Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81771
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董致韡(Chih-Wei Tung)
dc.contributor.authorJia-Rong Linen
dc.contributor.author林佳蓉zh_TW
dc.date.accessioned2022-11-24T09:27:05Z-
dc.date.available2022-11-24T09:27:05Z-
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-04
dc.identifier.citationAshikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., . . . Matsuoka, M. (2005). Cytokinin Oxidase Regulates Rice Grain Production. Science, 309(5735), 741-745. doi:10.1126/science.1113373 Bednarek, J., Boulaflous, A., Girousse, C., Ravel, C., Tassy, C., Barret, P., . . . Mouzeyar, S. J. J. o. E. B. (2012). Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. J Exp Bot, 63(16), 5945-5955. Che, R., Tong, H., Shi, B., Liu, Y., Fang, S., Liu, D., . . . Chu, C. (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants, 2(1), 15195. doi:10.1038/nplants.2015.195 Clouse, S. D. (2011). Brassinosteroids. The arabidopsis book, 9, e0151-e0151. doi:10.1199/tab.0151 Duan, P., Ni, S., Wang, J., Zhang, B., Xu, R., Wang, Y., . . . Li, Y. (2015). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants, 2(1), 15203. doi:10.1038/nplants.2015.203 Elssa, P., Swapnil, P., sharat Kumar, p. (2021). Marker-Assisted Backcross Breeding for Improvement of Submergence Tolerance and Grain Yield in the Popular Rice Variety,‘Maudamani’. BMC Plant Biology. doi:10.21203/rs.3.rs-201838/v1 Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., . . . genetics, a. (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 112(6), 1164-1171. Fang, N., Xu, R., Huang, L., Zhang, B., Duan, P., Li, N., . . . Li, Y. (2016). SMALL GRAIN 11 Controls Grain Size, Grain Number and Grain Yield in Rice. Rice, 9(1), 64. doi:10.1186/s12284-016-0136-z Garris, A. J., Tai, T. H., Coburn, J., Kresovich, S., McCouch, S. (2005). Genetic structure and diversity in Oryza sativa L. Genetics, 169(3), 1631-1638. doi:10.1534/genetics.104.035642 Glaszmann, J. C. (1987). Isozymes and classification of Asian rice varieties. Theor Appl Genet, 74(1), 21-30. doi:10.1007/bf00290078 Gross, B. L., Zhao, Z. (2014). Archaeological and genetic insights into the origins of domesticated rice. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6190-6197. doi:10.1073/pnas.1308942110 Hamm, H. E. (1998). The Many Faces of G Protein Signaling*. Journal of Biological Chemistry, 273(2), 669-672. doi:https://doi.org/10.1074/jbc.273.2.669 Hong, Z., Ueguchi-Tanaka, M., Fujioka, S., Takatsuto, S., Yoshida, S., Hasegawa, Y., . . . Matsuoka, M. (2005). The Rice brassinosteroid-deficient dwarf2 Mutant, Defective in the Rice Homolog of Arabidopsis DIMINUTO/DWARF1, Is Rescued by the Endogenously Accumulated Alternative Bioactive Brassinosteroid, Dolichosterone. The Plant Cell, 17(8), 2243-2254. doi:10.1105/tpc.105.030973 Hu, J., Wang, Y., Fang, Y., Zeng, L., Xu, J., Yu, H., . . . Qian, Q. (2015). A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Molecular Plant, 8(10), 1455-1465. doi:https://doi.org/10.1016/j.molp.2015.07.002 Hu, Z., He, H., Zhang, S., Sun, F., Xin, X., Wang, W., . . . Luo, X. (2012). A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice. Journal of integrative plant biology, 54(12), 979-990. doi:10.1111/jipb.12008 Ishimaru, K., Hirotsu, N., Madoka, Y., Murakami, N., Hara, N., Onodera, H., . . . Onishi, A. J. N. g. (2013). Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 45(6), 707-711. Li, N., Xu, R., Duan, P., Li, Y. (2018). Control of grain size in rice. Plant Reproduction, 31(3), 237-251. doi:10.1007/s00497-018-0333-6 Li, S., Gao, F., Xie, K., Zeng, X., Cao, Y., Zeng, J., . . . Li, P. (2016). The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant biotechnology journal, 14(11), 2134-2146. doi:10.1111/pbi.12569 Li, Y., Fan, C., Xing, Y., Jiang, Y., Luo, L., Sun, L., . . . Zhang, Q. (2011). Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 43(12), 1266-1269. doi:10.1038/ng.977 Mao, H., Sun, S., Yao, J., Wang, C., Yu, S., Xu, C., . . . Zhang, Q. (2010). Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19579-19584. doi:10.1073/pnas.1014419107 Meng, X., Zhang, S. (2013). MAPK Cascades in Plant Disease Resistance Signaling. Annual Review of Phytopathology, 51(1), 245-266. doi:10.1146/annurev-phyto-082712-102314 Nan, J., Feng, X., Wang, C., Zhang, X., Wang, R., Liu, J., . . . Lin, S. (2018). Improving rice grain length through updating the GS3 locus of an elite variety Kongyu 131. Rice (N Y), 11(1), 21. doi:10.1186/s12284-018-0217-2 Olsen, O. A., Linnestad, C., Nichols, S. E. (1999). Developmental biology of the cereal endosperm. Trends Plant Sci, 4(7), 253-257. doi:10.1016/s1360-1385(99)01431-4 Qi, P., Lin, Y. S., Song, X. J., Shen, J. B., Huang, W., Shan, J. X., . . . Lin, H. X. (2012). The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 22(12), 1666-1680. doi:10.1038/cr.2012.151 Romero, F. M., Gatica-Arias, A. (2019). CRISPR/Cas9: Development and Application in Rice Breeding. Rice Science, 26(5), 265-281. doi:https://doi.org/10.1016/j.rsci.2019.08.001 Shomura, A., Izawa, T., Ebana, K., Ebitani, T., Kanegae, H., Konishi, S., Yano, M. J. N. g. (2008). Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 40(8), 1023-1028. Si, L., Chen, J., Huang, X., Gong, H., Luo, J., Hou, Q., . . . Han, B. (2016). OsSPL13 controls grain size in cultivated rice. Nature Genetics, 48(4), 447-456. doi:10.1038/ng.3518 Song, X.-J., Huang, W., Shi, M., Zhu, M.-Z., Lin, H.-X. J. N. g. (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 39(5), 623-630. Song, X. J., Kuroha, T., Ayano, M., Furuta, T., Nagai, K., Komeda, N., . . . Ashikari, M. (2015). Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the United States of America, 112(1), 76-81. doi:10.1073/pnas.1421127112 Su, Z., Hao, C., Wang, L., Dong, Y., Zhang, X. J. T., Genetics, A. (2011). Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 122(1), 211-223. Sun, P., Zhang, W., Wang, Y., He, Q., Shu, F., Liu, H., . . . Deng, H. (2016). OsGRF4 controls grain shape, panicle length and seed shattering in rice. Journal of integrative plant biology, 58(10), 836-847. doi:10.1111/jipb.12473 Takano-Kai, N., Jiang, H., Powell, A., McCouch, S., Takamure, I., Furuya, N., . . . Yoshimura, A. (2013). Multiple and independent origins of short seeded alleles of GS3 in rice. Breed Sci, 63(1), 77-85. doi:10.1270/jsbbs.63.77 Tanabe, S., Ashikari, M., Fujioka, S., Takatsuto, S., Yoshida, S., Yano, M., . . . Iwasaki, Y. (2005). A Novel Cytochrome P450 Is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, dwarf11, with Reduced Seed Length. The Plant Cell, 17(3), 776-790. doi:10.1105/tpc.104.024950 Thomson, M., Tai, T., McClung, A., Lai, X., Hinga, M., Lobos, K., . . . genetics, a. (2003). Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 107(3), 479-493. Wan, X., Wan, J., Jiang, L., Wang, J., Zhai, H., Weng, J., . . . Genetics, A. (2006). QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 112(7), 1258-1270. Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., . . . Lin, H. J. N. g. (2008). Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 40(11), 1370-1374. Wang, S., Wu, K., Yuan, Q., Liu, X., Liu, Z., Lin, X., . . . Fu, X. (2012). Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 44(8), 950-954. doi:10.1038/ng.2327 Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., . . . Leung, H. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature, 557(7703), 43-49. doi:10.1038/s41586-018-0063-9 Weng, J., Gu, S., Wan, X., Gao, H., Guo, T., Su, N., . . . Wan, J. (2008). Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 18(12), 1199-1209. doi:10.1038/cr.2008.307 Wu, W., Liu, X., Wang, M., Meyer, R. S., Luo, X., Ndjiondjop, M.-N., . . . Zhu, Z. (2017). A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants, 3(6), 17064. doi:10.1038/nplants.2017.64 Wu, Y., Fu, Y., Zhao, S., Gu, P., Zhu, Z., Sun, C., Tan, L. (2016). CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF 11, controls panicle architecture and seed size in rice. Plant biotechnology journal, 14(1), 377-386. Xu, J., Zhang, S. (2015). Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends in Plant Science, 20(1), 56-64. doi:https://doi.org/10.1016/j.tplants.2014.10.001 Xu, X., Liu, X., Ge, S., Jensen, J. D., Hu, F., Li, X., . . . Wang, W. (2012). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 30(1), 105-111. doi:10.1038/nbt.2050 Xuan, G., ZHU, X.-d., Na, F., DUAN, P.-g., WU, Y.-b., LUO, Y.-h., LI, Y.-h. J. J. o. I. A. (2016). Identification of QTLs for grain size and characterization of the beneficial alleles of grain size genes in large grain rice variety BL129. Journal of Integrative Agriculture, 15(1), 1-9. Ying, J.-Z., Gao, J.-P., Shan, J.-X., Zhu, M.-Z., Shi, M., Lin, H.-X. J. J. o. G., Genomics. (2012). Dissecting the genetic basis of extremely large grain shape in rice cultivar ‘JZ1560’. J Genet Genomics, 39(7), 325-333. Zhang, L., Ma, B., Bian, Z., Li, X., Zhang, C., Liu, J., . . . He, Z. J. R. (2020). Grain Size Selection Using Novel Functional Markers Targeting 14 Genes in Rice. Rice (N Y), 13(1), 1-16. Zhang, X., Wang, J., Huang, J., Lan, H., Wang, C., Yin, C., . . . Zhang, H. (2012). Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences of the United States of America, 109(52), 21534-21539. doi:10.1073/pnas.1219776110 Zhao, K., Tung, C.-W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., . . . Mezey, J. J. N. c. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2(1), 1-10. Zhou, S. R., Yin, L. L., Xue, H. W. (2013). Functional genomics based understanding of rice endosperm development. Curr Opin Plant Biol, 16(2), 236-246. doi:10.1016/j.pbi.2013.03.001 Zuo, J., Li, J. (2014). Molecular Genetic Dissection of Quantitative Trait Loci Regulating Rice Grain Size. Annual Review of Genetics, 48(1), 99-118. doi:10.1146/annurev-genet-120213-092138
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81771-
dc.description.abstract"大部分的農藝性狀包含水稻穀粒形狀是由多個數量性狀基因座 (quantitative trait loci, QTL) 所控制。本研究以秈稻IR64、稉稻Nipponbare雜交所產生的128個重組自交系 (recombinant inbred lines, RILs) 與來自82個國家的413個種原及89個國家的3,010種原,分析其種子長度、寬度等性狀,並配合高密度單一核苷酸多型性 (single nucleotide polymorphism, SNP)分子標誌進行全基因體關聯性研究 (genome-wide association study, GWAS)。首先將RILs偵測到榖粒形狀之顯著位點與前人發現的QTL進行比較;接著討論3組材料GWAS結果。在種子長度部分,RILs和自然族群偵測到不同的QTL;種子寬度部分,所有族群都偵測到主效QTL-GW5。最後比較413種原與3,010種原的次族群GWAS結果,在種子長度部分,可以發現因為次族群對偶基因頻度不同之故,導致偵測到最顯著的SNP不同,且即使都屬同一次族群,也可能因為起源地不同,偵測結果也有差異;另外種子寬度部分,各個次族群偵測到最顯著的SNP皆相同,皆為種子寬度的主效QTL-GW5,而該QTL目前也已運用在分子標誌輔助選種,透過偵測性狀相關的QTL,將優良的基因型導入不同品種,並且因應市場需求設計合理的穀粒大小,並在穀物產量和穀粒品質之間取得平衡。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:27:05Z (GMT). No. of bitstreams: 1
U0001-0310202116082800.pdf: 3689711 bytes, checksum: 02667573644880aa508c5bac28c6f970 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i 中文摘要 ii ABSTRACT iii 目次 iv 表目錄 v 圖目錄 vi 重要名詞縮寫對照表 vii 第一章 前言 1 第一節 榖粒形狀QTL所參與的信號傳導途徑 1 第二節 已知榖粒形狀主效QTL的介紹 3 第二章 材料與方法 10 第一節 試驗材料 10 第二節 榖粒性狀調查之實驗流程 10 第三節 全基因體關聯性研究 11 第三章 結果與討論 14 第一節 RILs族群7個榖粒形狀GWAS結果 14 第二節 比較三組材料榖粒形狀GWAS結果 14 第三節 比較次族群榖粒形狀GWAS結果 15 第四章 結論 18 參考文獻 69 附錄 74 附錄1、 74
dc.language.isozh-TW
dc.subject種子寬度zh_TW
dc.subject穀粒形狀zh_TW
dc.subject全基因體關聯性研究zh_TW
dc.subject分子標誌輔助選種zh_TW
dc.subject數量性狀基因座zh_TW
dc.subject水稻(栽培種水稻)zh_TW
dc.subject種子長度zh_TW
dc.subject單一核苷酸多型性zh_TW
dc.subjectseed widthen
dc.subjectgrain shapeen
dc.subjectgenome-wide association study (GWAS)en
dc.subjectmarker-assisted selection (MAS)en
dc.subjectquantitative trait loci (QTL)en
dc.subjectrice (cultivated riceen
dc.subject Oryza sativa L.)en
dc.subjectseed lengthen
dc.subjectsingle nucleotide polymorphism (SNP)en
dc.title分析不同水稻族群控制榖粒形狀之數量性狀基因座zh_TW
dc.titleQTL Analysis of Grain Shape in Different Rice Populationsen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡育彰(Hsin-Tsai Liu),黃永芬(Chih-Yang Tseng)
dc.subject.keyword穀粒形狀,全基因體關聯性研究,分子標誌輔助選種,數量性狀基因座,水稻(栽培種水稻),種子長度,單一核苷酸多型性,種子寬度,zh_TW
dc.subject.keywordgrain shape,genome-wide association study (GWAS),marker-assisted selection (MAS),quantitative trait loci (QTL),rice (cultivated rice, Oryza sativa L.),seed length,single nucleotide polymorphism (SNP),seed width,en
dc.relation.page74
dc.identifier.doi10.6342/NTU202103516
dc.rights.note未授權
dc.date.accepted2021-10-05
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-0310202116082800.pdf
  未授權公開取用
3.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved