請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81793完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游佳欣(Jiashing Yu) | |
| dc.contributor.author | YU KAI FU | en |
| dc.contributor.author | 游凱富 | zh_TW |
| dc.date.accessioned | 2022-11-25T03:03:44Z | - |
| dc.date.available | 2026-07-26 | |
| dc.date.copyright | 2021-11-08 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-08-16 | |
| dc.identifier.citation | 1. Vacanti, J. P.; Langer, R., Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The lancet 1999, 354, S32-S34. 2. Langer, R.; Lanza, R.; Langer, R. S.; Vacanti, J. P., Principles of tissue engineering. Academic Press: 2000. 3. Jain, A.; Bansal, R., Regenerative medicine: biological solutions to biological problems. Indian Journal of Medical Specialities 2013, 4 (1). 4. Goustin, A. S.; Leof, E. B.; Shipley, G. D.; Moses, H. L., Growth factors and cancer. Cancer research 1986, 46 (3), 1015-1029. 5. Chandra, P. K.; Soker, S.; Atala, A., Tissue engineering: Current status and future perspectives. In Principles of Tissue Engineering, Elsevier: 2020; pp 1-35. 6. El-Sherbiny, I. M.; Yacoub, M. H., Hydrogel scaffolds for tissue engineering: Progress and challenges. Global Cardiology Science and Practice 2013, 2013 (3), 38. 7. Chung, J.; Yokoyama, M.; Yamato, M.; Aoyagi, T.; Sakurai, Y.; Okano, T., Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly (N-isopropylacrylamide) and poly (butylmethacrylate). Journal of Controlled Release 1999, 62 (1-2), 115-127. 8. Richter, A.; Paschew, G.; Klatt, S.; Lienig, J.; Arndt, K.-F.; Adler, H.-J. P., Review on hydrogel-based pH sensors and microsensors. Sensors 2008, 8 (1), 561-581. 9. Bahram, M.; Hoseinzadeh, F.; Farhadi, K.; Saadat, M.; Najafi-Moghaddam, P.; Afkhami, A., Synthesis of gold nanoparticles using pH-sensitive hydrogel and its application for colorimetric determination of acetaminophen, ascorbic acid and folic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 441, 517-524. 10. Bahram, M.; Mohseni, N.; Moghtader, M., An introduction to hydrogels and some recent applications. In Emerging concepts in analysis and applications of hydrogels, IntechOpen: 2016. 11. Hoffman, A. S., Hydrogels for biomedical applications. Advanced drug delivery reviews 2012, 64, 18-23. 12. Crewther, W.; Fraser, R.; Lennox, F.; Lindley, H., The chemistry of keratins. Advances in protein chemistry 1965, 20, 191-346. 13. Shah, A.; Tyagi, S.; Bharagava, R. N.; Belhaj, D.; Kumar, A.; Saxena, G.; Saratale, G. D.; Mulla, S. I., Keratin production and its applications: current and future perspective. Keratin as a Protein Biopolymer 2019, 19-34. 14. Hill, P.; Brantley, H.; Van Dyke, M., Some properties of keratin biomaterials: kerateines. Biomaterials 2010, 31 (4), 585-593. 15. Wang, B.; Yang, W.; McKittrick, J.; Meyers, M. A., Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progress in Materials Science 2016, 76, 229-318. 16. Ortiz, C.; Boyce, M. C., Bioinspired structural materials. Science 2008, 319 (5866), 1053-1054. 17. Earland, C.; Knight, C., Studies on the structure of keratin II. The amino acid content of fractions isolated from oxidized wool. Biochimica et biophysica acta 1956, 22 (3), 405-411. 18. Li, J.; Li, Y.; Zhang, Y.; Liu, X.; Zhao, Z.; Zhang, J.; Han, Y.; Zhou, D., Toxicity study of isolated polypeptide from wool hydrolysate. Food and chemical toxicology 2013, 57, 338-345. 19. Sugimoto, M.; Morimoto, M.; Sashiwa, H.; Saimoto, H.; Shigemasa, Y., Preparation and characterization of water-soluble chitin and chitosan derivatives. Carbohydrate polymers 1998, 36 (1), 49-59. 20. Suh, J.-K. F.; Matthew, H. W., Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000, 21 (24), 2589-2598. 21. Lahiji, A.; Sohrabi, A.; Hungerford, D. S.; Frondoza, C. G., Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. Journal of biomedical materials research 2000, 51 (4), 586-595. 22. Sukarto, A.; Yu, C.; Flynn, L. E.; Amsden, B. G., Co-delivery of adipose-derived stem cells and growth factor-loaded microspheres in RGD-grafted N-methacrylate glycol chitosan gels for focal chondral repair. Biomacromolecules 2012, 13 (8), 2490-2502. 23. Chen, Z.; Zhao, M.; Liu, K.; Wan, Y.; Li, X.; Feng, G., Novel chitosan hydrogel formed by ethylene glycol chitosan, 1, 6-diisocyanatohexan and polyethylene glycol-400 for tissue engineering scaffold: in vitro and in vivo evaluation. Journal of Materials Science: Materials in Medicine 2014, 25 (8), 1903-1913. 24. Amsden, B. G.; Sukarto, A.; Knight, D. K.; Shapka, S. N., Methacrylated glycol chitosan as a photopolymerizable biomaterial. Biomacromolecules 2007, 8 (12), 3758-3766. 25. Balaji, S.; Kumar, R.; Sripriya, R.; Kakkar, P.; Ramesh, D. V.; Reddy, P. N. K.; Sehgal, P., Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications. Materials Science and Engineering: C 2012, 32 (4), 975-982. 26. Banas, A.; Teratani, T.; Yamamoto, Y.; Tokuhara, M.; Takeshita, F.; Quinn, G.; Okochi, H.; Ochiya, T., Adipose tissue‐derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007, 46 (1), 219-228. 27. Beigi, M. H.; Ghasemi‐Mobarakeh, L.; Prabhakaran, M. P.; Karbalaie, K.; Azadeh, H.; Ramakrishna, S.; Baharvand, H.; Nasr‐Esfahani, M. H., In vivo integration of poly (ε‐caprolactone)/gelatin nanofibrous nerve guide seeded with teeth derived stem cells for peripheral nerve regeneration. Journal of Biomedical Materials Research Part A 2014, 102 (12), 4554-4567. 28. Anghileri, E.; Marconi, S.; Pignatelli, A.; Cifelli, P.; Galié, M.; Sbarbati, A.; Krampera, M.; Belluzzi, O.; Bonetti, B., Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem cells and development 2008, 17 (5), 909-916. 29. Lee, H. J.; Kim, Y. B.; Ahn, S. H.; Lee, J. S.; Jang, C. H.; Yoon, H.; Chun, W.; Kim, G. H., A new approach for fabricating collagen/ECM‐based bioinks using preosteoblasts and human adipose stem cells. Advanced healthcare materials 2015, 4 (9), 1359-1368. 30. Dubey, N. K.; Mishra, V. K.; Dubey, R.; Deng, Y.-H.; Tsai, F.-C.; Deng, W.-P., Revisiting the advances in isolation, characterization and secretome of adipose-derived stromal/stem cells. International journal of molecular sciences 2018, 19 (8), 2200. 31. Baudin, B.; Bruneel, A.; Bosselut, N.; Vaubourdolle, M., A protocol for isolation and culture of human umbilical vein endothelial cells. Nature protocols 2007, 2 (3), 481-485. 32. Ryan, J.; Ryan, U., Endothelial surface enzymes and the dynamic processing of plasma substrates. International review of experimental pathology 1984, 26, 1-43. 33. Kaiser, L.; Sparks, H. V., Endothelial cells: not just a cellophane wrapper. Archives of internal medicine 1987, 147 (3), 569-573. 34. Vane, J. R.; Änggård, E. E.; Botting, R. M., Regulatory functions of the vascular endothelium. New England Journal of Medicine 1990, 323 (1), 27-36. 35. McGill, S. N.; Ahmed, N. A.; Christou, N. V., Endothelial cells: role in infection and inflammation. World journal of surgery 1998, 22 (2), 171-178. 36. Medina-Leyte, D. J.; Domínguez-Pérez, M.; Mercado, I.; Villarreal-Molina, M. T.; Jacobo-Albavera, L., Use of human umbilical vein endothelial cells (HUVEC) as a model to study cardiovascular disease: A review. Applied Sciences 2020, 10 (3), 938. 37. Piard, C.; Jeyaram, A.; Liu, Y.; Caccamese, J.; Jay, S. M.; Chen, Y.; Fisher, J., 3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance. Biomaterials 2019, 222, 119423. 38. Lee, J. H.; Han, Y.-S.; Lee, S. H., Long-duration three-dimensional spheroid culture promotes angiogenic activities of adipose-derived mesenchymal stem cells. Biomolecules therapeutics 2016, 24 (3), 260. 39. Nelson, C. M.; Bissell, M. J. In Modeling dynamic reciprocity: engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation, Seminars in cancer biology, Elsevier: 2005; pp 342-352. 40. Shield, K.; Ackland, M. L.; Ahmed, N.; Rice, G. E., Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecologic oncology 2009, 113 (1), 143-148. 41. Li, Y.-C. E.; Jodat, Y. A.; Samanipour, R.; Zorzi, G.; Zhu, K.; Hirano, M.; Chang, K.; Arnaout, A.; Hassan, S.; Matharu, N., Toward a neurospheroid niche model: Optimizing embedded 3D bioprinting for fabrication of neurospheroid brain-like co-culture constructs. Biofabrication 2020, 13 (1), 015014. 42. Kunz-Schughart, L. A.; Freyer, J. P.; Hofstaedter, F.; Ebner, R., The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. Journal of biomolecular screening 2004, 9 (4), 273-285. 43. Dahlmann, J.; Kensah, G.; Kempf, H.; Skvorc, D.; Gawol, A.; Elliott, D. A.; Dräger, G.; Zweigerdt, R.; Martin, U.; Gruh, I., The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials 2013, 34 (10), 2463-2471. 44. Wenger, A.; Kowalewski, N.; Stahl, A.; Mehlhorn, A. T.; Schmal, H.; Stark, G. B.; Finkenzeller, G., Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering. Cells Tissues Organs 2005, 181 (2), 80-88. 45. Bhang, S. H.; Lee, S.; Lee, T.-J.; La, W.-G.; Yang, H.-S.; Cho, S.-W.; Kim, B.-S., Three-dimensional cell grafting enhances the angiogenic efficacy of human umbilical vein endothelial cells. Tissue Engineering Part A 2012, 18 (3-4), 310-319. 46. Ahmad, T.; Lee, J.; Shin, Y. M.; Shin, H. J.; Perikamana, S. K. M.; Park, S. H.; Kim, S. W.; Shin, H., Hybrid-spheroids incorporating ECM like engineered fragmented fibers potentiate stem cell function by improved cell/cell and cell/ECM interactions. Acta biomaterialia 2017, 64, 161-175. 47. Ho, S. S.; Murphy, K. C.; Binder, B. Y.; Vissers, C. B.; Leach, J. K., Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem cells translational medicine 2016, 5 (6), 773-781. 48. Excell, J.; Nathan, S., The rise of additive manufacturing. The Engineer. Information on: http://www. theengineer. co. uk/in-depth/the-big-story/the-rise-of-additive-manufacturing/1002560. article (Accessed: 02.02. 2019) 2010. 49. Schubert, C.; Van Langeveld, M. C.; Donoso, L. A., Innovations in 3D printing: a 3D overview from optics to organs. British Journal of Ophthalmology 2014, 98 (2), 159-161. 50. Lipson, H.; Kurman, M., Fabricated: The new world of 3D printing. John Wiley Sons: 2013. 51. Carew, R. M.; Errickson, D., An Overview of 3D Printing in Forensic Science: The Tangible Third‐Dimension. Journal of forensic sciences 2020, 65 (5), 1752-1760. 52. Jammalamadaka, U.; Tappa, K., Recent advances in biomaterials for 3D printing and tissue engineering. Journal of functional biomaterials 2018, 9 (1), 22. 