Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81749
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林永松(Yeong-Sung Lin)
dc.contributor.authorWei-Cheng Shihen
dc.contributor.author石偉呈zh_TW
dc.date.accessioned2022-11-24T09:26:42Z-
dc.date.available2022-11-24T09:26:42Z-
dc.date.copyright2021-11-04
dc.date.issued2021
dc.date.submitted2021-10-25
dc.identifier.citation[1] W. Xiang, K. Zheng, and X. Shen, 5G Mobile Communications. Springer, 2016. [2] X. Li, M. Samaka, H. A. Chan, D. Bhamare, L. Gupta, C. Guo, and R. Jain, “Network slicing for 5G: Challenges and opportunities,” IEEE Internet Computing, vol. 21, pp. 20–27, Sep. 2017. [3] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and openflow: From concept to implementation,” IEEE Communications Surveys Tutorials, vol. 16, pp. 2181–2206, May 2014. [4] M. A. Al-Namari, A. M. Mansoor, and M. Y. I. Idris, “A brief survey on 5G wireless mobile network,” International Journal of Advanced Computer Science and Applications, vol. 8, pp. 52–59, Nov. 2017. [5] N. Alliance, “5G white paper,” Next generation mobile networks, white paper, vol. 1, Feb. 2015. [6] S. Wijethilaka and M. Liyanage, “Survey on network slicing for internet of things realization in 5g networks,” IEEE Communications Surveys Tutorials, vol. 23, pp. 957–994, Mar. 2021. [7] A. Prajapati, A. Sakadasariya, and J. Patel, “Software defined network: Future of networking,” in 2018 2nd International Conference on Inventive Systems and Control (ICISC), (Coimbatore, India), pp. 1351–1354, IEEE, Jan. 2018. [8] M. Chahbar, G. Diaz, A. Dandoush, C. Cérin, and K. Ghoumid, “A comprehensive survey on the E2E 5G network slicing model,” IEEE Transactions on Network and Service Management, vol. 18, pp. 49–62, Mar. 2021. [9] Y. Li and M. Chen, “Software-defined network function virtualization: A survey,” IEEE Access, vol. 3, pp. 2542–2553, Dec. 2015. [10] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing and softwarization: A survey on principles, enabling technologies, and solutions,” IEEE Communications Surveys Tutorials, vol. 20, pp. 2429–2453, Mar. 2018. [11] M. Paliwal, D. Shrimankar, and O. Tembhurne, “Controllers in SDN: A review report,” IEEE Access, vol. 6, pp. 36256–36270, Jun. 2018. [12] B.-H. Oh, S. Vural, N. Wang, and R. Tafazolli, “Priority-based flow control for dynamic and reliable flow management in sdn,” IEEE Transactions on Network and Service Management, vol. 15, pp. 1720–1732, Dec. 2018. [13] A. Lara and L. Quesada, “Priority-based routing in a campus network using SDN,” in 2017 IEEE 9th Latin-American Conference on Communications (LATINCOM), (Guatemala City, Guatemala), pp. 1–6, IEEE, Nov. 2017. [14] M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, “Toward adaptive and scalable openflow-SDN flow control: A survey,” IEEE Access, vol. 7, pp. 107346–107379, Aug. 2019. [15] J. F. Shortle, J. M. Thompson, D. Gross, and C. M. Harris, Fundamentals of queueing theory, vol. 399. John Wiley Sons, 2018. [16] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks, vol. 2. Prentice-Hall International New Jersey, 1992. [17] M. O. Ojijo and O. E. Falowo, “A survey on slice admission control strategies and optimization schemes in 5G network,” IEEE Access, vol. 8, pp. 14977–14990, Jan. 2020. [18] H. C. Cheng and F. Y. S. Lin, “Maximum-revenue multicast routing and partial admission control for multirate multimedia distribution,” in 19th International Conference on Advanced Information Networking and Applications (AINA), vol. 1 (Taipei, Taiwan), pp. 21–26, Mar. 2005. [19] A. T. Ajibare and O. E. Falowo, “Resource allocation and admission control strategy for 5G networks using slices and users priorities,” in 2019 IEEE African Conference (AFRICON), (Accra, Ghana), pp. 1–6, Sep. 2019. [20] A. M. Geoffrion, “Lagrangean relaxation for integer programming,” in Approaches to integer programming, pp. 82–114, Springer, 1974. [21] M. L. Fisher, “The lagrangian relaxation method for solving integer programming problems,” Management science, vol. 50, pp. 1861–1871, Dec. 2004. [22] M. Held and R. M. Karp, “The traveling-salesman problem and minimum spanning trees,” Operations Research, vol. 18, pp. 1138–1162, Dec. 1970. [23] M. Held and R. M. Karp, “The traveling-salesman problem and minimum spanning trees: Part II,” Mathematical programming, vol. 1, pp. 6–25, Dec. 1971. [24] M. Held, P. Wolfe, and H. P. Crowder, “Validation of subgradient optimization,” Mathematical programming, vol. 6, pp. 62–88, Dec. 1974. [25] S. Y. Hsu, “A resource orchestration optimization algorithm concerning multiple service priorities in 5g software defined networks,” Master’s thesis, National Taiwan University, Taipei, Taiwan, Aug. 2020.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81749-
dc.description.abstract隨著第五代行動通訊網路 (5G) 架構被提出,軟體定義網路已成為實現 5G 網路的核心技術,藉由虛擬化技術可達成資源集中管理,使網路資源能夠有效地被動態配置,並發展出更具彈性與效率的網路架構。 基於 5G 網路的實現,網路切片所形成的虛擬邏輯網路已逐漸成為一種新興服務。然而隨著網路頻寬需求量以極快速度成長,網路服務供應商必須在有限資源內滿足客戶需求。因此本論文提出一種能夠有效優化網路傳輸效率及妥善配置軟體資源的演算法,同時採用等候理論、優先權機制、允入控制等通訊理論,達成 5G 網路中「擴增頻寬」、「低延遲」等規格標準。 我們將這個複雜的問題進一步轉換為數學規劃模型,目標為最大化整體系統收益,同時必須符合傳輸流量需求與延遲限制,並以拉格朗日鬆弛法為基礎設計演算法,目的在複雜維度的搜尋空間內找出近似最佳解,建立高效能且高頻寬之網路系統。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:26:42Z (GMT). No. of bitstreams: 1
U0001-2410202114113500.pdf: 6550928 bytes, checksum: d14ca9bb99fc12df75edde7815f63d8e (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i 摘要 ii Abstract iii Contents iv List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 3 1.3 Thesis Organization 4 Chapter 2 Literature Review 5 2.1 Network Function Virtualization and Software-Defined Network 5 2.2 OpenFlow Protocol 8 2.3 M / G / 1 Queueing Theory 9 2.3.1 Non-Preemptive Priority Queueing 10 2.3.2 Preemptive Priority Queueing 13 2.4 Admission Control 14 Chapter 3 Problem Formulation 16 3.1 Problem Description 16 3.2 Mathematical Formulation 18 3.2.1 Non-Preemptive Admission Control Model 19 3.2.2 Preemptive Admission Control Model 24 Chapter 4 Solution Approach 29 4.1 Lagrangian Relaxation Method 29 4.2 Solution Approach for the Primal Problem 31 4.2.1 Lagrangian Relaxation Problem of Non-Preemptive Admission Control Model 31 4.2.1.1 Subproblem 1 (related to decision variable λw) 35 4.2.1.2 Subproblem 2 (related to decision variable ywi) 36 4.2.1.3 Subproblem 3 (related to decision variable xp) 38 4.2.1.4 Subproblem 4 (related to decision variable hwl) 39 4.2.1.5 Subproblem 5 (related to decision variable awlk) 40 4.2.1.6 Subproblem 6 (related to decision variable swlk) 41 4.2.1.7 Subproblem 7 (related to decision variable glk) 42 4.2.1.8 Subproblem 8 (related to decision variable ρlk) 43 4.2.1.9 Subproblem 9 (related to decision variable γlk) 44 4.2.1.10 Subproblem 10 (related to decision variable τl) 47 4.2.1.11 Subproblem 11 (related to decision variable qlk) 48 4.2.1.12 Subproblem 12 (related to decision variable tlk) 49 4.2.1.13 Subproblem 13 (related to decision variable bwlk) 50 4.2.1.14 Subproblem 14 (related to decision variable fwl) 51 4.2.1.15 Subproblem 15 (related to decision variable dw) 52 4.2.1.16 Subproblem 16 (related to decision variable vw) 53 4.2.2 Lagrangian Relaxation Problem of Preemptive Admission Control Model 54 4.2.2.1 Subproblem 1 (related to decision variable λw) 57 4.2.2.2 Subproblem 2 (related to decision variable ywi) 58 4.2.2.3 Subproblem 3 (related to decision variable xp) 60 4.2.2.4 Subproblem 4 (related to decision variable hwl) 61 4.2.2.5 Subproblem 5 (related to decision variable awlk) 62 4.2.2.6 Subproblem 6 (related to decision variable swlk) 63 4.2.2.7 Subproblem 7 (related to decision variable glk) 64 4.2.2.8 Subproblem 8 (related to decision variable ρlk) 65 4.2.2.9 Subproblem 9 (related to decision variable γlk) 66 4.2.2.10 Subproblem 10 (related to decision variable βlk) 69 4.2.2.11 Subproblem 11 (related to decision variable tlk) 70 4.2.2.12 Subproblem 12 (related to decision variable bwlk) 71 4.2.2.13 Subproblem 13 (related to decision variable fwl) 72 4.2.2.14 Subproblem 14 (related to decision variable dw) 73 4.2.2.15 Subproblem 15 (related to decision variable vw) 74 4.2.3 Lagrangian Dual Problem and Subgradient Method 75 4.2.4 Getting Primal Feasible Solution 77 4.2.4.1 Getting Primal Feasible Solution 1 - FCFS 77 4.2.4.2 Getting Primal Feasible Solution 2 - Priority Exchange 78 4.2.4.3 Getting Primal Feasible Solution 3 - Dynamic Routing 79 4.2.4.4 Getting Primal Feasible Solution 4 - Bisection Search 81 4.2.4.5 Summary of Solution Approach 82 Chapter 5 Computational Experiments 83 5.1 Experiment Environment 83 5.2 Performance Metrics 86 5.3 Experiment Cases of Non-Preemptive Model 87 5.3.1 Case 1 : Number of QoS Levels Affects Reward 88 5.3.2 Case 2 : Performance Comparison of Different Heuristic Solutions regarding Number of QoS Levels 89 5.3.3 Case 3 : Performance Comparison of Different Heuristic Solutions regarding Traffic Rate 90 5.3.4 Case 4 : Performance Comparison of Different Heuristic Solutions regarding Delay 92 5.4 Experiment Cases of Preemptive Model 93 5.4.1 Case 1 : Number of QoS Levels Affects Reward 95 5.4.2 Case 2 : Performance Comparison of Different Heuristic Solutions regarding Number of QoS Levels 96 5.4.3 Case 3 : Performance Comparison of Different Heuristic Solutions regarding Traffic Rate 97 5.4.4 Case 4 : Performance Comparison of Different Heuristic Solutions regarding Delay 99 5.5 Comparison with Previous Generation Algorithm 101 5.6 Discussion of Experiment Results 102 Chapter 6 Conclusions and Future Work 104 6.1 Conclusions 104 6.2 Future Work 105 References 106
dc.language.isoen
dc.subject允入控制zh_TW
dc.subject拉格朗日鬆弛法zh_TW
dc.subject動態規劃zh_TW
dc.subject第五代行動通訊網路zh_TW
dc.subject軟體定義網路zh_TW
dc.subject網路切片zh_TW
dc.subject5Gen
dc.subjectLagrangian Relaxationen
dc.subjectNetwork Slicingen
dc.subjectAdmission Controlen
dc.subjectSDNen
dc.title允入控制決策於軟體定義網路之最佳化資源協作演算法zh_TW
dc.titleA Near-Optimal Resource Orchestration Algorithm Based on Admission Control in Software-Defined Networksen
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建錦(Hsin-Tsai Liu),李家岩(Chih-Yang Tseng),黃彥男,呂俊賢
dc.subject.keyword第五代行動通訊網路,軟體定義網路,允入控制,網路切片,動態規劃,拉格朗日鬆弛法,zh_TW
dc.subject.keyword5G,SDN,Admission Control,Network Slicing,Lagrangian Relaxation,en
dc.relation.page109
dc.identifier.doi10.6342/NTU202104084
dc.rights.note未授權
dc.date.accepted2021-10-26
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
U0001-2410202114113500.pdf
  未授權公開取用
6.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved