chilton, P.J.C., Adams, B., Calow, R.C. and Klinck, B.A. (2003) Groundwater and its susceptibility to degradation: A global assessment of the problem and options for management., p. 126, Nairobi, Kenya. Muñoz-Villers, L.E. and McDonnell, J.J. (2012) Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate. Water Resources Research 48(9), W09528. Ó Dochartaigh, B.É., Archer, N.A.L., Peskett, L., MacDonald, A.M., Black, A.R., Auton, C.A., Merritt, J.E., Gooddy, D.C. and Bonell, M. (2019) Geological structure as a control on floodplain groundwater dynamics. Hydrogeology Journal 27(2), 703-716. Padilla, C., Onda, Y., Iida, T., Takahashi, S. and Uchida, T. (2014) Characterization of the groundwater response to rainfall on a hillslope with fractured bedrock by creep deformation and its implication for the generation of deep-seated landslides on Mt. Wanitsuka, Kyushu Island. Geomorphology 204, 444-458. Penna, D., van Meerveld, H.J., Zuecco, G., Dalla Fontana, G. and Borga, M. (2016) Hydrological response of an Alpine catchment to rainfall and snowmelt events. Journal of Hydrology 537, 382-397. Pierce, A.A., Parker, B.L., Ingleton, R. and Cherry, J.A. (2018) Novel well completions in small diameter coreholes created using portable rock drills. Groundwater Monitoring Remediation 38(1), 42-55. Rau, G.C., Halloran, L.J.S., Cuthbert, M.O., Andersen, M.S., Acworth, R.I. and Tellam, J.H. (2017) Characterising the dynamics of surface water-groundwater interactions in intermittent and ephemeral streams using streambed thermal signatures. Advances in Water Resources 107, 354-369. Rinderer, M., van Meerveld, H.J. and Seibert, J. (2014) Topographic controls on shallow groundwater levels in a steep, prealpine catchment: When are the TWI assumptions valid? Water Resources Research 50(7), 6067-6080. Rodhe, A. and Seibert, J. (2011) Groundwater dynamics in a till hillslope: flow directions, gradients and delay. Hydrological Processes 25(12), 1899-1909. Scheliga, B., Tetzlaff, D., Nuetzmann, G. and Soulsby, C. (2018) Groundwater dynamics at the hillslope–riparian interface in a year with extreme winter rainfall. Journal of Hydrology 564, 509-528. Smith, J.W.N. (2005) Groundwater–surface water interactions in the hyporheic zone, Environment Agency, Bristol, UK. Somers, L.D. and McKenzie, J.M. (2020) A review of groundwater in high mountain environments. WIREs Water 7(6). Sterrett, R.J. (2007) Groundwater and wells, Johnson Screens, New Brighton, MN. Tarboton, D.G. (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33(2), 309-319. Tesoriero, A.J., Spruill, T.B., Mew, H.E., Farrell, K.M. and Harden, S.L. (2005) Nitrogen transport and transformations in a coastal plain watershed: Influence of geomorphology on flow paths and residence times. Water Resources Research 41(2). Tonina, D. and Buffington, J.M. (2009) Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass 3(3), 1063-1086. Tromp-van Meerveld, H.J. and McDonnell, J.J. (2006) Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resources Research 42(2). White, A., Moravec, B., McIntosh, J., Olshansky, Y., Paras, B., Sanchez, R.A., Ferré, T.P.A., Meixner, T. and Chorover, J. (2019) Distinct stores and the routing of water in the deep critical zone of a snow-dominated volcanic catchment. Hydrology and Earth System Sciences 23(11), 4661-4683. White, D.S. (1993) Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society 12(1), 61-69. Wiekenkamp, I., Huisman, J.A., Bogena, H.R., Lin, H.S. and Vereecken, H. (2016) Spatial and temporal occurrence of preferential flow in a forested headwater catchment. Journal of Hydrology 534, 139-149. Winter, T.C., Harvey, J.W., Franke, O.L. and Alley, W.M. (1998) Ground water and surface water - A single resource, p. 79, U.S. Geological Survey, Denver, Colorado. Woessner, W.W. (2000) Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Groundwater 38(3), 423-429. Yamakawa, Y., Kosugi, K.i., Masaoka, N., Sumida, J., Tani, M. and Mizuyama, T. (2012) Combined geophysical methods for detecting soil thickness distribution on a weathered granitic hillslope. Geomorphology 145-146, 56-69. Zheng, Y., van Geen, A., Stute, M., Dhar, R., Mo, Z., Cheng, Z., Horneman, A., Gavrieli, I., Simpson, H.J., Versteeg, R., Steckler, M., Grazioli-Venier, A., Goodbred, S., Shahnewaz, M., Shamsudduha, M., Hoque, M.A. and Ahmed, K.M. (2005) Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: Implications for deeper aquifers as drinking water sources. Geochimica et Cosmochimica Acta 69(22), 5203-5218. Zimmer, M.A. and McGlynn, B.L. (2017) Ephemeral and intermittent runoff generation processes in a low relief, highly weathered catchment. Water Resources Research 53(8), 7055-7077. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81807 | - |
| dc.description.abstract | 臺灣山高流急且降雨時空分布不均,水資源的永續利用是一個重大的議題,即便山區地下蘊含大量水資源,但國內有關山區地下水的研究侷限於深層地下水,且受制於傳統大型鑽鑿機具的低機動性,使得對於山區淺層地下水的特性仍缺乏高空間解析度的資訊。若缺乏集水區上游的地下水相關研究,則無法釐清源頭的逕流產生機制,因此為了釐清臺灣集水區源頭部淺層地下水的反應特性,本研究利用攜帶式鑽探設備於天然林沖蝕溝鑽鑿7口水井以觀測淺層地下水位,並建置簡易量水堰以利觀測地表逕流量。 沖蝕溝的崩積層由土石堆積交雜排列而成,地層結構複雜,無法單憑地層結構判釋淺層地下水深度,需透過攜帶式鑽探設備的直接鑽探才可掌握地下水位深度。地下水動態依地而異,而本樣區呈現淺層地下水位最深與水位變動幅度最大的位置皆位於沖蝕溝中段。中上段為水脈分散處,地表與地下的水文連結性弱;中下段為水脈匯集處,地表與地下的水文連結性強。各測點的淺層地下水補注量不同,中段淺層地下水的流動深度較深,非單純由雨水供給淺層地下水,而上段的雨水則無法有效補注至淺層地下水,使得水位上升量小於降雨供給量。多數測點於淺層地下水位較高時的退水速率較快,且退水期水位較淺之處的淺層地下水位可於短時間內大幅下降。中段的地表逕流與淺層地下水之平均延遲時間差異最大,地表與地下的水文反應速率差異大;其他水位較淺之處的淺層地下水與地表逕流有相近的水文反應。此外,地形指標僅與水位較淺之處的平均淺層地下水位深度有顯著相關,表示地表逕流以伏流水型態流動於淺層地層,地表逕流於枯水期隱沒至地表之下而形成淺層地下水,故水位深度淺之處的淺層地下水反應受地表地形特性控制。 本研究證實攜帶式鑽探設備適用於臺灣山區的淺層地下水觀測,有利於提高地下水觀測井的設置密度,以利取得更高空間解析度的水文資料,除了可以釐清源頭集水區的降雨逕流機制外,也有助於山區水資源的評估。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:04:03Z (GMT). No. of bitstreams: 1 U0001-0408202114364900.pdf: 8257238 bytes, checksum: a6a5aaec6854b22fa5812669372b17fa (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 致 謝 I 摘 要 II Abstract III 目 錄 V 圖 目 錄 VIII 表 目 錄 XI 第一章 前言 1 1.1. 研究背景 1 1.2. 地下水井鑽鑿方法 4 1.2.1. 傳統鑽井法 4 1.2.2. 攜帶式鑽井設備 5 1.3. 不同地貌的地下水流動型態 8 1.3.1. 平原地下水 8 1.3.2. 山區地下水 9 1.4. 不同深度的地下水位反應型態 9 1.5. 地表與地下的水文交互作用 10 1.6. 國內地下水研究的問題點 14 1.7. 研究目的 14 第二章 材料與方法 17 2.1. 研究樣區 17 2.2. 調查項目 18 2.2.1. 沖蝕溝地表地形 18 2.2.2. 土壤層結構 19 2.2.3. 淺層地層結構 21 2.2.4. 水井設置及水位觀測 22 2.2.5. 地表逕流量 23 2.2.6. 降雨量 25 第三章 沖蝕溝地層結構 26 3.1. 資料分析方法 26 3.2. 結果-土壤層的貫入阻抗分布 26 3.3. 結果-淺層地層的岩心 30 3.4. 結果-岩心資料與貫入試驗比對 32 3.5. 討論-攜帶式輕型鑽探設備的適用性及地層結構對淺層地下水的判釋性 32 3.6. 小結 37 第四章 地表逕流及淺層地下水之水文反應-時間序列資料分析 38 4.1. 資料分析方法 38 4.2. 結果-地表逕流與淺層地下水之時間變動 39 4.3. 結果-地表逕流、淺層地下水、降雨量之相關性 42 4.4. 結果-地表逕流、淺層地下水之相關性 43 4.5. 討論-沖蝕溝不同區段的淺層地下水動態 45 4.6. 討論-降雨、逕流、淺層地下水之伏流現象 46 4.7. 討論-淺層地下水動態的控制因素 47 4.8. 小結 48 第五章 地表逕流及淺層地下水之水文反應-降雨事件分析 50 5.1. 資料分析方法 50 5.2. 結果-地表逕流增加量、淺層地下水位上升量 54 5.3. 結果-地表逕流、淺層地下水位的延遲時間 57 5.4. 結果-淺層地下水的退水事件 59 5.5. 討論-沖蝕溝不同區段的淺層地下水於降雨事件中的水文反應 63 5.6. 小結 65 第六章 地形指標與水文反應之相關性分析 67 6.1. 資料分析方法 67 6.2. 結果-集水區的地形指標分布 67 6.3. 結果-地形指標描述地表逕流量、地下水位的適用性 68 6.4. 討論-地形指標的適用性 71 6.5. 小結 72 第七章 結論 74 7.1. 攜帶式輕型鑽探設備探測淺層地下水的適用性 74 7.2. 沖蝕溝淺層地下水的分布、流動型態、對於降雨的反應特性 75 參考文獻 77 附錄 87 附錄一 87 附錄二 88 附錄三 89 | |
| dc.language.iso | zh-TW | |
| dc.subject | 伏流水 | zh_TW |
| dc.subject | 地表逕流 | zh_TW |
| dc.subject | 崩積層 | zh_TW |
| dc.subject | 攜帶式鑽探設備 | zh_TW |
| dc.subject | 淺層地下水 | zh_TW |
| dc.subject | surface runoff | en |
| dc.subject | colluvium | en |
| dc.subject | hyporheic flow | en |
| dc.subject | portable drilling equipment | en |
| dc.subject | shallow groundwater | en |
| dc.title | 天然林沖蝕溝的地表逕流及淺層地下水特性 | zh_TW |
| dc.title | The Characteristics of Surface Runoff and Shallow Groundwater along a Gully in a Natural Forest | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃誌川(Hsin-Tsai Liu),賴彥任(Chih-Yang Tseng) | |
| dc.subject.keyword | 崩積層,伏流水,攜帶式鑽探設備,淺層地下水,地表逕流, | zh_TW |
| dc.subject.keyword | colluvium,hyporheic flow,portable drilling equipment,shallow groundwater,surface runoff, | en |
| dc.relation.page | 89 | |
| dc.identifier.doi | 10.6342/NTU202102079 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-08-10 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0408202114364900.pdf 此日期後於網路公開 2026-08-10 | 8.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
