Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81760
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳逸民(Yih-Min Wu)
dc.contributor.authorPei-Ying Wuen
dc.contributor.author吳沛穎zh_TW
dc.date.accessioned2022-11-24T09:26:54Z-
dc.date.available2022-11-24T09:26:54Z-
dc.date.copyright2021-11-05
dc.date.issued2021
dc.date.submitted2021-10-19
dc.identifier.citation[1] 劉雅琪 (2020)。南加州地區地震b值與Vp/Vs關係之研究 (碩士論文)。國立臺灣大學,臺北市。Retrieved from http://dx.doi.org/10.6342/NTU202000401. [2] Aki, K. (1965). Maximum likelihood estimate of bin the formula logN=a−bM and its confidence limits. Bull. Earthquake Res. Inst., Tokyo Univ., 43, 237–239, doi:10 .1029 /2001JB000680. [3] Amitrano, D. (2003). Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b-value. J. Geophys. Res., 108(B1), 2044, doi:10.1029/2001JB000680. [4] Bachmann, C. E., Wiemer, S., Goertz-Allmann, B. P., Woessner, J. (2012). Influence of pore-pressure on the event-size distribution of induced earthquakes. Geophysical Research Letters, 39(9), L09302, doi:10.1029/2012GL051480. [5] Cao, A., Gao, S. S. (2002). Temporal variation of seismicb-values beneath northeastern Japan island arc. Geophysical Research Letters, 29(9), 1-3, doi:10.1029/2001GL013775. [6] Christensen, N. I. (1996). Poisson's ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2), 3139-3156, doi:10.1029/95JB03446. [7] Corral, Á. (2004). Long-Term Clustering, Scaling, and Universality in the Temporal Occurrence of Earthquakes. Physical Review Letters, 92(10), 1-4, doi:10.1103/PhysRevLett.92.108501. [8] Dziewonski, A. M., Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4), 297-356, doi:10.1016/0031-9201(81)90046-7. [9] Felzer, K. R., Abercrombie, R. E., Ekstrom, G. (2004). A common origin for aftershocks, foreshocks, and multiplets. Bulletin of the Seismological Society of America, 94(1), 88-98, doi: 10.1785/0120030069. [10] Freed, A. M. (2005). EARTHQUAKE TRIGGERING BY STATIC, DYNAMIC, AND POSTSEISMIC STRESS TRANSFER. Annual Review of Earth and Planetary Sciences, 33(1), 335-367, doi: 10.1146/annurev.earth.33.092203.122505 [11] Global Volcanism Program (2013). Volcanoes of the World, v. 4.10.1 (29 Jun 2021). Venzke, E (ed.). Smithsonian Institution. Downloaded 5 Aug 2021, doi:10.5479/si.GVP.VOTW4-2013. [12] Gritto, R., Jarpe, S. P. (2014). Temporal variations of Vp/Vs-ratio at The Geysers geothermal field, USA. Geothermics, 52, 112-119, doi:10.1016/j.geothermics.2014.01.012. [13] Gutenberg, B., Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185-188, doi: 10.1785/BSSA0340040185. [14] Hasegawa, A., Umino, N., Takagi, A. (1978). Double-planed structure of the deep seismic zone in the northeastern Japan arc. Tectonophysics, 47(1-2), 43-58, doi:10.1016/0040-1951(78)90150-6. [15] Hirose, F., Miyaoka, K., Hayashimoto, N., Yamazaki, T., Nakamura, M. (2011). Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0) —Seismicity: foreshocks, mainshock, aftershocks, and induced activity—. Earth, Planets and Space, 63(7), 513-518, doi:10.5047/eps.2011.05.019. [16] Huang, Y. H., Beroza, G. C. (2015). Temporal variation in the magnitude-frequency distribution during the Guy-Greenbrier earthquake sequence. Geophysical Research Letters, 42(16), 6639-6646, doi:10.1002/2015GL065170. [17] Isozaki, Y., Maruyama, S., Aoki, K., Nakama, T., Miyashita, A., Otoh, S. (2010). Geotectonic Subdivision of the Japanese Islands Revisited: Categorization and Definition of Elements and Boundaries of Pacific-type (Miyashiro-type) Orogen. Journal of Geography (Chigaku Zasshi), 119(6), 999-1053, doi:10.5026/jgeography.119.999. [18] Japan Meteorological Agency (2000). Recent seismic activity in the Miyakejima and Niijima-Kozushima region, Japan —the largest earthquake swarm ever recorded—. Earth Planet Sp 52, 1-8, doi:10.1186/BF03351657. [19] Kagan, Y. Y. (2004). Short-term properties of earthquake catalogs and models of earthquake source. Bulletin of the Seismological Society of America, 94(4), 1207-1228, doi:10.1785/012003098. [20] Kagan, Y. Y. (2010). Statistical distributions of earthquake numbers: consequence of branching process. Geophysical Journal International, 180(3), 1313-1328, doi:10.1111/j.1365-246x.2009.04487.x. [21] Kato, A., Nakamura, K. Hiyama, Y. (2016). The 2016 Kumamoto earthquake sequence. Proceedings of the Japan Academy, Series B, 92(8), 358-371, doi: 10.2183/pjab.92.359. [22] Kisslinger, C. (1996). Aftershocks and fault-zone properties., Advances in Geophysics, 38, 1-36, doi: 10.1016/S0065-2687(08)60019-9. [23] Kisslinger, C., Jones, L. M. (1991). Properties of aftershock sequences in southern California. Journal of Geophysical Research-Solid Earth and Planets, 96(B7), 11947-11958, doi:10.1029/91JB01200. [24] Kodaira, S. (2004). High Pore Fluid Pressure May Cause Silent Slip in the Nankai Trough. Science, 304(5675), 1295-1298, doi: 10.1126/science.1096535. [25] Liu, X., Zhao, D. (2016). P and S wave tomography of Japan subduction zone from joint inversions of local and teleseismic travel times and surface-wave data. Physics of the Earth and Planetary Interiors, 252, 1-22, doi:10.1016/j.pepi.2016.01.002. [26] Luen, B., Stark, P. B. (2012). Poisson tests of declustered catalogues. Geophysical Journal International, 189(1), 691-700, doi: 10.1111/j.1365-246X.2012.05400.x. [27] Martínez‐Garzón, P., Ben‐Zion, Y., Abolfathian, N., Kwiatek, G., Bohnhoff, M. (2016). A refined methodology for stress inversions of earthquake focal mechanisms. Journal of Geophysical Research: Solid Earth, 121(12), 8666-8687, doi: 10.1002/2016jb013493. [28] Matsubara, M., Obara, K. Kasahara, K. (2009). High-VP/VS zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan. Tectonophysics, 472(1-4), 6-17, doi:10.1016/j.tecto.2008.06.013. [29] Matsubara, M., Obara, K., Kasahara, K. (2008). Three-dimensional P- and S-wave velocity structures beneath the Japan Islands obtained by high-density seismic stations by seismic tomography. Tectonophysics, 454(1), 86-103, doi:10.1016/j.tecto.2008.04.016. [30] Matsubara, M., Sato, H., Uehira, K., Mochizuki, M., Kanazawa, T., Takahashi, N., et al. (2019). Seismic Velocity Structure in and around the Japanese Island Arc Derived from Seismic Tomography Including NIED MOWLAS Hi-net and S-net