Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81764
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰(Ruey-Feng Zhang)
dc.contributor.authorYi-Sin Liuen
dc.contributor.author劉易鑫zh_TW
dc.date.accessioned2022-11-24T09:26:59Z-
dc.date.available2022-11-24T09:26:59Z-
dc.date.copyright2021-11-06
dc.date.issued2021
dc.date.submitted2021-10-13
dc.identifier.citation[1] L. E. Edsberg, D. Langemo, M. M. Baharestani, M. E. Posthauer, and M. Goldberg, 'Unavoidable pressure injury: state of the science and consensus outcomes,' Journal of Wound Ostomy Continence Nursing, vol. 41, no. 4, pp. 313-334, 2014. [2] C. VanGilder, C. Lachenbruch, C. Algrim-Boyle, and S. Meyer, 'The international pressure ulcer prevalence™ survey: 2006-2015,' Journal of Wound, Ostomy and Continence Nursing, vol. 44, no. 1, pp. 20-28, 2017. [3] G. C. Xakellis, R. Frantz, and A. Lewis, 'Cost of pressure ulcer prevention in long‐term care,' Journal of the American Geriatrics Society, vol. 43, no. 5, pp. 496-501, 1995. [4] D. Z. Bliss, B. L. Westra, K. Savik, and Y. Hou, 'Effectiveness of wound, ostomy and continence–certified nurses on individual patient outcomes in home health care,' Journal of Wound Ostomy Continence Nursing, vol. 40, no. 2, pp. 135-142, 2013. [5] T. Zhao et al., 'A hybrid CNN feature model for pulmonary nodule differentiation task,' in Imaging for Patient-Customized Simulations and Systems for Point-of-Care Ultrasound: Springer, 2017, pp. 19-26. [6] T. C. Mondol, H. Iqbal, and M. Hashem, 'Deep CNN-based ensemble CADx model for musculoskeletal abnormality detection from radiographs,' in 2019 5th International Conference on Advances in Electrical Engineering (ICAEE), 2019: IEEE, pp. 392-397. [7] Q. Song, L. Zhao, X. Luo, and X. Dou, 'Using deep learning for classification of lung nodules on computed tomography images,' Journal of healthcare engineering, vol. 2017, 2017. [8] L. Cai, T. Long, Y. Dai, and Y. Huang, 'Mask R-CNN-based detection and segmentation for pulmonary nodule 3D visualization diagnosis,' IEEE Access, vol. 8, pp. 44400-44409, 2020. [9] S. Xu, H. Lu, M. Ye, K. Yan, W. Zhu, and Q. Jin, 'Improved Cascade R-CNN for Medical Images of Pulmonary Nodules Detection Combining Dilated HRNet,' in Proceedings of the 2020 12th International Conference on Machine Learning and Computing, 2020, pp. 283-288. [10] S. Zahia, B. Garcia-Zapirain, and A. Elmaghraby, 'Integrating 3D Model Representation for an Accurate Non-Invasive Assessment of Pressure Injuries with Deep Learning,' Sensors, vol. 20, no. 10, p. 2933, 2020. [11] Z. Cai and N. Vasconcelos, 'Cascade r-cnn: Delving into high quality object detection,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6154-6162. [12] H. Xiao et al., 'CSABlock-based Cascade RCNN for Breast Mass Detection in Mammogram,' in 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2020: IEEE, pp. 2120-2124. [13] A. Dosovitskiy et al., 'An image is worth 16x16 words: Transformers for image recognition at scale,' arXiv preprint arXiv:2010.11929, 2020. [14] Z. Liu et al., 'Swin transformer: Hierarchical vision transformer using shifted windows,' arXiv preprint arXiv:2103.14030, 2021. [15] Y. Chen et al., 'Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution,' in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 3435-3444. [16] J. Hu, L. Shen, and G. Sun, 'Squeeze-and-excitation networks,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132-7141. [17] L. Perez and J. Wang, 'The effectiveness of data augmentation in image classification using deep learning,' arXiv preprint arXiv:1712.04621, 2017. [18] A. Vaswani et al., 'Attention is all you need,' in Advances in neural information processing systems, 2017, pp. 5998-6008. [19] S. Ren, K. He, R. Girshick, and J. Sun, 'Faster r-cnn: Towards real-time object detection with region proposal networks,' Advances in neural information processing systems, vol. 28, pp. 91-99, 2015. [20] J. Long, E. Shelhamer, and T. Darrell, 'Fully convolutional networks for semantic segmentation,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440. [21] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, 'A tutorial on the cross-entropy method,' Annals of operations research, vol. 134, no. 1, pp. 19-67, 2005. [22] M. Schmidt, G. Fung, and R. Rosales, 'Fast optimization methods for l1 regularization: A comparative study and two new approaches,' in European Conference on Machine Learning, 2007: Springer, pp. 286-297. [23] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, 'Generalized intersection over union: A metric and a loss for bounding box regression,' in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 658-666. [24] R. Kohavi, 'A study of cross-validation and bootstrap for accuracy estimation and model selection,' in Ijcai, 1995, vol. 14, no. 2: Montreal, Canada, pp. 1137-1145. [25] S. Robertson, 'A new interpretation of average precision,' in Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, 2008, pp. 689-690. [26] C. Goutte and E. Gaussier, 'A probabilistic interpretation of precision, recall and F-score, with implication for evaluation,' in European conference on information retrieval, 2005: Springer, pp. 345-359. [27] A. Dwyer, 'Matchmaking and McNemar in the comparison of diagnostic modalities,' Radiology, vol. 178, no. 2, pp. 328-330, 1991. [28] K. He, X. Zhang, S. Ren, and J. Sun, 'Deep residual learning for image recognition,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778. [29] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, 'Aggregated residual transformations for deep neural networks,' in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1492-1500. [30] D. H. Hubel and T. N. Wiesel, 'Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,' The Journal of physiology, vol. 160, no. 1, pp. 106-154, 1962. [31] J.-B. Cordonnier, A. Loukas, and M. Jaggi, 'On the relationship between self-attention and convolutional layers,' arXiv preprint arXiv:1911.03584, 2019. [32] S. Wenkel, K. Alhazmi, T. Liiv, S. Alrshoud, and M. Simon, 'Confidence Score: The Forgotten Dimension of Object Detection Performance Evaluation,' Sensors, vol. 21, no. 13, p. 4350, 2021. [33] B. Shen, X. Lin, G. Xu, Y. Zhou, and X. Wang, 'A Low Cost Mobile Manipulator for Autonomous Localization and Grasping,' in 2021 5th International Conference on Robotics and Automation Sciences (ICRAS), 2021: IEEE, pp. 193-197. [34] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, 'Cbam: Convolutional block attention module,' in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3-19. [35] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, 'Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,' IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834-848, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81764-
dc.description.abstract" 壓瘡是一種發生率高的傷病,雖然致死機會不大但治療的代價高昂。為了給予壓瘡適當的治療,國際壓瘡諮詢委員會(National Pressure Ulcer Advisory Panel, NPUAP)將傷口依照侵入皮膚的嚴重度分從第一級至第四級。然而,不同傷口範圍及深度會影響判斷,甚至有出現診斷錯誤的可能性。因此需要一個電腦輔助診斷系統(Computer-aided Diagnosis System)協助醫護人員進行壓瘡的診斷。近年,卷積神經網路(CNN)被廣泛地用於診斷壓瘡。藉由專注在區域特徵,區域基底卷積神經網路(Region-based CNN, R-CNN)架構更是對偵測且診斷壓瘡具有優異的能力。由於區域基底卷積神積網路(R-CNN)架構的表現依賴於有效的特徵抓取,所以一個強力的特徵抓取模型為增強偵測及診斷壓瘡是需要的。 因此,為了設計一套電腦輔助診斷系統以進行壓瘡偵測及診斷,在這篇研究中我們使用了級聯區域基底卷積神經網路(Cascade R-CNN)與壓縮激勵移動窗口變換器(Squeeze-and-excitation Shifted Windows Transformer, SE-Swin Transformer)模型。此套電腦輔助診斷系統由資料擴增、特徵提取和傷口評級三部分組成。在資料擴增的部分我們調整了影像尺寸並增加影像,而後將經過擴增的影像送進我們提出的壓縮激勵移動窗口變換器(SE-Swin Transformer)做特徵提取。經過特徵擷取後,具階層式的特徵會被送進傷口評級產生出壓瘡偵測及診斷之結果。在傷口評級中,由於級聯區域基底卷積神經網路(Cascade R-CNN)可以產生一階階精準的偵測,因此將其作為我們的評級模型,最後產生壓瘡偵測與診斷之結果。此研究總共使用了883張壓瘡影像,其中包含240個第一級傷口,226個第二級傷口,203個第三級傷口和214個第四級傷口。根據實驗結果顯示,我們提出的系統能在偵測表現上達到平均精度均值81.3%,也能在診斷表現上達到準確率87.1%、靈敏度85.7%、陽性預測值86.6%的結果,顯示出我們提出的電腦輔助系統具良好的偵測與診斷能力。"zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:26:59Z (GMT). No. of bitstreams: 1
U0001-0810202119154900.pdf: 1247640 bytes, checksum: 0f29b1028faa52938f6db5af09544d42 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontentsTable of Contents 口試委員會審定書 I 致謝 II 摘要 III Abstract V Table of Contents VII List of Figures IX List of Tables X Chapter 1. Introduction 1 Chapter 2. Materials 5 2.1 Data Collection 5 2.2 Pressure Injury Categorization 5 Chapter 3. Methods 6 3.1 Data Augmentation 8 3.2 Feature Extraction 8 3.2.1 Shifted windows Transformer (Swin Transformer) 9 3.2.2 Squeeze-and-Excitation (SE) block 12 3.3 Injury Grading 14 3.4 Loss Function 16 Chapter 4. Results and Discussion 18 4.1 Experiment Environment 18 4.2 Evaluation 18 4.2.1 Injury Detection Results 19 4.2.2 Injury Classification Results 21 4.3 Discussion 26 Chapter 5. Conclusion and Future Work 30 Reference 32
dc.language.isoen
dc.subject區域基底卷基神經網路zh_TW
dc.subject壓瘡zh_TW
dc.subject電腦輔助診斷zh_TW
dc.subject注意力機制zh_TW
dc.subject變換器zh_TW
dc.subjectattention mechanismen
dc.subjectPressure injuryen
dc.subjectregion-based convolutional neural networken
dc.subjectcomputer-aided diagnosisen
dc.subjecttransformeren
dc.title利用移動窗口變換器級聯區域基底卷積神經網路於壓瘡偵測與診斷zh_TW
dc.titleDetection and Diagnosis for Pressure Injury by Using Swin-Cascade R-CNNen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅崇銘(Hsin-Tsai Liu),陳啟禎(Chih-Yang Tseng)
dc.subject.keyword壓瘡,電腦輔助診斷,注意力機制,變換器,區域基底卷基神經網路,zh_TW
dc.subject.keywordPressure injury,computer-aided diagnosis,attention mechanism,transformer,region-based convolutional neural network,en
dc.relation.page36
dc.identifier.doi10.6342/NTU202103625
dc.rights.note未授權
dc.date.accepted2021-10-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
U0001-0810202119154900.pdf
  未授權公開取用
1.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved