Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81797
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李翔傑(Hsiang-Chieh Lee)
dc.contributor.authorTing-Hao Chenen
dc.contributor.author陳庭皓zh_TW
dc.date.accessioned2022-11-25T03:03:48Z-
dc.date.available2023-09-07
dc.date.copyright2021-11-06
dc.date.issued2021
dc.date.submitted2021-08-11
dc.identifier.citation[1] C. Iadecola, 'The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease,' Neuron 96(1), 17-42 (2017). [2] C. Huneau, H. Benali, and H. Chabriat, 'Investigating Human Neurovascular Coupling Using Functional Neuroimaging: A Critical Review of Dynamic Models,' Frontiers in Neuroscience 9(467)(2015). [3] N. R. Evans, J. M. Tarkin, J. R. Buscombe, H. S. Markus, J. H. F. Rudd, and E. A. Warburton, 'PET imaging of the neurovascular interface in cerebrovascular disease,' Nat Rev Neurol 13(11), 676-688 (2017). [4] T. Deffieux, C. Demene, M. Pernot, and M. Tanter, 'Functional ultrasound neuroimaging: a review of the preclinical and clinical state of the art,' Curr Opin Neurobiol 50, 128-135 (2018). [5] H. D. D. Lu, G. Chen, J. J. Cai, and A. W. Roe, 'Intrinsic signal optical imaging of visual brain activity: Tracking of fast cortical dynamics,' Neuroimage 148, 160-168 (2017). [6] W. Zong, R. Wu, S. Chen, J. Wu, H. Wang, Z. Zhao, G. Chen, R. Tu, D. Wu, Y. Hu, Y. Xu, Y. Wang, Z. Duan, H. Wu, Y. Zhang, J. Zhang, A. Wang, L. Chen, and H. Cheng, 'Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging,' Nature Methods 18(1), 46-49 (2021). [7] K. A. Morone, J. S. Neimat, A. W. Roe, and R. M. Friedman, 'Review of functional and clinical relevance of intrinsic signal optical imaging in human brain mapping,' Neurophotonics 4(3), 031220-031220 (2017). [8] N. Pouratian and A. W. Toga, 'Optical Imaging Based on Intrinsic Signals,' in Brain Mapping: The Methods (Second Edition), A. W. Toga and J. C. Mazziotta, eds. (Academic Press, San Diego, 2002), pp. 97-140. [9] N. Pouratian and S. Sheth, 'Optical Imaging of Intrinsic Signals,' in Encyclopedia of Neuroscience, L. R. Squire, ed. (Academic Press, Oxford, 2009), pp. 271-278. [10] C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, 'In vivo two-photon calcium imaging of neuronal networks,' Proceedings of the National Academy of Sciences 100(12), 7319 (2003). [11] T. Knöpfel and C. Song, 'Optical voltage imaging in neurons: moving from technology development to practical tool,' Nature Reviews Neuroscience 20(12), 719-727 (2019). [12] 'Method of the Year 2018: Imaging in freely behaving animals,' Nature Methods 16(1), 1-1 (2019). [13] S. Y. Chen, Z. C. Wang, D. Zhang, A. M. Wang, L. Y. Chen, H. P. Cheng, and R. L. Wu, 'Miniature Fluorescence Microscopy for Imaging Brain Activity in Freely-Behaving Animals,' Neurosci Bull 36(10), 1182-1190 (2020). [14] P. Miao, L. K. Zhang, M. Li, Y. G. Zhang, S. H. Feng, Q. H. Wang, and N. V. Thakor, 'Chronic wide-field imaging of brain hemodynamics in behaving animals,' Biomed. Opt. Express 8(1), 436-445 (2017). [15] J. Senarathna, H. Yu, C. Deng, A. L. Zou, J. B. Issa, D. H. Hadjiabadi, S. Gil, Q. H. Wang, B. M. Tyler, N. V. Thakor, and A. P. Pathak, 'A miniature multi-contrast microscope for functional imaging in freely behaving animals,' Nat Commun 10(2019). [16] W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, 'In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,' Opt Lett 34(15), 2309-2311 (2009). [17] W. Zong, R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, 'Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,' Nat Methods 14(7), 713-719 (2017). [18] H. M. Subhash and R. K. Wang, 'Optical Coherence Tomography: Technical Aspects,' in Biomedical Optical Imaging Technologies: Design and Applications, R. Liang, ed. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013), pp. 163-212. [19] K. Takada, I. Yokohama, K. Chida, and J. Noda, 'New measurement system for fault location in optical waveguide devices based on an interferometric technique,' Appl Optics 26(9), 1603-1606 (1987). [20] R. C. Youngquist, S. Carr, and D. E. N. Davies, 'Optical coherence-domain reflectometry: a new optical evaluation technique,' Opt Lett 12(3), 158-160 (1987). [21] A. F. Fercher, K. Mengedoht, and W. Werner, 'Eye-length measurement by interferometry with partially coherent light,' Opt Lett 13(3), 186-188 (1988). [22] C. K. Hitzenberger, 'Optical measurement of the axial eye length by laser Doppler interferometry,' Invest Ophthalmol Vis Sci 32(3), 616-624 (1991). [23] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et al., 'Optical coherence tomography,' Science 254(5035), 1178-1181 (1991). [24] A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, 'In Vivo Optical Coherence Tomography,' Am J Ophthalmol 116(1), 113-114 (1993). [25] E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, 'In vivo retinal imaging by optical coherence tomography,' Opt Lett 18(21), 1864-1866 (1993). [26] G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, 'High-speed phase- and group-delay scanning with a grating-based phase control delay line,' Opt Lett 22(23), 1811-1813 (1997). [27] C. Hauger, M. Wörz, and T. Hellmuth, 'Interferometer for optical coherence tomography,' Appl Optics 42(19), 3896-3902 (2003). [28] B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, 'High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,' Opt Lett 20(13), 1486-1488 (1995). [29] A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, 'Ultrahigh-resolution full-field optical coherence tomography,' Appl Optics 43(14), 2874-2883 (2004). [30] A. Dubois, W. Xue, O. Levecq, P. Bulkin, A. L. Coutrot, and J. Ogien, 'Mirau-based line-field confocal optical coherence tomography,' Opt Express 28(6), 7918-7927 (2020). [31] J. Fujimoto and E. Swanson, 'The Development, Commercialization, and Impact of Optical Coherence Tomography,' Invest Ophth Vis Sci 57(9), OCT1-OCT13 (2016). [32] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, 'Measurement of intraocular distances by backscattering spectral interferometry,' Opt Commun 117(1), 43-48 (1995). [33] M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. Fercher, 'In vivo human retinal imaging by Fourier domain optical coherence tomography,' J Biomed Opt 7(3)(2002). [34] M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, 'Sensitivity advantage of swept source and Fourier domain optical coherence tomography,' Opt. Express 11(18), 2183-2189 (2003). [35] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, 'Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,' Opt Lett 28(21), 2067-2069 (2003). [36] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, 'Performance of fourier domain vs. time domain optical coherence tomography,' Opt. Express 11(8), 889-894 (2003). [37] B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, 'Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,' Opt. Express 13(4), 1131-1137 (2005). [38] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, 'Optical coherence tomography using a frequency-tunable optical source,' Opt Lett 22(5), 340-342 (1997). [39] B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, 'Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,' Opt Lett 22(22), 1704-1706 (1997). [40] R. Huber, D. C. Adler, and J. G. Fujimoto, 'Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,' Opt Lett 31(20), 2975-2977 (2006). [41] W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, 'Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,' Opt. Express 18(14), 14685-14704 (2010). [42] T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, 'Multi-MHz retinal OCT,' Biomed. Opt. Express 4(10), 1890-1908 (2013). [43] T. Klein and R. Huber, 'High-speed OCT light sources and systems [Invited],' Biomed. Opt. Express 8(2), 828-859 (2017). [44] B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, 'Full-field time-encoded frequency-domain optical coherence tomography,' Opt. Express 14(17), 7661-7669 (2006). [45] D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, 'Wideband Electrically Pumped 1050-nm MEMS-Tunable VCSEL for Ophthalmic Imaging,' Journal of Lightwave Technology 33(16), 3461-3468 (2015). [46] B. Baumann, 'Polarization Sensitive Optical Coherence Tomography: A Review of Technology and Applications,' Appl Sci-Basel 7(5)(2017). [47] J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, 'Polarization sensitive optical coherence tomography - a review [Invited],' Biomed. Opt. Express 8(3), 1838-1873 (2017). [48] M. Ahearne, P. O. Bagnaninchi, Y. Yang, and A. J. El Haj, 'Online monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT,' J Tissue Eng Regen M 2(8), 521-524 (2008). [49] N. Ugryumova, J. Jacobs, M. Bonesi, and S. J. Matcher, 'Novel optical imaging technique to determine the 3-D orientation of collagen fibers in cartilage: variable-incidence angle polarization-sensitive optical coherence tomography,' Osteoarthr Cartilage 17(1), 33-42 (2009). [50] F. P. Henry, Y. Wang, C. L. R. Rodriguez, M. A. Randolph, E. A. Z. Rust, J. M. Winograd, J. F. de Boer, and B. H. Park, 'In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography,' J Biomed Opt 20(4)(2015). [51] S. K. Nadkarni, 'Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture,' J Biomed Opt 18(12)(2013). [52] R. C. Jones, 'A new calculus for the treatment of optical systems I. Description and discussion of the calculus,' J Opt Soc Am 31(7), 488-493 (1941). [53] W. S. Bickel and W. M. Bailey, 'Stokes Vectors, Mueller Matrices, and Polarized Scattered-Light,' Am J Phys 53(5), 468-478 (1985). [54] M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, 'Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging,' J Opt Soc Am B 9(6), 903-908 (1992). [55] B. Baumann, E. Gotzinger, M. Pircher, H. Sattmann, C. Schutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, 'Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,' J Biomed Opt 15(6)(2010). [56] M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, 'Birefringence characterization of biological tissue by use of optical coherence tomography,' Opt Lett 23(3), 228-230 (1998). [57] C. K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, and A. F. Fercher, 'Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,' Opt. Express 9(13), 780-790 (2001). [58] S. Makita, M. Yamanari, and Y. Yasuno, 'Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,' Opt. Express 18(2), 854-876 (2010). [59] C. M. Fan and G. Yao, 'Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography,' Biomed. Opt. Express 4(3), 460-465 (2013). [60] W. C. Y. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, 'Longitudinal, 3D Imaging of Collagen Remodeling in Murine Hypertrophic Scars In Vivo Using Polarization-Sensitive Optical Frequency Domain Imaging,' J Invest Dermatol 136(1), 84-92 (2016). [61] E. Li, S. Makita, Y. J. Hong, D. Kasaragod, and Y. Yasuno, 'Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography,' Biomed. Opt. Express 8(3), 1290-1305 (2017). [62] J. M. Schmitt, S. H. Xiang, and K. M. Yung, 'Differential absorption imaging with optical coherence tomography,' J Opt Soc Am A 15(9), 2288-2296 (1998). [63] W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, S. E. Bursell, and J. G. Fujimoto, 'Ultrahigh resolution and spectroscopic optical coherence tomography of the human retina.,' Invest Ophth Vis Sci 41(4), S93-S93 (2000). [64] N. K. Ghanta, W. Drexler, U. Morgner, T. Ko, F. X. Kartner, A. Clermont, S. E. Bursell, and J. G. Fujimoto, 'In vivo ultrahigh resolution spectroscopic optical coherence tomography for imaging transgenic mice models.,' Invest Ophth Vis Sci 41(4), S173-S173 (2000). [65] R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, 'Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,' Opt Lett 25(11), 820-822 (2000). [66] U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, 'Spectroscopic optical coherence tomography,' Opt Lett 25(2), 111-113 (2000). [67] M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, 'Measurement and imaging of water concentration in human cornea with differential absorption optical coherence tomography,' Opt. Express 11(18), 2190-2197 (2003). [68] C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, 'Spectroscopic spectral-domain optical coherence microscopy,' Opt Lett 31(8), 1079-1081 (2006). [69] N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, 'Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,' Opt Lett 34(23), 3746-3748 (2009). [70] F. E. Robles and A. Wax, 'Separating the scattering and absorption coefficients using the real and imaginary parts of the refractive index with low-coherence interferometry,' Opt Lett 35(17), 2843-2845 (2010). [71] N. Bosschaart, M. C. G. Aalders, T. G. van Leeuwen, and D. J. Faber, 'Spectral domain detection in low-coherence spectroscopy,' Biomed. Opt. Express 3(9), 2263-2272 (2012). [72] F. E. Robles, S. Chowdhury, and A. Wax, 'Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,' Biomed. Opt. Express 1(1), 310-317 (2010). [73] N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, 'In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,' J Biomed Opt 16(10)(2011). [74] F. Hlawatsch and F. Auger, Time-frequency analysis concepts and methods / edited by Franz Hlawatsch, Fraancois Auger, Digital signal and image processing series. (ISTE, London, 2008). [75] F. Robles, R. N. Graf, and A. Wax, 'Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,' Opt. Express 17(8), 6799-6812 (2009). [76] H. S. Nam and H. Yoo, 'Spectroscopic optical coherence tomography: A review of concepts and biomedical applications,' Appl Spectrosc Rev 53(2-4), 91-111 (2018). [77] T. A. Krouskop, D. R. Dougherty, and F. S. Vinson, 'A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue,' J Rehabil Res Dev 24(2), 1-8 (1987). [78] R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, 'Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,' Science 269(5232), 1854-1857 (1995). [79] J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, 'Elastography: Imaging the elastic properties of soft tissues with ultrasound,' J Med Ultrason (2001) 29(4), 155 (2002). [80] Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, 'Magnetic resonance elastography: a review,' Clin Anat 23(5), 497-511 (2010). [81] R. Chan, A. Chau, W. Karl, S. Nadkarni, A. Khalil, N. Iftimia, M. Shishkov, G. Tearney, M. Kaazempur-Mofrad, and B. Bouma, 'OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,' Opt Express 12(19), 4558-4572 (2004). [82] B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, 'A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects,' Ieee J Sel Top Quant 20(2)(2014). [83] M. A. Kirby, I. Pelivanov, S. Song, L. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O'Donnell, 'Optical coherence elastography in ophthalmology,' J Biomed Opt 22(12), 1-28 (2017). [84] K. V. Larin and D. D. Sampson, 'Optical coherence elastography - OCT at work in tissue biomechanics [Invited],' Biomed. Opt. Express 8(2), 1172-1202 (2017). [85] J. Schmitt, 'OCT elastography: imaging microscopic deformation and strain of tissue,' Opt Express 3(6), 199-211 (1998). [86] V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, 'Review of methodological developments in laser Doppler flowmetry,' Lasers Med Sci 24(2), 269-283 (2009). [87] Z. Li, H. Sun, J. Turek, S. Jalal, M. Childress, and D. D. Nolte, 'Doppler fluctuation spectroscopy of intracellular dynamics in living tissue,' J Opt Soc Am A 36(4), 665-677 (2019). [88] R. Bonner and R. Nossal, 'Model for laser Doppler measurements of blood flow in tissue,' Appl Optics 20(12), 2097-2107 (1981). [89] G. Michelson and B. Schmauss, 'Two dimensional mapping of the perfusion of the retina and optic nerve head,' Brit J Ophthalmol 79(12), 1126-1132 (1995). [90] G. T. Feke and C. E. Riva, 'Laser Doppler measurements of blood velocity in human retinal vessels*,' J Opt Soc Am 68(4), 526-531 (1978). [91] C. E. Riva, G. T. Feke, B. Eberli, and V. Benary, 'Bidirectional LDV system for absolute measurement of blood speed in retinal vessels,' Appl Optics 18(13), 2301-2306 (1979). [92] Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, 'Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,' Opt Lett 22(1), 64-66 (1997). [93] J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, 'In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,' Opt Lett 22(18), 1439-1441 (1997). [94] M. D. Kulkarni, T. G. van Leeuwen, S. Yazdanfar, and J. A. Izatt, 'Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,' Opt Lett 23(13), 1057-1059 (1998). [95] Y. Li, J. Chen, and Z. Chen, 'Advances in Doppler optical coherence tomography and angiography,' Transl Biophotonics 1(1-2)(2019). [96] C. Zhongping, Z. Yonghua, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, 'Optical Doppler tomography,' Ieee J Sel Top Quant 5(4), 1134-1142 (1999). [97] Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, 'Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,' Opt Lett 25(18), 1358-1360 (2000). [98] Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, 'Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,' Opt Lett 25(2), 114-116 (2000). [99] R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, 'Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,' Opt. Express 11(23), 3116-3121 (2003). [100] B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, 'In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,' Opt. Express 11(25), 3490-3497 (2003). [101] S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, 'Optical coherence angiography,' Opt Express 14(17), 7821-7840 (2006). [102] L. F. Yu and Z. P. Chen, 'Doppler variance imaging for three-dimensional retina and choroid angiography,' J Biomed Opt 15(1)(2010). [103] B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, 'Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,' Biomed. Opt. Express 2(6), 1539-1552 (2011). [104] Y. J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, and Y. Yasuno, 'High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization,' Opt Express 20(3), 2740-2760 (2012). [105] G. Liu, O. Tan, S. S. Gao, A. D. Pechauer, B. Lee, C. D. Lu, J. G. Fujimoto, and D. Huang, 'Postprocessing algorithms to minimize fixed-pattern artifact and reduce trigger jitter in swept source optical coherence tomography,' Opt. Express 23(8), 9824-9834 (2015). [106] J. Kehlet Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, 'Three-Dimensional Reconstruction of Blood Vessels from in vivo Color Doppler Optical Coherence Tomography Images,' Dermatology 198(4), 355-361 (1999). [107] J. K. Barton and S. Stromski, 'Flow measurement without phase information in optical coherence tomography images,' Opt. Express 13(14), 5234-5239 (2005). [108] A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, 'Speckle variance detection of microvasculature using swept-source optical coherence tomography,' Opt Lett 33(13), 1530-1532 (2008). [109] J. Enfield, E. Jonathan, and M. Leahy, 'In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),' Biomed. Opt. Express 2(5), 1184-1193 (2011). [110] E. Jonathan, J. Enfield, and M. J. Leahy, 'Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images,' J Biophotonics 4(9), 583-587 (2011). [111] Y. L. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. M. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, 'Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,' Opt. Express 20(4), 4710-4725 (2012). [112] J. Fingler, D. Schwartz, C. H. Yang, and S. E. Fraser, 'Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,' Opt. Express 15(20), 12636-12653 (2007). [113] S. M. R. Motaghiannezam, D. Koos, and S. E. Fraser, 'Differential phase-contrast, swept-source optical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization,' J Biomed Opt 17(2)(2012). [114] R. Poddar, D. Y. Kim, J. S. Werner, and R. J. Zawadzki, 'In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-mu m swept-source optical coherence tomography,' J Biomed Opt 19(12)(2014). [115] R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, 'Three dimensional optical angiography,' Opt. Express 15(7), 4083-4097 (2007). [116] Y. K. Tao, A. M. Davis, and J. A. Izatt, 'Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,' Opt. Express 16(16), 12350-12361 (2008). [117] R. K. K. Wang, L. An, S. Saunders, and D. J. Wilson, 'Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,' J Biomed Opt 15(2)(2010). [118] W. J. Choi, R. Reif, S. Yousefi, and R. K. Wang, 'Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask,' J Biomed Opt 19(3), 036010 (2014). [119] A. S. Nam, I. Chico-Calero, and B. J. Vakoc, 'Complex differential variance algorithm for optical coherence tomography angiography,' Biomed. Opt. Express 5(11), 3822-3832 (2014). [120] C. L. Chen, W. S. Shi, and W. R. Gao, 'Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo,' J Biomed Opt 20(11)(2015). [121] B. Braaf, S. Donner, A. S. Nam, B. E. Bouma, and B. J. Vakoc, 'Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina,' Biomed. Opt. Express 9(2), 486-506 (2018). [122] C. M. Eandi, A. Ciardella, M. Parravano, F. Missiroli, C. Alovisi, C. Veronese, M. C. Morara, M. Grossi, G. Virgili, and F. Ricci, 'Indocyanine Green Angiography and Optical Coherence Tomography Angiography of Choroidal Neovascularization in Age-Related Macular Degeneration,' Invest Ophth Vis Sci 58(9), 3690-3696 (2017). [123] M.-T. Tsai, I. C. Lee, Z.-F. Lee, H.-L. Liu, C.-C. Wang, Y.-C. Choia, H.-Y. Chou, and J.-D. Lee, 'In vivo investigation of temporal effects and drug delivery induced by transdermal microneedles with optical coherence tomography,' Biomed. Opt. Express 7(5), 1865-1876 (2016). [124] P. Si, E. Yuan, O. Liba, Y. Winetraub, S. Yousefi, E. D. SoRelle, D. W. Yecies, R. Dutta, and A. de la Zerda, 'Gold Nanoprisms as Optical Coherence Tomography Contrast Agents in the Second Near-Infrared Window for Enhanced Angiography in Live Animals,' Acs Nano 12(12), 11986-11994 (2018). [125] W. J. Choi, 'Optical coherence tomography angiography in preclinical neuroimaging,' Biomed Eng Lett 9(3), 311-325 (2019). [126] Y. Li, P. Tang, S. Song, A. Rakymzhan, and R. K. Wang, 'Electrically tunable lens integrated with optical coherence tomography angiography for cerebral blood flow imaging in deep cortical layers in mice,' Opt Lett 44(20), 5037-5040 (2019). [127] K. S. Park, J. G. Shin, M. M. Qureshi, E. Chung, and T. J. Eom, 'Deep brain optical coherence tomography angiography in mice: in vivo, noninvasive imaging of hippocampal formation,' Sci Rep-Uk 8(1), 11614 (2018). [128] W. J. Choi and R. K. Wang, 'Optical coherence tomography imaging of cranial meninges post brain injury in vivo,' Chin Opt Lett 15(9), 090005 (2017). [129] Y. Jia and R. K. Wang, 'Optical micro-angiography images structural and functional cerebral blood perfusion in mice with cranium left intact,' J Biophotonics 4(1-2), 57-63 (2011). [130] L. Ostergaard, S. B. Kristiansen, H. Angleys, J. Frøkiær, J. Michael Hasenkam, S. N. Jespersen, and H. E. Bøtker, 'The role of capillary transit time heterogeneity in myocardial oxygenation and ischemic heart disease,' Basic Res Cardiol 109(3), 409 (2014). [131] P. Shin, W. Choi, J. Joo, and W.-Y. Oh, 'Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography,' Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 39(10), 1983-1994 (2019). [132] Y. D. Li, W. Wei, and R. K. K. Wang, 'Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry,' Sci Rep-Uk 8(2018). [133] R.-B. Jin and R. Shimizu, 'Extended Wiener-Khinchin theorem for quantum spectral analysis,' Optica 5(2), 93-98 (2018). [134] D. Huang, J. Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, 'Micron-resolution ranging of cornea anterior chamber by optical reflectometry,' Lasers Surg Med 11(5), 419-425 (1991). [135] B. E. Bouma and G. J. Tearney, 'Handbook of Optical Coherence Tomography (Marcel Dekker, New York),' 6-8 (2002). [136] V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, 'Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,' Optics and Spectroscopy 106(3), 459-465 (2009). [137] G. Lan and G. Li, 'Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,' Sci Rep-Uk 7(1), 42353 (2017). [138] H.-C. Lee, O. O. Ahsen, J. J. Liu, T.