Data. Seismic Waves - Probing Earth System, IntectOpen, 1-19, doi:10.5772/intechopen.86936. [31] Mizrahi, L., Nandan, S., Wiemer, S. (2021). The Effect of Declustering on the Size Distribution of Mainshocks. Seismological Research Letters, 92(4),2333-2342, doi:10.1785/0220200231. [32] Mogi, K. (1962). Study of the Elastic Shocks Caused by the Fracture of Heterogeneous Materials and Its Relation to Earthquake Phenomena. Bull. Earthquake Res. Inst., Tokyo Univ.43, 40, 125-173. [33] Nakajima, J., Hasegawa, A. (2007). Subduction of the Philippine Sea plate beneath southwestern Japan: Slab geometry and its relationship to arc magmatism. Journal of Geophysical Research, 112(B8), doi:10.1029/2006JB004770. [34] Nakajima, J., Matsuzawa, T., Hasegawa, A., Zhao, D. (2001). Three-dimensional structure ofVp,Vs, andVp/Vsbeneath northeastern Japan: Implications for arc magmatism and fluids. Journal of Geophysical Research: Solid Earth, 106(B10), 21843-21857, doi:10.1029/2000jb000008. [35] Nakata, T., Yomogida, K., Odaka, J.-I., Sakamoto, T., Asahi, K., Chida, N. (1995). Surface Fault Ruptures Associated with the 1995 Hyogoken-Nanbu Earthquake. Journal of Geography (Chigaku Zasshi), 104(1), 127-142, doi:10.5026/jgeography.104.127. [36] Nanjo, K. Z., Enescu, B., Shcherbakov, R., Turcotte, D. L., Iwata, T., Ogata, Y. (2007). Decay of aftershock activity for Japanese earthquakes. Journal of Geophysical Research, 112(B8), doi:10.1029/2006jb004754. [37] Nanjo, K. Z., Ishibe, T., Tsuruoka, H., Schorlemmer, D., Ishigaki, Y., Hirata, N. (2010). Analysis of the Completeness Magnitude and Seismic Network Coverage of Japan. Bulletin of the Seismological Society of America, 100(6), 3261-3268, doi:10.1785/0120100077. [38] Nanjo, K. Z., Nagahama, H., Satomura, M. (1998). Rates of aftershock decay and the fractal structure of active fault systems. Tectonophysics, 287(1-4), 173-186, doi:10.1016/S0040-1951(98)80067-X. [39] Nanjo, K. Z., Yoshida, A. (2018). A b map implying the first eastern rupture of the Nankai Trough earthquakes. Nature Communications, 9(1117), doi:10.1038/s41467-018-03514-3. [40] National Institute of Advanced Industrial Science and Technology. (2021). Active Fault Database of Japan, Augusy 29, 2021 version. Research Information Database DB095, National Institute of Advanced Industrial Science and Technology. Retrieved from https://gbank.gsj.jp/activefault/index_e_gmap.html. [41] Nekrasova, A. K., Kosobokov, V. G. (2006). General law of similarity for earthquakes: Evidence from the Baikal region. Doklady Earth Sciences, 407(2), 484-485, doi:10.1134/s1028334x06030305. [42] Nishikawa, T., Ide, S. (2014). Earthquake size distribution in subduction zones linked to slab buoyancy. Nature Geoscience, 7(12), 904-908, doi:10.1038/ngeo2279. [43] O'Connell, R. J., Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 79(35), 5412-5426. [44] Peng, Z., Vidale, J. E., Ishii, M., Helmstetter, A. (2007). Seismicity rate immediately before and after main shock rupture from high-frequency waveforms in Japan. Journal of Geophysical Research, 112(B03306), doi:10.1029/2006jb004386. [45] Petruccelli, A., Schorlemmer, D., Tormann, T., Rinaldi, A. P., Wiemer, S., Gasperini, P., Vannucci, T. (2019). The influence of faulting style on the size-distribution of global earthquakes. Earth and Planetary Science Letters, 527, doi: 10.1016/j.epsl.2019.115791. [46] Romano, F., Trasatti, E., Lorito, S., Piromallo, C., Piatanesi, A., Ito, Y., et al. (2015). Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data. Scientific Reports, 4(5631), doi:10.1038/srep05631. [47] Scholz, C. H. (1968). Frequency-Magnetude Relation of Microfracturing in Rock and Its Relation to Earthquakes. Bulletin of the Seismological Society of America, 58(1), 399-415, doi:10.1785/BSSA0580010399. [48] Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42(5), 1399-1402, doi:10.1002/2014GL062863. [49] Schorlemmer, D., Wiemer, S., Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437(7058), 539-542, doi: 10.1038/nature04094. [50] Seno, T., Zhao, D., Kobayashi, Y., Nakamura, M. (2001). Dehydration of serpentinized slab mantle: Seismic evidence from southwest Japan. Earth, Planets and Space, 53(9), 861-871, doi:10.1186/bf03351683. [51] Siggins, A. F., Dewhurst, D. N. (2003). Saturation, pore pressure and effective stress from sandstone acoustic properties. Geophysical Research Letters, 30(2), doi:10.1029/2002gl016143. [52] Spada, M., Tormann, T., Wiemer, S., Enescu, B. (2013). Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophysical Research Letters, 40(4), 709-714, doi:10.1029/2012GL054198. [53] Tamaribuchi, K., Yagi, Y., Enescu, B., Hirano, S. (2018). Characteristics of foreshock activity inferred from the JMA earthquake catalog. Earth, Planets and Space, 70(90), doi:10.1186/s40623-018-0866-9. [54] Terakawa, T., Matsu'Ura, M. (2010). The 3-D tectonic stress fields in and around Japan inverted from centroid moment tensor data of seismic events. Tectonics, 29(6), doi:10.1029/2009tc002626. [55] Uchida, N., Nakajima, J., Wang, K. L., Takagi, R., Yoshida, K., Nakayama, T., et al. (2020). Stagnant forearc mantle wedge inferred from mapping of shear-wave anisotropy using S-net seafloor seismometers. Nature Communications, 11(5676), doi:10.1038/s41467-020-19541-y. [56] Utsu, T. (1961). A Statistical Study on the Occurrence of Aftershocks. The Geophysical Magazine, 30, 521-605. [57] Utsu, T., Ogata, Y., Matsuura, R. S. (1995). The centenary of the omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43(1), 1-33, doi:10.4294/jpe1952.43.1. [58] Vidale, J. E., Boyle, K. L., Shearer, P. M. (2006). Crustal earthquake bursts in California and Japan: Their patterns and relation to volcanoes. Geophysical Research Letters, 33(20), doi:10.1029/2006gl027723. [59] W. Goebel, T. H., Schorlemmer, D., Becker, T. W., Dresen, G., Sammis, C. G. (2013). Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. Geophysical Research Letters, 40(10), 2049-2054, doi:10.1002/grl.50507. [60] Wang, J. P., Huang, D., Chang, S.-C., Wu, Y.-M. (2014). New Evidence and Perspective to the Poisson Process and Earthquake Temporal Distribution from 55,000 Events around Taiwan since 1900. Natural Hazards Review, 15(1), 38-47, doi:10.1061/(asce)nh.1527-6996.0000110. [61] Wang, X. -Q., Schubnel, A., Fortin, J., David, E. C., Guéguen, Y., Ge, H. K. (2012). High Vp/Vs ratio: Saturated cracks or anisotropy effects? Geophysical Research Letters, 39(11), doi.:10.1029/2012gl051742. [62] Warren-Smith, E., Fry, B., Wallace, L., Chon, E., Henrys, S., Sheehan, A., et al. (2019). Episodic stress and fluid pressure cycling in subducting oceanic crust during slow slip. Nature Geoscience, 12(6), 475-481, doi:10.1038/s41561-019-0367-x. [63] Warren, N. W., Latham, G. V. (1970). An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. Journal of Geophysical Research, 75(23), 4455-4464, doi:10.1029/JB075i023p04455. [64] Wiemer, S., Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859-869, doi:10.1785/0119990114. [65] Wiemer, S., Wyss, M. (2002). Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Advances in Geophysics, 45, 259-302, doi:10.1016/S0065-2687(02)80007-3. [66] Woessner, J. (2005). Assessing the Quality of Earthquake Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty. Bulletin of the Seismological Society of America, 95(2), 684-698, doi:10.1785/0120040007. [67] Wu, Y. -M., Chen, S. K., Huang, T.-C., Huang, H.-H., Chao, W.-A., Koulakov, I. (2018). Relationship Between Earthquake b -Values and Crustal Stresses in a Young Orogenic Belt. Geophysical Research Letters, 45(4), 1832-1837, doi:10.1002/2017gl076694. [68] Wu, Y. -M., Chiao, L. Y. (2006). Seismic quiescence before the 1999 Chi-Chi, Taiwan, M-w 7.6 earthquake. Bulletin of the Seismological Society of America, 96(1), 321-327, doi:10.1785/0120050069. [69] Yamamoto, Y., Obana, K., Takahashi, T., Nakanishi, A., Kodaira, S., Kaneda, Y. (2013). Imaging of the subducted Kyushu-Palau Ridge in the Hyuga-nada region, western Nankai Trough subduction zone. Tectonophysics, 589, 90-102, doi:10.1016/j.tecto.2012.12.028. [70] Yamamoto,Y., Obana, K., Takahashi, T., Nakanishi, A., Kodaira, S., Kaneda, Y. (2014). Seismicity and structural heterogeneities around the western Nankai Trough subduction zone, southwestern Japan. Earth and Planetary Science Letters, 396, 34-45, doi:10.1016/j.epsl.2014.04.006. [71] Yang, W., Hauksson, E. (2013). The tectonic crustal stress field and style of faulting along the Pacific North America Plate boundary in Southern California. Geophysical Journal International, 194(1), 100-117, doi:10.1093/gji/ggt113. [72] Yoshida, K., Hasegawa, A. (2018). Hypocenter Migration and Seismicity Pattern Change in the Yamagata-Fukushima Border, NE Japan, Caused by Fluid Movement and Pore Pressure Variation. Journal of Geophysical Research: Solid Earth, 123(6), 5000-5017, doi:10.1029/2018jb015468. [73] Zhang, H., Thurber, C. (2006). Development and Applications of Double-difference Seismic Tomography. Pure and Applied Geophysics, 163(2-3), 373-403, doi.:10.1007/s00024-005-0021-y. [74] Zhao, D., Hasegawa, A., Horiuchi, S. (1992). Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. Journal of Geophysical Research, 97(B13), 19909-19928, doi:10.1029/92JB00603.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81760-
dc.description.abstract地殼中的地震規模頻率分布 (地震b值) 主要受到軸差應力所影響,兩者之間有負相關,孔隙水壓則被認為是影響b值變化的次要因素之一。部分研究者在注水實驗中發現孔隙水壓增加造成地震b值增加的現象,但其他研究團隊在不同地區觀察到b值隨孔隙水壓相反變化的案例,故本研究嘗試以統計方法驗證能否在非人為實驗下觀察到此相關性。由於孔隙水壓在地殼中的實際數值難以量測,基於Vp/Vs和孔隙水壓變化之間有正相關性且不受軸差應力變化影響特性,本研究以Vp/Vs作為地殼中孔隙水壓的指標與地震b值進行比較。本研究選擇日本作為研究地區,採用日本氣象廳地震目錄在1998年至2011年2月之間發生於距日本本島海岸線40公里內、規模大於0.0且深度小於30公里之地震事件,並使用時間域與空間域雙鍵結法去除地震群集。假設Poisson process進行參數驗證,所得出參數為在主震規模4.5下以4天5公里進行計算。在計算Mc及地震b值方法上使用最大曲率法及最大似然法,格點大小為0.1° × 0.1° × 10公里,只計算格點中心半徑30公里內包含150起以上地震事件的格點。速度構造模型則採用日本防災技術研究中心提供之2019年模型,以及Nakajima (2001) 和Yamamoto (2014) 的速度構造模型,並將VP/VS值以線性加權方式重新採樣至與地震b值相同格點上。將三個模型之Vp/Vs對完整地震目錄及去群集地震目錄所計算之地震b值做每十公里深度區間的線性迴歸分析,發現完整地震目錄資料點的b值較為分散,因此將每0.01Vp/Vs區間對b值計算分組平均及中位數,並以分組b值和Vp/Vs進行迴歸分析。在全日本尺度下b值和Vp/Vs相關性在各深度範圍中皆不顯著,故進一步以Itoigawa Shizuoka 斷層線將日本區分為東北及西南兩區域,觀察到b值和Vp/Vs在東北日本深度10到20公里處呈現正相關,西南日本的原始與去群集目錄結果則分別在10到20公里及0到10公里呈現負相關。前人研究顯示日本地殼中應力型態在空間分布上也有東北、西南的差異,在東北日本以逆斷層應力場為主,西南日本則以平移斷層應力場為主。本研究所得出之Vp/Vs多小於2.0,表示地殼內含水量較低,大尺度下無法觀察孔隙水壓對b值影響,故推論東北及西南日本b值和Vp/Vs相關性的正負差異可能源自於地殼應力場不同。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:26:54Z (GMT). No. of bitstreams: 1
U0001-1410202117532700.pdf: 9832146 bytes, checksum: dfa766b92ce616bee544b55483afff8b (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents"誌謝 i 中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 研究動機 1 1.2 地震b值 3 1.3 Vp/Vs 4 1.4 日本地區地體構造 5 第二章 研究資料 7 2.1 地震資料來源、選取與地震觀測站歷史演進 7 2.2 Vp/Vs速度構造模型 11 2.2.1 NIED (2019) 速度構造模型 11 2.2.2 Nakajima (2001) 速度構造模型 12 2.2.3 Yamamoto (2014) 速度構造模型 12 第三章 研究方法 18 3.1 去地震群集 18 3.1.1 地震群集 18 3.1.2 時間域與空間域雙鍵結法 19 3.1.3 Poisson process理論檢驗去地震群集 20 3.2 計算Mc與地震b值 21 3.2.1 最大曲率法 (Maximum curvature method, MAXC) 21 3.2.2 最大似然法 22 3.3 Vp/Vs值重新取樣 23 3.4 迴歸分析 24 第四章 數據結果測試與比較 25 4.1 去除地震群集 25 4.1.1 測試21年結果 25 4.1.2 測試時空參數 26 4.2 Mc、地震b值與Vp/Vs值分布:原始地震資料 29 4.2.1 Mc參數測試 (R、n) 29 4.2.2 地震b值結果 34 4.3 Mc、地震b值分布:去地震群集資料 39 4.3.1 地震b值結果 39 4.4 Vp/Vs值重新取樣結果 44 4.5 Vp/Vs值與地震b值迴歸分析結果:原始地震資料 49 4.5.1 日本整體 49 4.5.2 分區結果 (東北、西南) 49 4.6 Vp/Vs與地震b值迴歸分析結果:去地震群集資料 54 4.6.1 日本整體 54 4.6.2 分區結果 (東北、西南) 54 4.7 Nakajima模型 (東北) 58 4.7.1 Vp/Vs重新取樣結果 58 4.7.2 Vp/Vs與地震b值迴歸分析結果 58 4.8 Yamamoto模型 (四國) 62 4.8.1 Vp/Vs重新取樣結果 62 4.8.2 Vp/Vs與地震b值迴歸分析結果 62 第五章 討論 66 5.1 不同區域及模型結果比較 66 5.1.1 去地震群集的影響 66 5.1.2 東北、西南日本各深度相關性差異 67 5.2 南加州相關案例比較與討論 69 第六章 結論 71 參考文獻 72 附錄 82"
dc.language.isozh-TW
dc.subject地震b值zh_TW
dc.subject地震規模頻率分布zh_TW
dc.subjectVp/Vszh_TW
dc.subject日本zh_TW
dc.subjectJapanen
dc.subjectVp/Vs ratioen
dc.subjectearthquake b valueen
dc.subjectearthquake-size distributionen
dc.title地震規模頻率分布與Vp/Vs值在日本地區之相關性zh_TW
dc.titleCorrelation between earthquake b value and Vp/Vs ratio in Japanen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃信樺(Hsin-Tsai Liu),詹忠翰(Chih-Yang Tseng),陳冠翔
dc.subject.keyword地震規模頻率分布,地震b值,Vp/Vs,日本,zh_TW
dc.subject.keywordearthquake-size distribution,earthquake b value,Vp/Vs ratio,Japan,en
dc.relation.page85
dc.identifier.doi10.6342/NTU202103730
dc.rights.note未授權
dc.date.accepted2021-10-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
U0001-1410202117532700.pdf
  未授權公開取用
9.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved