請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81752完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳焜裕(Kuen-Yuh Wu) | |
| dc.contributor.author | Lien-Yao Chou | en |
| dc.contributor.author | 周煉堯 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:26:45Z | - |
| dc.date.available | 2022-11-24T09:26:45Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-25 | |
| dc.identifier.citation | Adamse, P., Van der Fels-Klerx, H. J. I., de Jong, J. (2017, Aug). Cadmium, lead, mercury and arsenic in animal feed and feed materials - trend analysis of monitoring results. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 34(8), 1298-1311. https://doi.org/10.1080/19440049.2017.1300686 Adimalla, N. (2020, Jan). Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environ Geochem Health, 42(1), 59-75. https://doi.org/10.1007/s10653-019-00270-1 Anke, M., Kosla, T. and Groppel B. (1989). The cadmium status of horses from central Europe depending on breed, sex, age and living area. (Vol. 39). Arch. Anim. Nutr. https://doi.org/10.1080/17450398909428335 Arcella, D., Gergelova, P., Innocenti, M. L., López-Gálvez, G., Steinkellner, H. (2019, 2019/06/01). Occurrence data of nickel in feed and animal exposure assessment [https://doi.org/10.2903/j.efsa.2019.5754]. EFSA Journal, 17(6), e05754. Babaahmadifooladi, M., Jacxsens, L., Van de Wiele, T., Laing, G. D. (2020, 2020/03/01/). Gap analysis of nickel bioaccessibility and bioavailability in different food matrices and its impact on the nickel exposure assessment. Food Research International, 129, 108866. https://doi.org/https://doi.org/10.1016/j.foodres.2019.108866 Beaudouin, J., Shirley, R. L., Hammell, D. L. (1980, Apr). Effect of sewage sludge diets fed swine on nutrient digestibility, reproduction, growth and minerals in tissues. J Anim Sci, 50(4), 572-580. https://doi.org/10.2527/jas1980.504572x Bernard, A. (2008, Oct). Cadmium its adverse effects on human health. Indian J Med Res, 128(4), 557-564. https://www.ijmr.org.in Bersényi, A., Fekete, S. G., Szilágyi, M., Berta, E., Zöldág, L., Glávits, R. (2004). Effects of nickel supply on the fattening performance and several biochemical parameters of broiler chickens and rabbits. Acta Vet Hung, 52(2), 185-197. https://doi.org/10.1556/AVet.52.2004.2.7 Brown, R. P., Delp, M. D., Lindstedt, S. L., Rhomberg, L. R., Beliles, R. P. (1997, Jul-Aug). Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health, 13(4), 407-484. https://doi.org/10.1177/074823379701300401 Cain, B. W., Pafford, E. A. (1981, Nov). Effects of dietary nickel on survival and growth of mallard ducklings. Arch Environ Contam Toxicol, 10(6), 737-745. https://doi.org/10.1007/bf01054857 Cataldo, D. A., Garland, T. R., Wildung, R. E. (1978, Oct). Nickel in Plants: II. Distribution and Chemical Form in Soybean Plants. Plant Physiol, 62(4), 566-570. https://doi.org/10.1104/pp.62.4.566 Chen, S. S., Lin, Y. W., Kao, Y. M., Shih, Y. C. (2013). Trace elements and heavy metals in poultry and livestock meat in Taiwan. Food Addit Contam Part B Surveill, 6(4), 231-236. https://doi.org/10.1080/19393210.2013.804884 Chung, J., Nartey, N. O., Cherian, M. G. (1986, Sep-Oct). Metallothionein levels in liver and kidney of Canadians--a potential indicator of environmental exposure to cadmium. Arch Environ Health, 41(5), 319-323. https://doi.org/10.1080/00039896.1986.9936704 Darwish, W. S., Atia, A. S., Khedr, M. H. E., Eldin, W. F. S. (2018, Jul). Metal contamination in quail meat: residues, sources, molecular biomarkers, and human health risk assessment. Environ Sci Pollut Res Int, 25(20), 20106-20115. https://doi.org/10.1007/s11356-018-2182-0 Dede, E., Tindall, M. J., Cherrie, J. W., Hankin, S., Collins, C. (2018, Jan). Physiologically-based pharmacokinetic and toxicokinetic models for estimating human exposure to five toxic elements through oral ingestion. Environ Toxicol Pharmacol, 57, 104-114. https://doi.org/10.1016/j.etap.2017.12.003 Diab, H. M., Alkahtani, M. A., Ahmed, A. S., Khalil, A. M., Alshehri, M. A., Ahmed, M. A. A., Rehan, I. F., Elmansi, A. A., Ahmed, A. E. (2020, Jun). Coexistence of diverse heavy metal pollution magnitudes: Health risk assessment of affected cattle and human population in some rural regions, Qena, Egypt. J Adv Vet Anim Res, 7(2), 345-359. https://doi.org/10.5455/javar.2020.g428 Diyabalanage, S., Kalpage, M. D., Mohotti, D. G., Dissanayake, C. K. K., Fernando, R., Frew, R. D., Chandrajith, R. (2021, Apr). Comprehensive Assessment of Essential and Potentially Toxic Trace Elements in Bovine Milk and Their Feeds in Different Agro-climatic Zones of Sri Lanka. Biol Trace Elem Res, 199(4), 1377-1388. https://doi.org/10.1007/s12011-020-02242-4 Dorne, J. L., Fink-Gremmels, J. (2013, Aug 1). Human and animal health risk assessments of chemicals in the food chain: comparative aspects and future perspectives. Toxicol Appl Pharmacol, 270(3), 187-195. https://doi.org/10.1016/j.taap.2012.03.013 Eastin, W. C., O'Shea, T. J. (1981, 1981/06/01). Effects of dietary nickel on mallards. Journal of Toxicology and Environmental Health, 7(6), 883-892. https://doi.org/10.1080/15287398109530031 EC. (2002). DIRECTIVE 2002/32/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 7 May 2002 on undesirable substances in animal feed. Official Journal of the European Communities, 140(10). http://data.europa.eu/eli/dir/2002/32/oj EC. (2005). Regulation (EC) No 183/2005 of the European Parliament and of the Council of 12 January 2005 laying down requirements for feed hygiene. Official Journal of the European Communities, 35(1), 1-22. http://data.europa.eu/eli/reg/2005/183/oj EFSA. (2004). Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to cadmium as undesirable substance in animal feed. EFSA Journal, 2(6), 72. https://doi.org/10.2903/j.efsa.2004.72 EFSA. (2009, 2009/03/01). Cadmium in food - Scientific opinion of the Panel on Contaminants in the Food Chain. EFSA Journal, 7(3), 980. https://doi.org/10.2903/j.efsa.2009.980 EFSA. (2015a). Scientific Opinion on the risks to animal and public health and the environment related to the presence of nickel in feed. EFSA Journal, 13(4), 4074. https://doi.org/10.2903/j.efsa.2015.4074 EFSA. (2015b). Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA Journal, 13(2), 4002. https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2015.4002 Elinder, C. G., Edling, C., Lindberg, E., Kågedal, B., Vesterberg, O. (1985, Nov). Assessment of renal function in workers previously exposed to cadmium. Br J Ind Med, 42(11), 754-760. https://doi.org/10.1136/oem.42.11.754 EU. (2013a). Commission Regulation (EU) No 68/2013 of 16 January 2013 on the Catalogue of feed materials. Official Journal of the European Union, 29(1), 1-64. http://data.europa.eu/eli/reg/2013/68/oj EU. (2013b). Commission Regulation (EU) No 1275/2013 of 6 December 2013 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, cadmium, lead, nitrites, volatile mustard oil and harmful botanical impurities. Official Journal of the European Union, 328, 86-92. http://data.europa.eu/eli/reg/2013/1275/oj Haddad, S., Pelekis, M., Krishnan, K. (1996, May). A methodology for solving physiologically based pharmacokinetic models without the use of simulation softwares. Toxicol Lett, 85(2), 113-126. https://doi.org/10.1016/0378-4274(96)03648-x Hashemi, M. (2018, Jun 15). Heavy metal concentrations in bovine tissues (muscle, liver and kidney) and their relationship with heavy metal contents in consumed feed. Ecotoxicol Environ Saf, 154, 263-267. https://doi.org/10.1016/j.ecoenv.2018.02.058 Hashemi, M. (2020, Mar). Heavy metals concentrations in dairy cow feedstuffs from the south of Iran. Food Addit Contam Part B Surveill, 13(1), 10-15. https://doi.org/10.1080/19393210.2019.1668866 Heffron, C. L., Reid, J. T., Elfving, D. C., Stoewsand, G. S., Haschek, W. M., Telford, J. N., Furr, A. K., Parkinson, T. F., Bache, C. A., Gutenmann, W. H., Wszolek, P. C., Lisk, D. J. (1980, Jan-Feb). Cadmium and zinc in growing sheep fed silage corn grown on municipal sludge amended soil. J Agric Food Chem, 28(1), 58-61. https://doi.org/10.1021/jf60227a005 Hu, Y., Zhang, W., Chen, G., Cheng, H., Tao, S. (2018, Mar). Public health risk of trace metals in fresh chicken meat products on the food markets of a major production region in southern China. Environ Pollut, 234, 667-676. https://doi.org/10.1016/j.envpol.2017.12.006 Johnson, D. E., Kienholz, E. W., Baxter, J. C., Spangler, E., Ward, G. M. (1981, Jan). Heavy metal retention in tissues of cattle fed high cadmium sewage sludge. J Anim Sci, 52(1), 108-114. https://doi.org/10.2527/jas1981.521108x Kim, D. W., Kim, K. Y., Choi, B. S., Youn, P., Ryu, D. Y., Klaassen, C. D., Park, J. D. (2007, May). Regulation of metal transporters by dietary iron, and the relationship between body iron levels and cadmium uptake. Arch Toxicol, 81(5), 327-334. https://doi.org/10.1007/s00204-006-0160-7 Kirchgessner, M., Roth, F. X. (1977, Dec). [Influence of dietary Ni supplements on the growth of piglets]. Z Tierphysiol Tierernahr Futtermittelkd, 39(5-6), 277-281. http://publications.rwth-aachen.de/record/552538 (Zum Einfluss von Ni-Zulagen auf das Wachstum von Ferkeln.) Kjellström, T. (1992). Mechanism and epidemiology of bone effects of cadmium. IARC Sci Publ(118), 301-310. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications Kjellström, T., Nordberg, G. F. (1978, 1978/01/01/). A kinetic model of cadmium metabolism in the human being. Environmental Research, 16(1), 248-269. https://doi.org/https://doi.org/10.1016/0013-9351(78)90160-3 Korish, M. A., Attia, Y. A. (2020, Apr 22). Evaluation of Heavy Metal Content in Feed, Litter, Meat, Meat Products, Liver, and Table Eggs of Chickens. Animals (Basel), 10(4). https://doi.org/10.3390/ani10040727 Kostial, K. (1986). Cadmium. In: Mertz, W. (Ed.). Trace elements in human and animal nutrition. (5th ed.). Academic Press, INC. San Diego. https://www.elsevier.com/books/trace-elements-in-human-and-animal-nutrition/mertz/978-0-08-092469-4 Lamb, D. T., Kader, M., Ming, H., Wang, L., Abbasi, S., Megharaj, M., Naidu, R. (2016, Oct). Predicting plant uptake of cadmium: validated with long-term contaminated soils. Ecotoxicology, 25(8), 1563-1574. https://doi.org/10.1007/s10646-016-1712-0 Lamphere, D. N., Dorn, C. R., Reddy, C. S., Meyer, A. W. (1984, Feb). Reduced cadmium body burden in cadmium-exposed calves fed supplemental zinc. Environ Res, 33(1), 119-129. https://doi.org/10.1016/0013-9351(84)90013-6 Lautz, L. S., Oldenkamp, R., Dorne, J. L., Ragas, A. M. J. (2019, 2019/10/01/). Physiologically based kinetic models for farm animals: Critical review of published models and future perspectives for their use in chemical risk assessment. Toxicology in Vitro, 60, 61-70. https://doi.org/https://doi.org/10.1016/j.tiv.2019.05.002 Leach, R. M., Jr., Wang, K. W., Baker, D. E. (1979, Mar). Cadmium and the food chain: the effect of dietary cadmium on tissue composition in chicks and laying hens. J Nutr, 109(3), 437-443. https://doi.org/10.1093/jn/109.3.437 Leeman, W. R., Van Den Berg, K. J., Houben, G. F. (2007, Jan). Transfer of chemicals from feed to animal products: The use of transfer factors in risk assessment. Food Addit Contam, 24(1), 1-13. https://doi.org/10.1080/02652030600815512 Li, M., Wang, Y. S., Elwell-Cuddy, T., Baynes, R. E., Tell, L. A., Davis, J. L., Maunsell, F. P., Riviere, J. E., Lin, Z. (2020, Dec 22). Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part III: Sheep and goat. J Vet Pharmacol Ther. https://doi.org/10.1111/jvp.12938 Li, Y., McCrory, D. F., Powell, J. M., Saam, H., Jackson-Smith, D. (2005, Aug). A survey of selected heavy metal concentrations in Wisconsin dairy feeds. J Dairy Sci, 88(8), 2911-2922. https://doi.org/10.3168/jds.S0022-0302(05)72972-6 Lin, Y.-J., Lin, P. (2019, 2019/02/01). Probabilistic Integrated Human Mixture Risk Assessment of Multiple Metals Through Seafood Consumption [https://doi.org/10.1111/risa.13183]. Risk Analysis, 39(2), 426-438. https://doi.org/https://doi.org/10.1111/risa.13183 Lin, Z., Li, M., Wang, Y. S., Tell, L. A., Baynes, R. E., Davis, J. L., Vickroy, T. W., Riviere, J. E. (2020, Sep). Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine. J Vet Pharmacol Ther, 43(5), 385-420. https://doi.org/10.1111/jvp.12861 Ling, J. R., Leach, R. M., Jr. (1979, May). Studies on nickel metabolism: interaction with other mineral elements. Poult Sci, 58(3), 591-596. https://doi.org/10.3382/ps.0580591 Lucia, M., André, J. M., Gontier, K., Diot, N., Veiga, J., Davail, S. (2010, Apr). Trace element concentrations (mercury, cadmium, copper, zinc, lead, aluminium, nickel, arsenic, and selenium) in some aquatic birds of the southwest Atlantic coast of France. Arch Environ Contam Toxicol, 58(3), 844-853. https://doi.org/10.1007/s00244-009-9393-9 MacLachlan, D. J. (2010, Mar). Physiologically based pharmacokinetic (PBPK) model for residues of lipophilic pesticides in poultry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 27(3), 302-314. https://doi.org/10.1080/19440040903296683 Maruyama, W., Yoshida, K., Tanaka, T., Nakanishi, J. (2002, Feb). Determination of tissue-blood partition coefficients for a physiological model for humans, and estimation of dioxin concentration in tissues. Chemosphere, 46(7), 975-985. https://doi.org/10.1016/s0045-6535(01)00208-9 Morgan, H., Sherlock, J. C. (1984, Jan-Mar). Cadmium intake and cadmium in the human kidney. Food Addit Contam, 1(1), 45-51. https://doi.org/10.1080/02652038409385822 Mortensen, A., Granby, K., Eriksen, F. D., Cederberg, T. L., Friis-Wandall, S., Simonsen, Y., Broesbøl-Jensen, B., Bonnichsen, R. (2014). Levels and risk assessment of chemical contaminants in byproducts for animal feed in Denmark. J Environ Sci Health B, 49(11), 797-810. https://doi.org/10.1080/03601234.2014.938546 Nicholson, F. A., Chambers, B. J., Williams, J. R., Unwin, R. J. (1999, 1999/10/01/). Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresource Technology, 70(1), 23-31. https://doi.org/https://doi.org/10.1016/S0960-8524(99)00017-6 Nordberg, G. F., Piscator, M., Nordberg, M. (1971). On the distribution of cadmium in blood. Acta Pharmacol Toxicol (Copenh), 30(3), 289-295. https://doi.org/10.1111/j.1600-0773.1971.tb00660.x O'Dell, G. D., Miller, W. J., King, W. A., Moore, S. L., Blackmon, D. M. (1970, Dec). Nickel toxicity in the young bovine. J Nutr, 100(12), 1447-1453. https://doi.org/10.1093/jn/100.12.1447 Orjales, I., Herrero-Latorre, C., Miranda, M., Rey-Crespo, F., Rodríguez-Bermúdez, R., López-Alonso, M. (2018, Jun). Evaluation of trace element status of organic dairy cattle. Animal, 12(6), 1296-1305. https://doi.org/10.1017/s1751731117002890 Osuna, O., Edds, G. T., Popp, J. A. (1981, Sep). Comparative toxicity of feeding dried urban sludge and an equivalent amount of cadmium to swine. Am J Vet Res, 42(9), 1542-1546. https://avmajournals.avma.org/loi/ajvr/ Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., Moher, D. (2021, Mar 29). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj, 372, n71. https://doi.org/10.1136/bmj.n71 Plavnik, I., Hurwitz, S. (1983, Jan). Organ weights and body composition in chickens as related to the energy and amino acid requirements: effects of strain, sex, and age. Poult Sci, 62(1), 152-163. https://doi.org/10.3382/ps.0620152 Płaza, A., Gąsiorowska, B., Rzążewska, E. (2019, Oct 26). Heavy metal content in the green fodder of field pea/oat mixtures destined for cattle feed. Environ Monit Assess, 191(11), 680. https://doi.org/10.1007/s10661-019-7874-5 Pšenková, M., Toman, R., Tančin, V. (2020, Jul). Concentrations of toxic metals and essential elements in raw cow milk from areas with potentially undisturbed and highly disturbed environment in Slovakia. Environ Sci Pollut Res Int, 27(21), 26763-26772. https://doi.org/10.1007/s11356-020-09093-5 Qing, Y., Yang, J., Zhu, Y., Li, Y., Ma, W., Zhang, C., Li, X., Wu, M., Wang, H., Kauffman, A. E., Xiao, S., Zheng, W., He, G. (2020, 2020/09/10/). Cancer risk and disease burden of dietary cadmium exposure changes in Shanghai residents from 1988 to 2018. Science of The Total Environment, 734, 139411. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.139411 Schrenk, D., Bignami, M., Bodin, L., Chipman, J. K., Del Mazo, J., Grasl-Kraupp, B., Hogstrand, C., Hoogenboom, L. R., Leblanc, J. C., Nebbia, C. S., Ntzani, E., Petersen, A., Sand, S., Schwerdtle, T., Vleminckx, C., Wallace, H., Guérin, T., Massanyi, P., Van Loveren, H., Baert, K., Gergelova, P., Nielsen, E. (2020, Nov). Update of the risk assessment of nickel in food and drinking water. Efsa j, 18(11), e06268. https://doi.org/10.2903/j.efsa.2020.6268 Solomons, N. W., Viteri, F., Shuler, T. R., Nielsen, F. H. (1982, Jan). Bioavailability of nickel in man: effects of foods and chemically-defined dietary constituents on the absorption of inorganic nickel. J Nutr, 112(1), 39-50. https://doi.org/10.1093/jn/112.1.39 Spears, J. W., Harvey, R. W., Samsell, L. J. (1986, Oct). Effects of dietary nickel and protein on growth, nitrogen metabolism and tissue concentrations of nickel, iron, zinc, manganese and copper