請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81756完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志宏(Jyh-Horng Chen) | |
| dc.contributor.author | Po-Wei Cheng | en |
| dc.contributor.author | 鄭柏暐 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:26:49Z | - |
| dc.date.available | 2022-11-24T09:26:49Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-26 | |
| dc.identifier.citation | [1] P. C. Lauterbur, 'Image formation by induced local interactions: examples employing nuclear magnetic resonance,' nature, vol. 242, no. 5394, pp. 190-191, 1973. [2] P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky, and J. S. Hyde, 'Time course EPI of human brain function during task activation,' Magnetic Resonance in Medicine, vol. 25, no. 2, pp. 390-397, 1992/06/01 1992, doi: 10.1002/mrm.1910250220. [3] K. K. Kwong et al., 'Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,' Proceedings of the National Academy of Sciences of the United States of America, vol. 89, pp. 5675-9, 07/01 1992, doi: 10.1073/pnas.89.12.5675. [4] P. J. Basser, J. Mattiello, and D. Lebihan, 'Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo,' Journal of Magnetic Resonance, Series B, vol. 103, no. 3, pp. 247-254, 1994/03/01/ 1994, doi: https://doi.org/10.1006/jmrb.1994.1037. [5] P. J. Basser, J. Mattiello, and D. LeBihan, 'MR diffusion tensor spectroscopy and imaging,' (in eng), Biophys J, vol. 66, no. 1, pp. 259-267, 1994, doi: 10.1016/S0006-3495(94)80775-1. [6] R. E. Amariglio et al., 'Subjective cognitive complaints and amyloid burden in cognitively normal older individuals,' (in eng), Neuropsychologia, vol. 50, no. 12, pp. 2880-2886, Oct 2012, doi: 10.1016/j.neuropsychologia.2012.08.011. [7] S. C. J. Verfaillie et al., 'Subjective Cognitive Decline Is Associated With Altered Default Mode Network Connectivity in Individuals With a Family History of Alzheimer's Disease,' (in eng), Biological psychiatry. Cognitive neuroscience and neuroimaging, vol. 3, no. 5, pp. 463-472, May 2018, doi: 10.1016/j.bpsc.2017.11.012. [8] M. A. Griswold et al., 'Generalized autocalibrating partially parallel acquisitions (GRAPPA),' (in eng), Magn Reson Med, vol. 47, no. 6, pp. 1202-10, Jun 2002, doi: 10.1002/mrm.10171. [9] K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, 'SENSE: sensitivity encoding for fast MRI,' (in eng), Magn Reson Med, vol. 42, no. 5, pp. 952-62, Nov 1999. [10] J. B. John and W. Hui Chuan, 'Nonuniform sampling and spiral MRI reconstruction,' in Proc.SPIE, 2000, vol. 4119. [Online]. Available: https://doi.org/10.1117/12.408588. [Online]. Available: https://doi.org/10.1117/12.408588 [11] C. B. Ahn, J. H. Kim, and Z. H. Cho, 'High-speed spiral-scan echo planar NMR imaging-I,' (in eng), IEEE transactions on medical imaging, vol. 5, no. 1, pp. 2-7, 1986, doi: 10.1109/tmi.1986.4307732. [12] E. Yudilevich and H. Stark, 'Spiral Sampling in Magnetic Resonance Imaging-The Effect of Inhomogeneities,' IEEE transactions on medical imaging, vol. 6, no. 4, pp. 337-345, 1987, doi: 10.1109/TMI.1987.4307852. [13] E. J. Candes and M. B. Wakin, 'An Introduction To Compressive Sampling,' IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21-30, 2008, doi: 10.1109/MSP.2007.914731. [14] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, 'Compressed Sensing MRI,' IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 72-82, 2008, doi: 10.1109/MSP.2007.914728. [15] E. L. Wu, Y. A. Huang, T. D. Chiueh, and J. H. Chen, 'Single-frequency excitation wideband MRI (SE-WMRI),' (in eng), Med Phys, vol. 42, no. 7, pp. 4320-8, Jul 2015, doi: 10.1118/1.4921420. [16] S. P. Souza, J. Szumowski, C. L. Dumoulin, D. P. Plewes, and G. Glover, 'SIMA: simultaneous multislice acquisition of MR images by Hadamard-encoded excitation,' (in eng), J Comput Assist Tomogr, vol. 12, no. 6, pp. 1026-30, Nov-Dec 1988. [17] G. H. Glover, 'Phase-offset multiplanar (POMP) volume imaging: a new technique,' (in eng), J Magn Reson Imaging, vol. 1, no. 4, pp. 457-61, Jul-Aug 1991, doi: 10.1002/jmri.1880010410. [18] D. J. Larkman, J. V. Hajnal, A. H. Herlihy, G. A. Coutts, I. R. Young, and G. Ehnholm, 'Use of multicoil arrays for separation of signal from multiple slices simultaneously excited,' (in eng), J Magn Reson Imaging, vol. 13, no. 2, pp. 313-7, Feb 2001, doi: 10.1002/1522-2586(200102)13:2<313::aid-jmri1045>3.0.co;2-w. [19] E. L. Wu, T.-D. Chiueh, and J.-H. Chen, 'Multiple-frequency excitation wideband MRI (ME-WMRI),' Medical Physics, vol. 41, no. 9, p. 092304, 2014/09/01 2014, doi: 10.1118/1.4893502. [20] S. Müller, 'Multifrequency selective rf pulses for multislice MR imaging,' Magnetic Resonance in Medicine, vol. 6, no. 3, pp. 364-371, 1988/03/01 1988, doi: 10.1002/mrm.1910060315. [21] G. H. Glover, 'Phase-offset multiplanar (POMP) volume imaging: a new technique,' (in eng), J Magn Reson Imaging, vol. 1, no. 4, pp. 457-461, 1991 Jul-Aug 1991, doi: 10.1002/jmri.1880010410. [22] D. J. Larkman, J. V. Hajnal, A. H. Herlihy, G. A. Coutts, I. R. Young, and G. Ehnholm, 'Use of multicoil arrays for separation of signal from multiple slices simultaneously excited,' Journal of Magnetic Resonance Imaging, vol. 13, no. 2, pp. 313-317, 2001/02/01 2001, doi: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W. [23] K. Setsompop, B. A. Gagoski, J. R. Polimeni, T. Witzel, V. J. Wedeen, and L. L. Wald, 'Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty,' Magnetic Resonance in Medicine, vol. 67, no. 5, pp. 1210-1224, 2012/05/01 2012, doi: 10.1002/mrm.23097. [24] F. A. Breuer, M. Blaimer, R. M. Heidemann, M. F. Mueller, M. A. Griswold, and P. M. Jakob, 'Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging,' Magnetic Resonance in Medicine, vol. 53, no. 3, pp. 684-691, 2005/03/01 2005, doi: 10.1002/mrm.20401. [25] J. Xu et al., 'Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI,' in Proceedings of the 20th Annual Meeting of ISMRM, 2012, vol. 2306. [26] D. A. Feinberg et al., 'Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging,' PLoS One, vol. 5, no. 12, p. e15710, 2010, doi: 10.1371/journal.pone.0015710. [27] H. M. Feldman, J. D. Yeatman, E. S. Lee, L. H. F. Barde, and S. Gaman-Bean, 'Diffusion tensor imaging: a review for pediatric researchers and clinicians,' (in eng), J Dev Behav Pediatr, vol. 31, no. 4, pp. 346-356, 2010, doi: 10.1097/DBP.0b013e3181dcaa8b. [28] N. H. Yuen, N. Osachoff, and J. J. Chen, 'Intrinsic Frequencies of the Resting-State fMRI Signal: The Frequency Dependence of Functional Connectivity and the Effect of Mode Mixing,' (in English), Frontiers in Neuroscience, Original Research vol. 13, no. 900, 2019-September-04 2019, doi: 10.3389/fnins.2019.00900. [29] D. A. Feinberg, A. T. Vu, and A. Beckett, 'Pushing the limits of ultra-high resolution human brain imaging with SMS-EPI demonstrated for columnar level fMRI,' NeuroImage, vol. 164, pp. 155-163, 2018/01/01/ 2018, doi: https://doi.org/10.1016/j.neuroimage.2017.02.020. [30] Y.