53. Cox, S. C.; Thornby, J. A.; Gibbons, G. J.; Williams, M. A.; Mallick, K. K., 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Materials Science and Engineering: C 2015, 47, 237-247. 54. Tasnim, N.; De la Vega, L.; Kumar, S. A.; Abelseth, L.; Alonzo, M.; Amereh, M.; Joddar, B.; Willerth, S. M., 3D bioprinting stem cell derived tissues. Cellular and molecular bioengineering 2018, 11 (4), 219-240. 55. Hospodiuk, M.; Dey, M.; Sosnoski, D.; Ozbolat, I. T., The bioink: A comprehensive review on bioprintable materials. Biotechnology advances 2017, 35 (2), 217-239. 56. Hölzl, K.; Lin, S.; Tytgat, L.; Van Vlierberghe, S.; Gu, L.; Ovsianikov, A., Bioink properties before, during and after 3D bioprinting. Biofabrication 2016, 8 (3), 032002. 57. Jia, J.; Richards, D. J.; Pollard, S.; Tan, Y.; Rodriguez, J.; Visconti, R. P.; Trusk, T. C.; Yost, M. J.; Yao, H.; Markwald, R. R., Engineering alginate as bioink for bioprinting. Acta biomaterialia 2014, 10 (10), 4323-4331. 58. Heo, D. N.; Hospodiuk, M.; Ozbolat, I. T., Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta biomaterialia 2019, 95, 348-356. 59. Vincent, W. F.; Neale, P. J., Mechanisms of UV damage to aquatic organisms. The effects of UV radiation in the marine environment 2000, 149-176. 60. Xu, H.; Casillas, J.; Krishnamoorthy, S.; Xu, C., Effects of Irgacure 2959 and lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomedical Materials 2020, 15 (5), 055021. 61. Tsai, C.-C.; Hong, Y.-J.; Lee, R. J.; Cheng, N.-C.; Yu, J., Enhancement of human adipose-derived stem cell spheroid differentiation in an in situ enzyme-crosslinked gelatin hydrogel. Journal of Materials Chemistry B 2019, 7 (7), 1064-1075. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81793 | - |
| dc.description.abstract | 在現今社會中,3D列印技術越來越被人們所重視。隨著時代的遷移,3D列印這項技術成長迅速,尤其是生物列印的發展,對生醫材料組織工程有甚大的貢獻。生醫產業可以透過3D列印將人體組織及器官立體化,嘗試結合細胞組織工程,模擬及研發出真正生物相容性的材料,甚至希望達到一定功能性的模具,帶給社會大眾一股新的替代方案。 角蛋白是一種纖維的結構蛋白,其特色為具有高硫成分,和其他種類的天然蛋白質最大的差異在於角蛋白具有大量的由半胱胺酸所構成的雙硫鍵結構。角蛋白是最堅韌的生物材料之一,然而因為雙硫鍵和其他結構交聯形成穩定的三維結構,使其在環境中具有高化學穩定性,導致不可降解,因此阻礙了角蛋白的實際應用。近年來已經研究出許多可溶性角蛋白的提取方法,如氧化法與還原法。可溶性角蛋白在生醫領域應用相當具有優勢,例如傷口護理、組織重建與藥物輸送等。然而不論是氧化法或是還原法皆會破壞角蛋白內的雙硫鍵,導致可溶性角蛋白應用受到限制,因此許多團隊致力開發具有良好機械性質與生物降解性的角蛋白材料。我們透過改製角蛋白和幾丁質來進行交聯成膠,來克服可溶性角蛋白不強的機械強度。 細胞球比2D細胞環境多了一個維度,不僅能體現細胞在組織中實際的生長狀況,還能促進ECM的生長,更能模擬出人類體內的3D結構。此外,將人類脂肪幹細胞和人臍靜脈內皮細胞一起培養成共細胞球,不但能利用細胞球的優勢,也增強細胞於傷口血管的新生。 在此研究中,藉由將共細胞球溶於改質後的角蛋白,搭配3D生物列印,希望將此應用於生醫組織工程上,帶給醫療技術新的發展與趨勢! | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-25T03:03:44Z (GMT). No. of bitstreams: 1 U0001-1608202110191200.pdf: 4490483 bytes, checksum: 3279b9d20c455794a4a79fa3e8400497 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 i 摘要 iii Abstract iv Contents vi List of Figures x Chapter 1 Introduction 1 1.1 Tissue Engineering 1 1.1.1 Tissue engineering introduction 1 1.2 Skin tissue engineering 3 1.2.1 Overview 3 1.2.2 Keratin 4 1.2.3 Chitosan 5 1.3 Cell overview 7 1.3.1 Human adipose-derived stem cells (hASCs) 7 1.3.2 Human umbilical vein endothelial cell (HUVEC) 8 1.3.3 Cell spheroid overview 10 1.3.4 Hybrid cell spheroid 11 1.4 Bioprinting and Bioink 13 1.4.1 3D printing 13 1.4.2 Bioprinting in tissue engineering 15 1.4.2 Bioink 16 1.5 Motivation and Aims 17 1.6 Research Framework 19 Chapter 2 Materials and Methods 21 2.1 Materials 21 2.1.1 Keratin Extraction 21 2.1.2 Chemical modification of keratin 21 2.1.3 Methacrylated keratin synthesis 21 2.1.4 Methacrylated gelatin synthesis 22 2.1.5 Fabrication of polydimethylsiloxane (PDMS) mold 22 2.1.6 Preparation of agarose microwell plate 22 2.1.7 Cell culture 22 2.1.8 Cell viability and proliferation 23 2.2 Equipment 25 2.3 Solution formula 27 2.4 Methods 29 2.4.1 Extraction of keratin 29 2.4.2 Solubilization of extracted keratin 29 2.4.3 Methacrylated keratin synthesis (KEMA) 30 2.4.4 Methacrylated glycol chitosan synthesis (GCMA) 31 2.4.5 Methacrylated gelatin synthesis (GelMA) 32 2.4.6 Preparation of KE/GC hydrogel 32 2.4.7 Fabrication of polydimethylsiloxane (PDMS) mold 33 2.4.8 Preparation of agarose microwell plate 33 2.4.9 Cell culture 34 2.4.10 Formation of hybrid cell spheroid 34 2.4.11 Characteristics of hybrid spheroids 35 2.4.12 Critical Point Drying (CPD) 36 2.4.13 Cell morphology in KE/GC hydrogel 36 2.4.14 Cell viability in KE/GC hydrogel 37 2.4.15 Cell differentiation in KE/GC hydrogel 37 2.4.16 Bioink 3D Printing 38 2.4.17 Statistical analysis 39 Chapter 3 Results and discussion 40 3.1 Characteristics hybrid of cell spheroids 40 3.1.1 Cell aggregation in the microwell plates 40 3.1.2 Hybrid cell spheroids size distribution 40 3.1.3 Scanning electron microscope (SEM) image of hybrid cell spheroids 41 3.1.4 Distribution of hybrid cell spheroids 41 3.2 Feature Analysis of KEMA/GCMA hydrogel 42 3.2.1 Evaluation of gelation time 42 3.2.2 Evaluation of mechanical and rheological properties 42 3.2.3 Evaluation of cell morphology in certain composition 43 3.2.4 Evaluation of cell viability in certain composition 44 3.3 Cell spheroid performance in the KE/GC hydrogel 46 3.2.1 Cell spheroid morphology 46 3.2.2 Cell spheroid viability and proliferation 46 3.4 Characteristics of 3D Bioprinter 47 3.4.1 Printability of Allevi Bioprinter 47 3.4.2 Evaluation of cell morphology 48 3.4.3 Evaluation of cell viability 49 Conclusion 73 Future Perspective 74 References 75 | |
| dc.language.iso | zh-TW | |
| dc.subject | 3D 列印 | zh_TW |
| dc.subject | 角蛋白 | zh_TW |
| dc.subject | 甲殼素 | zh_TW |
| dc.subject | UV光交聯 | zh_TW |
| dc.subject | 水凝膠 | zh_TW |
| dc.subject | 人類脂肪幹細胞 | zh_TW |
| dc.subject | 人臍靜脈內皮細胞 | zh_TW |
| dc.subject | 共細胞 | zh_TW |
| dc.subject | 細胞球 | zh_TW |
| dc.subject | 生物墨水 | zh_TW |
| dc.subject | glycol chitosan | en |
| dc.subject | 3D Printing | en |
| dc.subject | bioink | en |
| dc.subject | cell spheroids | en |
| dc.subject | hybrid cell | en |
| dc.subject | human umbilical vein endothelial cell | en |
| dc.subject | human adipose-derived stem cell | en |
| dc.subject | hydrogel | en |
| dc.subject | UV light crosslinking | en |
| dc.subject | keratin | en |
| dc.title | 以紫外光交聯之複合式生物墨水包覆人類脂肪幹細胞於生醫組織工程的應用 | zh_TW |
| dc.title | UV-Crosslinkable Composite Bioink Encapsulated Human Adipose Stem Cell for Biomaterial Engineering | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭乃禎(Hsin-Tsai Liu),李亦宸(Chih-Yang Tseng),林子恩 | |
| dc.subject.keyword | 角蛋白,甲殼素,UV光交聯,水凝膠,人類脂肪幹細胞,人臍靜脈內皮細胞,共細胞,細胞球,生物墨水,3D 列印, | zh_TW |
| dc.subject.keyword | keratin,glycol chitosan,UV light crosslinking,hydrogel,human adipose-derived stem cell,human umbilical vein endothelial cell,hybrid cell,cell spheroids,bioink,3D Printing, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU202102385 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2021-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| dc.date.embargo-lift | 2026-07-26 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202110191200.pdf 此日期後於網路公開 2026-07-26 | 4.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