in calves. J Nutr, 116(10), 1873-1882. https://doi.org/10.1093/jn/116.10.1873 Spears, J. W., Jones, E. E., Samsell, L. J., Armstrong, W. D. (1984, May). Effect of dietary nickel on growth, urease activity, blood parameters and tissue mineral concentrations in the neonatal pig. J Nutr, 114(5), 845-853. https://doi.org/10.1093/jn/114.5.845 Sunderman, F. W., Jr., Hopfer, S. M., Sweeney, K. R., Marcus, A. H., Most, B. M., Creason, J. (1989, May). Nickel absorption and kinetics in human volunteers. Proc Soc Exp Biol Med, 191(1), 5-11. https://doi.org/10.3181/00379727-191-42881 Tao, C., Wei, X., Zhang, B., Zhao, M., Wang, S., Sun, Z., Qi, D., Sun, L., Rajput, S. A., Zhang, N. (2020, May 1). Heavy Metal Content in Feedstuffs and Feeds in Hubei Province, China. J Food Prot, 83(5), 762-766. https://doi.org/10.4315/0362-028x.Jfp-18-539 USEPA. (2005). Guidelines for carcinogen risk assessment. EPA/630/P-03/001F. Risk Assessment Forum. https://www.epa.gov/risk/guidelines-carcinogen-risk-assessment Van Bruwaene, R., Gerber, G. B., Kirchmann, R., Colard, J. (1982, 1982/05/01). Transfer and distribution of radioactive cadmium in dairy cows. International Journal of Environmental Studies, 19(1), 47-51. https://doi.org/10.1080/00207238208709964 Waalkes, M. P., Anver, M. R., Diwan, B. A. (1999, Oct 29). Chronic toxic and carcinogenic effects of oral cadmium in the Noble (NBL/Cr) rat: induction of neoplastic and proliferative lesions of the adrenal, kidney, prostate, and testes. J Toxicol Environ Health A, 58(4), 199-214. https://doi.org/10.1080/009841099157296 Waegeneers, N., Ruttens, A., De Temmerman, L. (2011, Jun 15). A dynamic model to calculate cadmium concentrations in bovine tissues from basic soil characteristics. Sci Total Environ, 409(14), 2815-2823. https://doi.org/10.1016/j.scitotenv.2011.04.005 Wang, Y. S., Li, M., Tell, L. A., Baynes, R. E., Davis, J. L., Vickroy, T. W., Riviere, J. E., Lin, Z. (2020, Dec 2). Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part II: Chicken and turkey. J Vet Pharmacol Ther. https://doi.org/10.1111/jvp.12931 Wentink, G. H., Wensing, T., Baars, A. J., van Beek, H., Zeeuwen, A. A., Schotman, A. J. (1988, Jan). Effects of cadmium on some clinical and biochemical measurements in heifers. Bull Environ Contam Toxicol, 40(1), 131-138. https://doi.org/10.1007/bf01689399 White, D. H., Finley, M. T. (1978, Aug). Uptake and retention of dietary cadmium in mallard ducks. Environ Res, 17(1), 53-59. https://doi.org/10.1016/0013-9351(78)90060-9 Wolf, P., Cappai, M. G. (2021, Mar). Levels of Pb and Cd in Single Feeding Stuffs and Compound Feeds for Poultry. Biol Trace Elem Res, 199(3), 1074-1079. https://doi.org/10.1007/s12011-020-02197-6 Yousuf, M. B. (2002). Effect of high dietary intake of nickel in the West African dwarf goat. Ghana Jnl agric, 1(35), 147-151. https://doi.org/10.4314/gjas.v35i1.1855 Yusuf, M., Fariduddin, Q., Hayat, S., Ahmad, A. (2011, Jan). Nickel: an overview of uptake, essentiality and toxicity in plants. Bull Environ Contam Toxicol, 86(1), 1-17. https://doi.org/10.1007/s00128-010-0171-1 Zalups, R. K., Ahmad, S. (2003, Feb 1). Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol, 186(3), 163-188. https://doi.org/10.1016/s0041-008x(02)00021-2 Zhao, H., Ge, P., Chang, X., Ren, X., Chen, L., Gao, J., Hu, J., Li, X. (2017, Sep). [Physiologically based toxicokinetic model for nickel]. Wei Sheng Yan Jiu, 46(5), 797-801. https://europepmc.org/article/med/29903311 Zhou, X., Zheng, N., Su, C., Wang, J., Soyeurt, H. (2019, Dec). Relationships between Pb, As, Cr, and Cd in individual cows' milk and milk composition and heavy metal contents in water, silage, and soil. Environ Pollut, 255(Pt 2), 113322. https://doi.org/10.1016/j.envpol.2019.113322 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81752 | - |
| dc.description.abstract | "鎘與鎳廣泛分佈於土壤中,待其被農作物吸收,將這些農產品用作家禽與家畜的飼料,長期餵食可能導致鎘與鎳殘留在他們的肉與內臟,人再食用這些肉類產品就會暴露鎘與鎳。已有文獻指出攝取過量的鎘會對人體造成腎臟與骨頭的慢性損傷,如痛痛病(Itai-Itai Disease);長期暴露鎳亦會導致生殖系統或發育異常;為維護消費者健康,歐洲食品安全局(EFSA)已訂定鎘的每週容許攝入量(Tolerable weekly intake, TWI)為2.5 μg/kg-week以及鎳的每日容許攝入量(Tolerable daily intake, TDI)為2.8 μg/kg-day。本研究旨在建立群體生理基礎藥物動力學(Population physiologically based pharmacokinetics, PPBPK)模式,以模擬牛、羊、豬與雞、鴨、鵝群,因每天食用含鎘、含鎳飼料,最後在肉與內臟產品中鎘與鎳含量的分佈,並利用國家攝食資料庫執行機率暴露與風險評估,評估結果將可提供政府作為制定飼料中鎘與鎳殘留標準之參考。首先搜集上述家畜和家禽類的群體解剖生理參數以建構PPBPK模式,並根據文獻報告鎘與鎳於動物體中殘留量驗證之。接著考慮動物之飼料攝取量、體重、飼料鎘與鎳殘留量、PPBPK模式參數及國人之肉品攝食量、體重皆為統計分佈,因此使用Crystal Ball軟體進行蒙地卡羅模擬(Monte Carlo simulations)以完成機率健康風險評估(10,000 trials)。總體暴露評估依EFSA飼料限量標準進行,結果顯示,在消費者族群中,鎘與鎳的危害指數(Hazard index, HI)皆大於1,且各年齡95%以上的族群,鎘與鎳的致癌風險皆大於10-6;建議應根據現有科學資訊,重新執行健康風險評估,修定飼料鎘的限量基準,並制定飼料鎳的相關標準以維護國人健康。" | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:26:45Z (GMT). No. of bitstreams: 1 U0001-2210202120550900.pdf: 6074345 bytes, checksum: 1296efcd40f13fa578fcdb402086e0d7 (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract iv 目 錄 vi 圖目錄 viii 表目錄 xii 第一章 緒論 1 1.1 研究背景 1 1.2 飼料鎘來源及分佈 2 1.3 飼料鎳來源及分佈 2 1.4 飼料法規標準 3 1.4.1 鎘之最大殘留量 3 1.4.2 鎳之最大殘留量 5 1.5 飼料鎘與鎳的健康風險評估 7 1.5.1 轉移因子 8 1.5.2 分配係數 9 1.6 研究目的 10 第二章 材料與方法 11 2.1 研究架構 11 2.2 系統性文獻回顧 12 2.3 建構利用群體的生理基礎藥物動力學模式 12 2.3.1 鎘之生理基礎藥物動力學模式及其參數 13 2.3.2 鎳之生理基礎藥物動力學模式及其參數 15 2.4 群體基礎之動物生理參數 17 2.5 國家攝食資料庫 18 2.6 非致癌性風險評估 18 2.6.1 鎘的非致癌性風險評估 19 2.6.2 鎳的非致癌性風險評估 21 2.7 致癌性風險評估 22 2.7.1 鎘的致癌性風險評估 22 2.7.2 鎳的致癌性風險評估 23 2.8 統計分析及軟體 24 第三章 結果與討論 25 3.1 利用群體的生理基礎藥物動力學模式驗證 25 3.1.1 鎘之利用群體的生理基礎藥代動力學模式驗證 25 3.1.2 鎳之利用群體的生理基礎藥代動力學模式驗證 28 3.1.3 相關性分析 30 3.2 暴露評估結果 30 3.3 風險特性化結果 32 3.3.1 機率危害指數評估 32 3.3.2 機率致癌風險 33 3.3.3 敏感度分析 33 3.4 與其他食物的風險比較 35 3.5 與國際肉品攝食風險比較 37 3.6 建議修訂飼料鎘與鎳的最大限量 38 3.7 研究限制 40 第四章 結論 42 參考文獻 43 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生理基礎藥物動力學模式 | zh_TW |
| dc.subject | 飼料 | zh_TW |
| dc.subject | 鎘 | zh_TW |
| dc.subject | 鎳 | zh_TW |
| dc.subject | 健康風險評估 | zh_TW |
| dc.subject | PBPK model | en |
| dc.subject | Cadmium | en |
| dc.subject | Nickel | en |
| dc.subject | Health risk assessment | en |
| dc.subject | Feed | en |
| dc.title | 利用群體的生理基礎藥物動力學進行飼料鎘與鎳之機率健康風險評估 | zh_TW |
| dc.title | Probabilistic Health Risk Assessment for Cadmium and Nickel in Animal Feed: A Population Physiologically-Based Pharmacokinetics Approach | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | 吳焜裕(0000-0003-1388-475X) | |
| dc.contributor.oralexamcommittee | 江素瑛(Hsin-Tsai Liu),周晉澄(Chih-Yang Tseng),鄭尊仁,羅宇軒 | |
| dc.subject.keyword | 飼料,鎘,鎳,健康風險評估,生理基礎藥物動力學模式, | zh_TW |
| dc.subject.keyword | Feed,Cadmium,Nickel,Health risk assessment,PBPK model, | en |
| dc.relation.page | 147 | |
| dc.identifier.doi | 10.6342/NTU202104056 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-26 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 食品安全與健康研究所 | zh_TW |
| 顯示於系所單位: | 食品安全與健康研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2210202120550900.pdf 未授權公開取用 | 5.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