-C. Hsu, Y.-H. Chu, S.-Y. Tsai, W.-J. Kuo, C.-Y. Chang, and F.-H. Lin, 'Simultaneous multi-slice inverse imaging of the human brain,' (in eng), Sci Rep, vol. 7, no. 1, pp. 17019-17019, 2017, doi: 10.1038/s41598-017-16976-0. [31] J. B. Weaver, 'Simultaneous multislice acquisition of MR images,' Magnetic Resonance in Medicine, vol. 8, no. 3, pp. 275-284, 1988/11/01 1988, doi: 10.1002/mrm.1910080305. [32] E. L. Wu et al., 'Ultra-fast brain MR imaging using simultaneous multi-slice acquisition (SMA) technique,' (in eng), Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, vol. 2007, pp. 2618-21, 2007, doi: 10.1109/iembs.2007.4352866. [33] E. Wu, J. Chen, and T. Chiueh, 'Wideband MRI: theoretical analysis and its applications,' in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010: IEEE, pp. 5681-5684. [34] R. Nunes, J. Hajnal, X. Golay, and D. J. Larkman, 'Simultaneous slice excitation and reconstruction for single shot EPI,' Proceedings of the 14th Annual Meeting of ISMRM, 01/01 2006. [35] P. Mansfield, 'Multi-planar image formation using NMR spin echoes,' Journal of Physics C: Solid State Physics, vol. 10, no. 3, pp. L55-L58, 1977/02/14 1977, doi: 10.1088/0022-3719/10/3/004. [36] K. Setsompop, B. A. Gagoski, J. R. Polimeni, T. Witzel, V. J. Wedeen, and L. L. Wald, 'Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty,' (in eng), Magn Reson Med, vol. 67, no. 5, pp. 1210-24, May 2012, doi: 10.1002/mrm.23097. [37] E. L. Wu, T. D. Chiueh, and J. H. Chen, 'Multiple-frequency excitation wideband MRI (ME-WMRI),' (in eng), Med Phys, vol. 41, no. 9, p. 092304, Sep 2014, doi: 10.1118/1.4893502. [38] H. Bruder, H. Fischer, H. E. Reinfelder, and F. Schmitt, 'Image reconstruction for echo planar imaging with nonequidistant k-space sampling,' (in eng), Magn Reson Med, vol. 23, no. 2, pp. 311-23, Feb 1992, doi: 10.1002/mrm.1910230211. [39] R. J. Ordidge and I. D. Cresshull, 'The correction of transient B0 field shifts following the application of pulsed gradients by phase correction in the time domain,' Journal of Magnetic Resonance (1969), vol. 69, no. 1, pp. 151-155, 1986/08/01/ 1986, doi: https://doi.org/10.1016/0022-2364(86)90228-3. [40] M. Beaumont, L. Lamalle, C. Segebarth, and E. L. Barbier, 'Improved k-space trajectory measurement with signal shifting,' Magnetic Resonance in Medicine, https://doi.org/10.1002/mrm.21254 vol. 58, no. 1, pp. 200-205, 2007/07/01 2007, doi: https://doi.org/10.1002/mrm.21254. [41] B. Fodor and T. Fingscheidt, 'Reference-free SNR Measurement for Narrowband and Wideband Speech Signals in Car Noise,' in Speech Communication; 10. ITG Symposium, 26-28 Sept. 2012 2012, pp. 1-4. [42] S. Ziegler, B. W. Jakoby, H. Braun, D. H. Paulus, and H. H. Quick, 'NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging,' (in eng), EJNMMI physics, vol. 2, no. 1, p. 18, Dec 2015, doi: 10.1186/s40658-015-0122-3. [43] W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, 'Image quality assessment: from error visibility to structural similarity,' IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004. [44] G. Paxinos and C. Watson, The rat brain in stereotaxic coordinates: hard cover edition. Elsevier, 2006. [45] S. B. Vos, D. K. Jones, M. A. Viergever, and A. Leemans, 'Partial volume effect as a hidden covariate in DTI analyses,' (in eng), Neuroimage, vol. 55, no. 4, pp. 1566-76, Apr 15 2011, doi: 10.1016/j.neuroimage.2011.01.048. [46] D. G. Norris, P. J. Koopmans, R. Boyacioğlu, and M. Barth, 'Power independent of number of slices (PINS) radiofrequency pulses for low-power simultaneous multislice excitation,' Magnetic Resonance in Medicine, https://doi.org/10.1002/mrm.23152 vol. 66, no. 5, pp. 1234-1240, 2011/11/01 2011, doi: https://doi.org/10.1002/mrm.23152. [47] F. H. Wu, E. L. Wu, Y. H. Tung, P. W. Cheng, T. D. Chiueh, and J. H. Chen, 'A specific absorption rate reduction method for simultaneous multislice magnetic resonance imaging,' (in eng), Rev Sci Instrum, vol. 88, no. 4, p. 043701, Apr 2017, doi: 10.1063/1.4979861. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81756 | - |
| dc.description.abstract | 磁振造影是生物醫學研究的一種強大且非侵入性的成像方式,磁振造影還提供了相當多的對比影像,例如 T1、T2、T2*、質子密度等,在生物醫學應用中利用磁振造影,可以提供神經造影和分子成像的分析。在過去的幾年裡,磁振造影已成為研究患病大腦病理生理學的重要工具,但是現代的磁振造影技術空間和時間的分辨率仍屬偏低。 寬頻磁振造影利用通訊系統的概念,增加造影的頻寬來加速成像,在這項研究中,我們提出了兩種寬頻磁振造影技術來提高成像過程的空間/時間分辨率,分別是對單張掃描加速的技術Single-Excited Wideband MRI (SE-WMRI),以及可以同時掃描截取多張影像的Multi-Excited Wideband MRI (ME-WMRI),本論文從理論基礎到實作在造影平台上,加上影像後處理來確保影像品質,通過序列設計和充分的信號處理,不受硬體限制即可獲得加速造影成像。 所提出的寬頻磁振技術研究,可以提供更快、更高分辨率、更薄的切片成像或更高信雜比的磁振造影成像,在西門子的3T MRI上利用SE-WMRI提供了上述的人體大腦掃描結果。在動物儀器的Bruker 7T MRI實現了ME-WMRI的快速掃描應用,這些技術可以全面增強造影技術,不僅可應用於高解析神經結構成像,在擴散張量影像和功能性磁振造影連接分析研究有所幫助,提升該神經結構的精確定量分析。在SE-WMRI中,相同時間下可以提升人體大腦解析度從1mm2到0.5mm2,也可以將時間轉成提高訊雜比,相同時間下訊雜比從33.34提升到48.75。而ME-WMRI提供了神經掃描的增強,包含擴散張量影項(DTI)及功能性磁振造影(fMRI),該技術提升SNR來達到穩定的神經分析,使方向性強度的誤差減少56.9% (從0.072到0.041),角度差減少了64% (從25.3⁰到16.2⁰)。 在我們提出的SE-WMRI上適用於大範圍編碼的掃描,在高空間解析度但需要長時間的掃描特別適用,此項技術使用斜向採樣來達到加速,會因為待測物的形狀而有不同的加速倍率,在長型的掃描如脊椎或全身掃描使用3D SE-WMRI可以達到約10倍加速,在正方形的待測物則約3倍加速;而ME-WMRI適應於需要更高時間解析度的掃描,在高速掃描序列Echo-Planar Imaging (EPI)上,ME-WMRI的技術可以進一步使掃描時間縮短,使得功能性磁振造影有更高的時間解析約2倍,能進一步使頭動雜訊減少得到穩定的分析結果。如果要達到更高的掃描倍率,受限於梯度磁場的分辨率、切換率及RF吸收率,寬頻磁振造影可以結合其他加速技巧如Hadamard及Parallel Imaging來進一步加速。 寬頻磁振造影帶來更高的時間/空間分辨率,適用於各種人類/動物儀器,該技術使任何當前的 MRI 系統都能夠轉變為更快更清楚的掃描,提供病患好的醫療品質,不需要增加額外硬體設備。總而言之,所提出的寬頻磁振技術,希望為精準醫學提供快速、高分辨率和高質量掃描,來造福世界各國的人們。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:26:49Z (GMT). No. of bitstreams: 1 U0001-2110202113334000.pdf: 6092497 bytes, checksum: 75b25f86d9eff70d1bdd205b1ab7a8d2 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii Abstract iv Contents vi List of Figure ix List of Table xii Chapter 1 Introduction 1 1.1 Background Motivation 1 1.2 Goals 1 1.3 Organization of the thesis 2 Chapter 2 Basics of MRI and Acceleration Methods 3 2.1 MRI basic 3 2.2 MRI Theory 6 2.2.1 Signal Collection 6 2.2.2 MRI Sequence 7 2.2.3 Acquisition and Reconstruction 8 2.3 MRI Acceleration Methods 10 2.3.1 MRI Scan Time 10 2.4 Reduced Phase-Encoding Methods 10 2.4.1 Parallel Imaging Technique 10 2.4.2 Non-Cartesian Acquisition 11 2.4.3 Compressed Sensing Method 13 2.4.4 Single-Frequency Excitation Wideband MRI (SE-WMRI) 14 2.5 Simultaneous Multi-Slice Methods 15 2.5.1 Hadamard-encoded RF pulses 15 2.5.2 Phase-offset multi-planar (POMP) 17 2.5.3 Array Coils for Simultaneous Multiple Slice Excitation 18 2.5.4 Multiple-Frequency Excitation Wideband MRI (ME-WMRI) 19 Chapter 3 Single-Frequency Excitation Wideband MRI (SE-WMRI) 20 3.1. Brief introduction to SE-WMRI 20 3.2. Increased k-space Coverage with Zig-Zag Sequence 21 3.3. Trajectory Measurement and Regridding Images 23 3.4. Methods and Experiment Setup 25 3.4.1 Phantom Scan 25 3.4.2 Rat Brain Scan 27 Chapter 4 Multiple-Frequency Excitation Wideband MRI (ME-WMRI) 30 4.1 Introduction 30 4.2 Echo Planar Image 32 4.3 Apply ME-WMRI on Echo Planar Imaging Sequence 34 4.3.1 Coherent Wideband EPI Sequence 34 4.3.2 Zero phase N/2 artifact mitigation: EPI Reconstruction 36 4.3.3 Slice Dependent Phase Alignment: Wideband Reconstruction 38 4.3.4 Similarity and difference between Blipped-CAIPI and Coherent Wideband 40 4.4 Phantom Experiment 41 4.4.1 Experiment Setup 41 4.4.2 Phantom Results 41 4.5 Rodent Brain Experiment 43 4.5.1 Rodent Results: 2X temporal resolution 43 4.5.2 Rodent Results: 2X spatial resolution 44 Chapter 5 Applications of Wideband 46 5.1 SE-WMRI Applications 46 5.1.1 In Vivo High Resolution Rat Spine Study Utilizing SE-WMRI Diffusion 46 5.1.2 SE-WMRI accelerated fast spin echo imaging 49 5.1.3 Middle Cerebral Artery distinctness improvement in MR imaging using High-Resolution SE-WMRI 52 5.1.4 Comprehensive Human Brain Imaging Enhancement with SE-WMRI 54 5.2 MR-WMRI Applications 61 5.2.1 MR Diffusion Studies Using Coherent Wideband EPI technique 61 5.2.2 Reducing the partial volume effect on diffusion tractography utilizing Coherent Wideband EPI technique 66 5.2.3 A Study of 2X Temporal Resolution Coherent Wideband EPI in fMRI 69 5.2.4 A Study of 2X Temporal Resolution Coherent Wideband EPI in resting-fMRI 71 Chapter 6 DISCUSSION 74 6.1 Introduction 74 6.2 Echo Time (TE) limitations 75 6.3 TR/T1 Effect in Wideband experiments 75 6.4 The separation limitation of multi-slice distance 77 6.5 DTI Precision Analyses 78 6.6 The effect of increasing field of view 79 6.7 Diffusion tractography between conventional and wideband scan 81 6.8 Compatibility with current acceleration techniques 82 6.9 Acceleration Factor Limitation 83 Chapter 7 Conclusion and Future work 89 7.1. Conclusion 89 7.2. Future work 90 7.2.1. Combine with other acceleration technique 90 7.2.2. 3D Wideband Technique 90 7.2.3. Apply Wideband Technique to each sequence 91 7.2.4. Upgrade the MR system 93 Reference 94 | |
| dc.language.iso | en | |
| dc.subject | 功能性連結 | zh_TW |
| dc.subject | 磁振造影 | zh_TW |
| dc.subject | 寬頻磁振造影 | zh_TW |
| dc.subject | 快速迴波序列 | zh_TW |
| dc.subject | 高時間/空間解析度 | zh_TW |
| dc.subject | 擴散張量影像 | zh_TW |
| dc.subject | Functional connectivity | en |
| dc.subject | Magnetic resonance imaging | en |
| dc.subject | Wideband | en |
| dc.subject | Echo Planar Imaging | en |
| dc.subject | High temporal/spatial | en |
| dc.subject | Diffusion Weight Imaging | en |
| dc.title | 新世代磁振造影技術:高時空解析度寬頻磁振造影序列開發及應用 | zh_TW |
| dc.title | Investigation of Wideband MRI for High Temporal/Spatial Resolution Imaging | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 闕志達(Tzi-Dar Chiueh) | |
| dc.contributor.oralexamcommittee | 邱銘章(Hsin-Tsai Liu),張允中(Chih-Yang Tseng),林靜嫻,陳雅芳,廖漢文,陳榮邦,林慶波 | |
| dc.subject.keyword | 磁振造影,寬頻磁振造影,快速迴波序列,高時間/空間解析度,擴散張量影像,功能性連結, | zh_TW |
| dc.subject.keyword | Magnetic resonance imaging,Wideband,Echo Planar Imaging,High temporal/spatial,Diffusion Weight Imaging,Functional connectivity, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU202103967 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2110202113334000.pdf 未授權公開取用 | 5.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