-H. Tsai, Q. Huang, H. Mashimo, and J. G. Fujimoto, 'Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography,' J Biomed Opt 22(7), 76001-76001 (2017). [139] Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, 'Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,' Opt. Express 13(26), 10652-10664 (2005). [140] S. Makita, T. Fabritius, and Y. Yasuno, 'Full-range, high-speed, high-resolution 1-µm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,' Opt. Express 16(12), 8406-8420 (2008). [141] S. Moon, Y. Qu, and Z. Chen, 'Characterization of spectral-domain OCT with autocorrelation interference response for axial resolution performance,' Opt. Express 26(6), 7253-7269 (2018). [142] J. Kalkman, 'Fourier-Domain Optical Coherence Tomography Signal Analysis and Numerical Modeling,' International Journal of Optics 2017, 9586067 (2017). [143] M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, 'Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,' Opt. Express 12(11), 2404-2422 (2004). [144] E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, 'High speed full range complex spectral domain optical coherence tomography,' Opt. Express 13(2), 583-594 (2005). [145] A. Maheshwari, M. Choma, and J. Izatt, 'Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,' J Biomed Opt 10(6), 064005 (2005). [146] B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, 'Full range complex spectral domain optical coherence tomography without additional phase shifters,' Opt. Express 15(20), 13375-13387 (2007). [147] R. K. Wang, 'In vivo full range complex Fourier domain optical coherence tomography,' Applied Physics Letters 90(5), 054103 (2007). [148] A. H. Dhalla and J. A. Izatt, 'Complete complex conjugate resolved heterodyne swept-source optical coherence tomography using a dispersive optical delay line,' Biomed Opt Express 2(5), 1218-1232 (2011). [149] A.-H. Dhalla, D. Nankivil, and J. A. Izatt, 'Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,' Biomed. Opt. Express 3(3), 633-649 (2012). [150] Z. Wang, H.-C. Lee, D. Vermeulen, L. Chen, T. Nielsen, S. Y. Park, A. Ghaemi, E. Swanson, C. Doerr, and J. Fujimoto, 'Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection,' Biomed. Opt. Express 6(7), 2562-2574 (2015). [151] M. A. Schofield and Y. Zhu, 'Fast phase unwrapping algorithm for interferometric applications,' Opt Lett 28(14), 1194-1196 (2003). [152] Y. Wang, D. Huang, Y. Su, and X. S. Yao, 'Two-dimensional phase unwrapping in Doppler Fourier domain optical coherence tomography,' Opt. Express 24(23), 26129-26145 (2016). [153] E. Pijewska, I. Gorczynska, and M. Szkulmowski, 'Computationally effective 2D and 3D fast phase unwrapping algorithms and their applications to Doppler optical coherence tomography,' Biomed. Opt. Express 10(3), 1365-1382 (2019). [154] H. C. Hendargo, R. P. McNabb, A.-H. Dhalla, N. Shepherd, and J. A. Izatt, 'Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,' Biomed. Opt. Express 2(8), 2175-2188 (2011). [155] H. C. Lee, O. O. Ahsen, K. Liang, Z. Wang, C. Cleveland, L. Booth, B. Potsaid, V. Jayaraman, A. E. Cable, H. Mashimo, R. Langer, G. Traverso, and J. G. Fujimoto, 'Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter,' Biomed Opt Express 7(8), 2927-2942 (2016). [156] Y. Huang, Q. Zhang, M………
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81797-
dc.description.abstract光學同調斷層掃描血管造影術可以提供快速、立體和非侵入式的組織微血管系統之成像。本論文將介紹多種光學同調斷層掃描血管造影術演算法並應用在小動物模型之中。這些演算法使用光學同調斷層掃描術信號的訊息,包括相位、強度或複數值。另外,為了研究ㄧ維掃描速率和掃描間隔時間如何影響光學同調斷層掃描血管造影術的對比度和動態範圍,我們開發了中心波長位於 1.06 微米之掃頻光源式光學同調斷層掃描術系統,使用兩個光源實現100 kHz 或 200 kHz ㄧ維縱向深度掃描速率。光學同調斷層掃描血管造影術可以識別更複雜的小鼠耳朵微血管網絡,當掃描間隔時間相對較長時(例如 12.5 ms比上6.25 ms)。另一方面,由相同掃描間隔時間(例如 12.5 ms)與不同ㄧ維掃描速率產生的光學同調斷層掃描血管造影術影像集也被加以比較。以 100 kHzㄧ維掃描速率獲取的光學同調斷層掃描血管造影術影像顯示出比其他成像方式更精細的微血管系統。我們也針對以不同ㄧ維掃描速率和掃描間隔時間重建的光學同調斷層掃描血管造影術影像的對比度進行了定量分析,這些量化包括血管面積、總血管長度和連接點密度等。 此外,傳統的光學同調斷層掃描術之儀器設置不適合對行為自由的動物進行成像,因為該系統龐大而笨重。這些缺點限制了光學同調斷層掃描術在神經科學中更廣泛的應用,因為研究人員對動物進行大腦成像時,只能是在麻醉下或是將大腦保持在固定位置。因此,在本論文中,亦提出了 1.3 µm 微型頭戴式光學同調斷層掃描術成像裝置,其具有400 kHzㄧ維掃描速率並允許在自由移動狀態下對小鼠大腦進行連續成像。該裝置利用微機電系統掃描技術和高速波長掃描光源,以實現鼠腦的高速光學同調斷層掃描術成像。另外,為了觀察大腦活動與相關生理條件之間的關係,我們使用光學同調斷層掃描血管造影術來獲取不同生理條件下小鼠大腦的微血管訊息。這些生理條件包括麻醉、清醒中和活動狀態以及電刺激狀態。因此,本裝置的發明將能延伸光學同調斷層掃描術在行為神經科學中的血流動力學或血管生成研究領域的應用。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-25T03:03:48Z (GMT). No. of bitstreams: 1
U0001-1008202116130500.pdf: 6315449 bytes, checksum: 1b6189a631ce1e1471f667d47e400393 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents謝辭 i 中文摘要 ii Abstract iv Table of Contents vi List of Figures xi List of Tables xviii Chapter 1. Introduction 1 1.1 Functional Brain Imaging 1 1.2 Introduction to Optical Coherence Tomography 6 1.3 Functional Optical Coherence Tomography 13 1.3.1 Polarization-Sensitive Optical Coherence Tomography 13 1.3.2 Spectroscopic Optical Coherence Tomography 16 1.3.3 Optical Coherence Elastography 18 1.3.4 Optical Doppler Tomography 20 1.3.5 Optical Coherence Tomography Angiography 25 1.4 Scope of the Dissertation 29 Chapter 2. Basic Theory of Optical Coherence Tomography 31 2.1 Overview 31 2.2 Mathematical Background 31 2.3 Time-Domain Optical Coherence Tomography 39 2.4 Fourier-Domain Optical Coherence Tomography 48 2.4.1 Swept-Source Optical Coherence Tomography 53 2.4.2 Spectral-Domain Optical Coherence Tomography 57 2.5 Evaluation of OCT System 61 2.5.1 Axial Resolution 61 2.5.2 Lateral Resolution and Depth of Focus 62 2.5.3 Sensitivity 64 Chapter 3. Introduction to Optical Coherence Tomography Angiography 67 3.1 Overview 67 3.2 FD-OCT Signal Processing 67 3.3 OCTA Algorithms 73 3.3.1 Phase-based OCTA 75 3.3.1.1 Phase-Resolved Doppler 75 3.3.1.2 Phase Variance 80 3.3.2 Intensity-based OCTA 80 3.3.2.1 Correlation Mapping 81 3.3.2.2 Decorrelation Method 82 3.3.2.3 Speckle Variance 83 3.3.3 Complex Value-based OCTA 84 3.3.3.1 Optical Microangiography 84 3.3.3.2 Doppler Phase Variance 85 3.3.3.3 Complex Differential Variance 86 3.4 Variable Interscan Time Analysis 87 Chapter 4. In Vivo High-Speed Swept-Source OCT (SS-OCT) Imaging of the Mouse Ear Skin 94 4.1 Motivation 94 4.2 Imaging System Description 95 4.2.1 SS-OCT Imaging System 95 4.2.2 Resolution and Roll-off 98 4.3 Animal Imaging Procedures 99 4.4 OCTA Imaging Analysis 103 4.4.1 OCTA Images with Different Interscan Time 104 4.4.2 Quantitative and Statistical Analysis 106 4.4.3 OCTA Images with Different OCTA Algorithms 116 4.5 Discussion 120 Chapter 5. In Vivo High-Speed Miniature Head-mounted OCT (MH-OCT) Imaging in the Mouse brain 128 5.1 Motivation 128 5.2 Imaging System Description 131 5.2.1 MH-OCT Imaging System 131 5.2.2 Unidirectional and Bidirectional Scanning Signal Patterns 136 5.3 Animal Imaging Procedures 139 5.4 OCTA Imaging Analysis 141 5.4.1 OCTA Images 141 5.4.2 Comparison of OCTA contrast 146 5.4.2.1 Quantitative and Statistical Analysis 146 5.4.2.2 Variable Interscan Time Analysis 149 5.4.2.3 Variable Interstate Analysis 153 5.4.2.4 Comparison between Unidirectional and Bidirectional OCTA 157 5.5 Discussion 162 Chapter 6. Conclusion and Future Work 167 6.1 Conclusion 167 6.2 Future Work 169 References 175 Appendix 192
dc.language.isoen
dc.subject光學同調斷層掃描術zh_TW
dc.subject光學同調斷層掃描血管造影術zh_TW
dc.subject掃頻光源zh_TW
dc.subject影像處理zh_TW
dc.subject微機電系統zh_TW
dc.subjectmicroelectromechanical systemen
dc.subjectoptical coherence tomographyen
dc.subjectoptical coherence tomography angiographyen
dc.subjectswept sourceen
dc.subjectimage processingen
dc.title利用光學同調斷層掃描血管造影術於小動物模型之量化微血管成像分析zh_TW
dc.titleQuantitative Microvascular Imaging Analysis of the Small Animal Model with Optical Coherence Tomography Angiography Technologyen
dc.date.schoolyear109-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔡孟燦(Hsin-Tsai Liu),李正匡(Chih-Yang Tseng),蔡睿哲,潘明楷 ,安野嘉晃
dc.subject.keyword光學同調斷層掃描術,光學同調斷層掃描血管造影術,掃頻光源,影像處理,微機電系統,zh_TW
dc.subject.keywordoptical coherence tomography,optical coherence tomography angiography,swept source,image processing,microelectromechanical system,en
dc.relation.page192
dc.identifier.doi10.6342/NTU202102248
dc.rights.note同意授權(全球公開)
dc.date.accepted2021-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
dc.date.embargo-lift2023-09-07-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1008202116130500.pdf6.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved