請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81743完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊曜宇(Eric Y. Chuang) | |
| dc.contributor.author | Chieh-Wen Chen | en |
| dc.contributor.author | 陳玠妏 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:26:36Z | - |
| dc.date.available | 2022-11-24T09:26:36Z | - |
| dc.date.copyright | 2021-11-03 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-10-28 | |
| dc.identifier.citation | [1] Health Promotion Administration, Ministry of Health and Welfare. (2021). “Overview of Colorectal Cancer Prevention and Treatment.” https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=615 pid=1126 [2] Subramanian, V., Ragunath, K. (2014). Advanced Endoscopic Imaging: A Review of Commercially Available Technologies. Clinical Gastroenterology and Hepatology, 12(3), 368–376.e1. https://doi.org/10.1016/j.cgh.2013.06.015 [3] Machida, H., Sano, Y., Hamamoto, Y., Muto, M., Kozu, T., Tajiri, H., Yoshida, S. (2004). Narrow-Band Imaging in the Diagnosis of Colorectal Mucosal Lesions: A Pilot Study. Endoscopy, 36(12), 1094–1098. https://doi.org/10.1055/s-2004-826040 [4] Vișovan, I. I., Tanțău, M., Pascu, O., Ciobanu, L., Tanțău, A. (2017). The Role of Narrow Band Imaging in Colorectal Polyp Detection. Bosnian Journal of Basic Medical Sciences. https://doi.org/10.17305/bjbms.2017.1686 [5] Leifeld, L., Rogler, G., Stallmach, A., Schmidt, C., Zuber-Jerger, I., Hartmann, F., Plauth, M., Drabik, A., Hofstädter, F., Dienes, H. P., Kruis, W., Büttner, R., Löser, H., Drebber, U., Dignass, A., Terjung, B., Sauerbruch, T., Schreiber, S., Lanyi, B., . . . Walldorf, J. (2015). White-Light or Narrow-Band Imaging Colonoscopy in Surveillance of Ulcerative Colitis: A Prospective Multicenter Study. Clinical Gastroenterology and Hepatology, 13(10), 1776–1781.e1. https://doi.org/10.1016/j.cgh.2015.04.172 [6] Fitzpatrick-Lewis, D., Ali, M. U., Warren, R., Kenny, M., Sherifali, D., Raina, P. (2016). Screening for Colorectal Cancer: A Systematic Review and Meta-Analysis. Clinical Colorectal Cancer, 15(4), 298–313. https://doi.org/10.1016/j.clcc.2016.03.003 [7] Faivre, J., Dancourt, V., Lejeune, C., Tazi, M. A., Lamour, J., Gerard, D., Dassonville, F., Bonithon-Kopp, C. (2004). Reduction in Colorectal Cancer Mortality by Fecal Occult Blood Screening in a French Controlled Study. Gastroenterology, 126(7), 1674–1680. https://doi.org/10.1053/j.gastro.2004.02.018 [8] Shaukat, A., Mongin, S. J., Geisser, M. S., Lederle, F. A., Bond, J. H., Mandel, J. S., Church, T. R. (2013). Long-Term Mortality after Screening for Colorectal Cancer. New England Journal of Medicine, 369(12), 1106–1114. https://doi.org/10.1056/nejmoa1300720 [9] Zauber, A. G., Winawer, S. J., O’Brien, M. J., Lansdorp-Vogelaar, I., van Ballegooijen, M., Hankey, B. F., Shi, W., Bond, J. H., Schapiro, M., Panish, J. F., Steward, E. T., Waye, J. D. (2012). Colonoscopic Polypectomy and Long-Term Prevention of Colorectal Cancer Deaths. Obstetrical Gynecological Survey, 67(6), 355–356. https://doi.org/10.1097/ogx.0b013e31825bc1f5 [10] Adenoma Detection Rate and Risk of Colorectal Cancer and Death. (2014). New England Journal of Medicine, 370(26), 2539–2541. https://doi.org/10.1056/nejmc1405329 [11] Cavicchi, M., Tharsis, G., Burtin, P., Cattan, P., Venezia, F., Tordjman, G., Gillet, A., Samama, J., Nahon-Uzan, K., Karsenti, D. (2019). Difference in Physician- and Patient-Dependent Factors Contributing to Adenoma Detection Rate and Serrated Polyp Detection Rate. Digestive Diseases and Sciences, 64(12), 3579–3588. https://doi.org/10.1007/s10620-019-05808-y [12] Mehrotra, A., Morris, M., Gourevitch, R. A., Carrell, D. S., Leffler, D. A., Rose, S., Greer, J. B., Crockett, S. D., Baer, A., Schoen, R. E. (2018). Physician Characteristics Associated with Higher Adenoma Detection Rate. Gastrointestinal Endoscopy, 87(3), 778–786.e5. https://doi.org/10.1016/j.gie.2017.08.023 [13] Lee, J., Park, S. W., Kim, Y. S., Lee, K. J., Sung, H., Song, P. H., Yoon, W. J., Moon, J. S. (2017). Risk Factors of Missed Colorectal Lesions after Colonoscopy. Medicine, 96(27), e7468. https://doi.org/10.1097/md.0000000000007468 [14] Quality Indicators for Colonoscopy and the Risk of Interval Cancer. (2010). New England Journal of Medicine, 363(14), 1371–1373. https://doi.org/10.1056/nejmc1006842 [15] Tajbakhsh, N., Gurudu, S. R., Liang, J. (2015). A Comprehensive Computer-Aided Polyp Detection System for Colonoscopy Videos. Information processing in medical imaging, 24, 327–338. https://doi.org/10.1007/978-3-319-19992-4_25 [16] Wang, P., Liu, P., Glissen Brown, J. R., Berzin, T. M., Zhou, G., Lei, S., Liu, X., Li, L., Xiao, X. (2020). Lower Adenoma Miss Rate of Computer-Aided Detection-Assisted Colonoscopy vs Routine White-Light Colonoscopy in a Prospective Tandem Study. Gastroenterology, 159(4), 1252–1261.e5. https://doi.org/10.1053/j.gastro.2020.06.023 [17] Bernal, J., Sánchez, J., Vilariño, F. (2012). Towards Automatic Polyp Detection with a Polyp Appearance Model. Pattern Recognition, 45(9), 3166–3182. https://doi.org/10.1016/j.patcog.2012.03.002 [18] Ganz, M., Xiaoyun Yang, Slabaugh, G. (2012). Automatic Segmentation of Polyps in Colonoscopic Narrow-Band Imaging Data. IEEE Transactions on Biomedical Engineering, 59(8), 2144–2151. https://doi.org/10.1109/tbme.2012.2195314 [19] Arbeláez, P., Maire, M., Fowlkes, C., Malik, J. (2011). Contour Detection and Hierarchical Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 898–916. https://doi.org/10.1109/tpami.2010.161 [20] Mamonov, A. V., Figueiredo, I. N., Figueiredo, P. N., Richard Tsai, Y. H. (2014). Automated Polyp Detection in Colon Capsule Endoscopy. IEEE Transactions on Medical Imaging, 33(7), 1488–1502. https://doi.org/10.1109/tmi.2014.2314959 [21] Bae, S. H., Yoon, K. J. (2015). Polyp Detection via Imbalanced Learning and Discriminative Feature Learning. IEEE Transactions on Medical Imaging, 34(11), 2379–2393. https://doi.org/10.1109/tmi.2015.2434398 [22] Tajbakhsh, N., Gurudu, S. R., Liang, J. (2016). Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information. IEEE Transactions on Medical Imaging, 35(2), 630–644. https://doi.org/10.1109/tmi.2015.2487997 [23] Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P. A. (2017). Integrating Online and Offline Three-Dimensional Deep Learning for Automated Polyp Detection in Colonoscopy Videos. IEEE Journal of Biomedical and Health Informatics, 21(1), 65–75. https://doi.org/10.1109/jbhi.2016.2637004 [24] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791 [25] Zhang, R., Zheng, Y., Poon, C. C., Shen, D., Lau, J. Y. (2018). Polyp Detection During Colonoscopy Using a Regression-Based Convolutional Neural Network with a Tracker. Pattern Recognition, 83, 209–219. https://doi.org/10.1016/j.patcog.2018.05.026 [26] Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., Gotway, M. B., Liang, J. (2016). Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Transactions on Medical Imaging, 35(5), 1299–1312. https://doi.org/10.1109/tmi.2016.2535302 [27] Wang, P., Liu, X., Berzin, T. M., Glissen Brown, J. R., Liu, P., Zhou, C., Lei, L., Li, L., Guo, Z., Lei, S., Xiong, F., Wang, H., Song, Y., Pan, Y., Zhou, G. (2020). Effect of a Deep-Learning Computer-Aided Detection System on Adenoma Detection During Colonoscopy (Cade-DB Trial): A Double-Blind Randomised Study. The Lancet Gastroenterology Hepatology, 5(4), 343–351. https://doi.org/10.1016/s2468-1253(19)30411-x [28] Jha, D., Ali, S., Tomar, N. K., Johansen, H. D., Johansen, D., Rittscher, J., Riegler, M. A., Halvorsen, P. (2021). Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning. IEEE Access, 9, 40496–40510. https://doi.org/10.1109/access.2021.3063716 [29] Brandao, P., Mazomenos, E., Ciuti, G., Caliò, R., Bianchi, F., Menciassi, A., Dario, P., Koulaouzidis, A., Arezzo, A., Stoyanov, D. (2017). Fully Convolutional Neural Networks for Polyp Segmentation in Colonoscopy. Medical Imaging 2017: Computer-Aided Diagnosis. https://doi.org/10.1117/12.2254361 [30] Shelhamer, E., Long, J., Darrell, T. (2017). Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4), 640–651. https://doi.org/10.1109/tpami.2016.2572683 [31] Akbari, M., Mohrekesh, M., Nasr-Esfahani, E., Soroushmehr, S., Karimi, N., Samavi, S., Najarian, K. (2018). Polyp Segmentation in Colonoscopy Images Using Fully Convolutional Network. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2018, 69–72. https://doi.org/10.1109/EMBC.2018.8512197 [32] Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28 [33] Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., Liang, J. (2018). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 3–11. https://doi.org/10.1007/978-3-030-00889-5_1 [34] Jha, D., Smedsrud, P. H., Riegler, M. A., Johansen, D., Lange, T. D., Halvorsen, P., D. Johansen, H. (2019). ResUNet++: An Advanced Architecture for Medical Image Segmentation. 2019 IEEE International Symposium on Multimedia (ISM). https://doi.org/10.1109/ism46123.2019.00049 [35] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2016.90 [36] Jha, D., Riegler, M. A., Johansen, D., Halvorsen, P., Johansen, H. D. (2020). DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation. 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS). https://doi.org/10.1109/cbms49503.2020.00111 [37] Fang, Y., Chen, C., Yuan, Y., Tong, K. Y. (2019). Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation. Lecture Notes in Computer Science, 302–310. https://doi.org/10.1007/978-3-030-32239-7_34 [38] Fan, D. P., Ji, G. P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L. (2020). PraNet: Parallel Reverse Attention Network for Polyp Segmentation. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 263–273. https://doi.org/10.1007/978-3-030-59725-2_26 [39] Chen, S., Tan, X., Wang, B., Lu, H., Hu, X., Fu, Y. (2020). Reverse Attention-Based Residual Network for Salient Object Detection. IEEE Transactions on Image Processing, 29, 3763–3776. https://doi.org/10.1109/tip.2020.2965989 [40] Chien-Hsiang Huang, Hung-Yu Wu, Youn-Long Lin. (2021). HarDNet-MSEG: A Simple Encoder-Decoder Polyp Segmentation Neural Network that Achieves over 0.9 Mean Dice and 86 FPS. arXiv preprint arXiv:2101.07172 [41] Chao, P., Kao, C. Y., Ruan, Y., Huang, C. H., Lin, Y. L. (2019). HarDNet: A Low Memory Traffic Network. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv.2019.00365 [42] Badrinarayanan, V., Kendall, A., Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2481–2495. https://doi.org/10.1109/tpami.2016.2644615 [43] Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/tsmc.1979.4310076 [44] Bernal, J., Sánchez, F. J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F. (2015). WM-DOVA Maps for Accurate Polyp Highlighting in Colonoscopy: Validation Vs. Saliency Maps from Physicians. Computerized Medical Imaging and Graphics, 43, 99–111. https://doi.org/10.1016/j.compmedimag.2015.02.007 [45] Jha D., Smedsrud P. H., Riegler M. A., Halvorsen P., Lange T. D., Johansen D., Johansen H. D. (2020). Kvasir-SEG: A Segmented Polyp Dataset. Proc. Int. Conf. Multimedia Modeling (MMM) [46] Silva, J., Histace, A., Romain, O., Dray, X., Granado, B. (2013). Toward Embedded Detection of Polyps in WCE Images for Early Diagnosis of Colorectal Cancer. International Journal of Computer Assisted Radiology and Surgery, 9(2), 283–293. https://doi.org/10.1007/s11548-013-0926-3 [47] Vázquez, D., Bernal, J., Sánchez, F. J., Fernández-Esparrach, G., López, A. M., Romero, A., Drozdzal, M., Courville, A. (2017). A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images. Journal of Healthcare Engineering, 2017, 1–9. https://doi.org/10.1155/2017/4037190 [48] Redmon J. Farhadi A. (2018). YOLOv3: An Incremental Improvement. arXiv:1804.02767. [49] Yamashita, R., Nishio, M., Do, R. K. G., Togashi, K. (2018). Convolutional Neural Networks: An Overview and Application in Radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9 [50] Yani, M., Budhi Irawan, S. S. M., Casi Setiningsih, S. M. (2019). Application of Transfer Learning Using Convolutional Neural Network Method for Early Detection of Terry’s Nail. Journal of Physics: Conference Series, 1201, 012052. https://doi.org/10.1088/1742-6596/1201/1/012052 [51] Fei-Fei, L., Deng, J., Li, K. (2010). Imagenet: Constructing a Large-Scale Image Database. Journal of Vision, 9(8), 1037. https://doi.org/10.1167/9.8.1037 [52] Albawi, S., Mohammed, T. A., Al-Zawi, S. (2017). Understanding of a Convolutional Neural Network. 2017 International Conference on Engineering and Technology (ICET). https://doi.org/10.1109/icengtechnol.2017.8308186 [53] Wu, Z., Su, L., Huang, Q. (2019). Cascaded Partial Decoder for Fast and Accurate Salient Object Detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2019.00403 [54] Liu, Songtao, Huang, di Wang, Yunhong. (2017). Receptive Field Block Net for Accurate and Fast Object Detection. Proceedings of European Conference on Computer Vision (ECCV). arXiv:1711.07767 [55] Araujo, A., Norris, W., Sim, J. (2019). Computing Receptive Fields of Convolutional Neural Networks. Distill, 4(11). https://doi.org/10.23915/distill.00021 [56] Lin, H., Shi, Z., Zou, Z. (2017). Maritime Semantic Labeling of Optical Remote Sensing Images with Multi-Scale Fully Convolutional Network. Remote Sensing, 9(5), 480. https://doi.org/10.3390/rs9050480 [57] Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L. (2018). DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848. https://doi.org/10.1109/tpami.2017.2699184 [58] Du, J., Wang, L., Liu, Y., Zhou, Z., He, Z., Jia, Y. (2020). Brain MRI Super-Resolution Using 3D Dilated Convolutional Encoder–Decoder Network. IEEE Access, 8, 18938–18950. https://doi.org/10.1109/access.2020.2968395 [59] Zhang, Z., Lin, Z., Xu, J., Jin, W. D., Lu, S. P., Fan, D. P. (2021). Bilateral Attention Network for RGB-D Salient Object Detection. IEEE Transactions on Image Processing, 30, 1949–1961. https://doi.org/10.1109/tip.2021.3049959 [60] Xie, S., Tu, Z. (2017). Holistically-Nested Edge Detection. International Journal of Computer Vision, 125(1–3), 3–18. https://doi.org/10.1007/s11263-017-1004-z [61] Jadon, S. (2020). A Survey of Loss Functions for Semantic Segmentation. 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). https://doi.org/10.1109/cibcb48159.2020.9277638 [62] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S. (2019). Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2019.00075 [63] Mesejo, P., Pizarro, D., Abergel, A., Rouquette, O., Beorchia, S., Poincloux, L., Bartoli, A. (2016). Computer-Aided Classification of Gastrointestinal Lesions in Regular Colonoscopy. IEEE Transactions on Medical Imaging, 35(9), 2051–2063. https://doi.org/10.1109/tmi.2016.2547947 [64] Suykens, J., Eelbode, T., Daenen, J., Suetens, P., Maes, F., Bisschops, R. (2020). Sa2012 Automated Polyp Size Estimation with Deep Learning Reduces Interobserver Variability. Gastrointestinal Endoscopy, 91(6), AB241–AB242. https://doi.org/10.1016/j.gie.2020.03.1787 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81743 | - |
| dc.description.abstract | 大腸鏡檢查是一種有效預防大腸癌的技術,它可以發現和切除大腸息肉。切除大腸息肉可以有效的降低罹患大腸癌的風險。但是大腸鏡檢查的息肉漏檢率較高且受多種因素影響。因此,開發計算機輔助方法以支持內視鏡醫師準確分割結腸鏡影片中的息肉具有重要的意義。目前,深度學習的方法已應用於息肉分割。然而,息肉分割仍然是一個具有挑戰性的問題,因為息肉具有多種大小、顏色和紋理。並且息肉與其周圍粘膜之間的邊界並不明顯。為了解決這些問題,我們提出了一種改進的息肉分割模型,稱為 DarkraNet,用於精確分割大腸鏡影像中的息肉邊界。它是由編碼器-解碼器架構、反向注意模塊和後處理組成。此外,為了臨床實用性,我們將窄帶影像結腸鏡檢查影像添加到訓練數據中。對五個廣泛使用的息肉分割基準數據集的定量實驗結果表明,與現有方法相比,所提出的 DarkraNet 實現了最先進的分割精確度,並在準確性、通用性和臨床適用性方面進一步提升效用。此外,DarkraNet 是能夠實時分割息肉的。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:26:36Z (GMT). No. of bitstreams: 1 U0001-2610202112061200.pdf: 22436984 bytes, checksum: 8902676a945892125a14c525644b80fd (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x Chapter 1 INTRODUCTION 1 1.1 Colonoscopy 1 1.2 Limitations of colonoscopy 2 1.3 Computer-aided detection system for colonoscopy 4 1.4 Deep learning-based CAD system 6 1.5 Aim 11 Chapter 2 METHODOLOGY 12 2.1 Datasets 12 2.1.1 Data acquisition 12 2.1.2 CVC-ClinicDB dataset 13 2.1.3 Kvasir-SEG dataset 13 2.1.4 NBI dataset 14 2.1.5 CVC-ColonDB dataset 14 2.1.6 ETIS-LaribPolypDB dataset 15 2.1.7 CVC-300 dataset 15 2.2 Model framework 16 2.3 Encoder 17 2.3.1 Backbone 17 2.3.2 Convolutional layer 18 2.3.3 Residual block 20 2.3.4 Pooling layer 22 2.3.5 ImageNet 23 2.3.6 Transfer learning 23 2.4 Decoder 24 2.4.1 RFB module 25 2.4.2 Dense aggregation 30 2.5 Reverse attention module 30 2.6 Post-processing 33 2.7 Implementation details 34 2.7.1 NBI colonoscopy training data 35 2.7.2 Data split 35 2.7.3 Data augmentation 35 2.7.4 Loss function 37 2.7.5 Metrics 38 2.7.6 Training settings 39 Chapter 3 RESULTS 41 3.1 Experiments on polyp segmentation 41 3.1.1 Learning Ability 41 3.1.2 Generalizability 43 3.2 Experiments on colonoscopy video 45 3.2.1 Experiments on WL colonoscopy video 46 3.2.2 Experiments on NBI colonoscopy video 47 3.3 Ablation study 49 3.3.1 Effectiveness of pretrained encoder 49 3.3.2 Effectiveness of RFB module 51 3.3.3 Effectiveness of Reverse Attention module 51 3.3.4 Effectiveness of Multi-scale training strategy 52 3.3.5 Effectiveness of loss function 54 3.3.6 Effectiveness of NBI colonoscopy training data 55 3.3.7 Effectiveness of post-processing 57 Chapter 4 DISCUSSION 58 4.1 Experiments on polyp segmentation 58 4.1.1 Learning ability 58 4.1.2 Generalizability 63 4.2 Experiments on colonoscopy video 69 4.2.1 Experiments on WL colonoscopy video 69 4.2.2 Experiments on NBI colonoscopy video 72 4.3 Limitation on polyp size measurement 74 Chapter 5 Conclusion 76 REFERENCES 77 | |
| dc.language.iso | en | |
| dc.subject | 窄帶影像 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 息肉分割 | zh_TW |
| dc.subject | 大腸鏡檢查 | zh_TW |
| dc.subject | 結直腸癌 | zh_TW |
| dc.subject | deep learning | en |
| dc.subject | narrow-band imaging | en |
| dc.subject | colorectal cancer | en |
| dc.subject | colonoscopy | en |
| dc.subject | polyp segmentation | en |
| dc.title | 使用深度學習在窄帶影像和白光大腸鏡檢查中進行實時大腸息肉分割 | zh_TW |
| dc.title | Real-time Colorectal Polyp Segmentation with Deep Learning in NBI and WL Colonoscopy | en |
| dc.date.schoolyear | 109-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧子彬(Hsin-Tsai Liu),賴亮全(Chih-Yang Tseng),蔡孟勳 | |
| dc.subject.keyword | 深度學習,息肉分割,大腸鏡檢查,結直腸癌,窄帶影像, | zh_TW |
| dc.subject.keyword | deep learning,polyp segmentation,colonoscopy,colorectal cancer,narrow-band imaging, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU202104216 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-10-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2610202112061200.pdf 未授權公開取用 | 21.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
