Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81727
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林晃巖(Hoang-Yan Lin)
dc.contributor.authorMeng-Hsin Chenen
dc.contributor.author陳孟忻zh_TW
dc.date.accessioned2022-11-24T09:26:22Z-
dc.date.available2022-11-24T09:26:22Z-
dc.date.copyright2022-01-17
dc.date.issued2021
dc.date.submitted2021-12-08
dc.identifier.citation1. C. M. Soukoulis and M. Wegener, 'Past achievements and future challenges in the development of three-dimensional photonic metamaterials,' Nature Photonics (2011). 2. N. I. Zheludev and Y. S. Kivshar, 'From metamaterials to metadevices,' Nat Mater 11, 917-924 (2012). 3. S. Jahani and Z. Jacob, 'All-dielectric metamaterials,' Nat Nanotechnol 11, 23-36 (2016). 4. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, 'Planar photonics with metasurfaces,' Science 339, 1232009 (2013). 5. N. Meinzer, W. L. Barnes, and I. R. Hooper, 'Plasmonic meta-atoms and metasurfaces,' Nature Photonics 8, 889-898 (2014). 6. N. Yu and F. Capasso, 'Flat optics with designer metasurfaces,' Nat Mater 13, 139-150 (2014). 7. H.-H. Hsiao, C. H. Chu, and D. P. Tsai, 'Fundamentals and Applications of Metasurfaces,' Small Methods 1, 1600064 (2017). 8. P. Lalanne and P. Chavel, 'Metalenses at visible wavelengths: past, present, perspectives,' Laser Photonics Reviews 11, 1600295 (2017). 9. V. C. Su, C. H. Chu, G. Sun, and D. P. Tsai, 'Advances in optical metasurfaces: fabrication and applications invited,' Optics Express 26, 13148-13182 (2018). 10. E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, 'Averaged transition conditions for electromagnetic fields at a metafilm,' IEEE Trans. Antennas Propag. 51, 2641-2651 (2003). 11. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, 'Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,' Science 334, 333-337 (2011). 12. S. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, 'High-efficiency broadband anomalous reflection by gradient meta-surfaces,' Nano Lett 12, 6223-6229 (2012). 13. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, 'A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,' Nano Lett 12, 6328-6333 (2012). 14. H. S. Ee and R. Agarwal, 'Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate,' Nano Lett 16, 2818-2823 (2016). 15. X. Chen, L. Huang, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, 'Dual-polarity plasmonic metalens for visible light,' Nat Commun 3, 1198 (2012). 16. W. L. Hsu, P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C. Y. Liao, G. Sun, and D. P. Tsai, 'Vertical split-ring resonator based anomalous beam steering with high extinction ratio,' Sci Rep 5, 11226 (2015). 17. A. Pors, O. Albrektsen, I. P. Radko, and S. I. Bozhevolnyi, 'Gap plasmon-based metasurfaces for total control of reflected light,' Sci Rep 3, 2155 (2013). 18. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, 'Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,' Nano Lett 13, 829-834 (2013). 19. L. Zhang, J. Hao, M. Qiu, S. Zouhdi, J. K. Yang, and C. W. Qiu, 'Anomalous behavior of nearly-entire visible band manipulated with degenerated image dipole array,' Nanoscale 6, 12303-12309 (2014). 20. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, 'High-Efficiency Dielectric Huygens’ Surfaces,' Advanced Optical Materials 3, 813-820 (2015). 21. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, 'Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays,' Nat Commun 6, 7069 (2015). 22. S. M. Kamali, A. Arbabi, E. Arbabi, Y. Horie, and A. Faraon, 'Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces,' Nature Communications 7, 7 (2016). 23. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk'yanchuk, 'Directional visible light scattering by silicon nanoparticles,' Nat Commun 4, 1527 (2013). 24. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, 'Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,' Nat Commun 5, 3402 (2014). 25. F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, 'Multiwavelength achromatic metasurfaces by dispersive phase compensation,' Science 347, 1342-1345 (2015). 26. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, 'Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,' Nature Nanotechnology 10, 937-943 (2015). 27. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, 'Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,' Optica 4, 625 (2017). 28. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk'yanchuk, 'Optically resonant dielectric nanostructures,' Science 354(2016). 29. Y. F. Yu, A. Y. Zhu, R. Paniagua-Domínguez, Y. H. Fu, B. Luk'yanchuk, and A. I. Kuznetsov, 'High-transmission dielectric metasurface with 2π phase control at visible wavelengths,' Laser Photonics Reviews 9, 412-418 (2015). 30. M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, 'Achromatic Metasurface Lens at Telecommunication Wavelengths,' Nano Lett 15, 5358-5362 (2015). 31. J. S. Park, S. Y. Zhang, A. She, W. T. Chen, P. Lin, K. M. A. Yousef, J. X. Cheng, and F. Capasso, 'All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography,' Nano Lett. 19, 8673-8682 (2019). 32. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, 'Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,' Science 352, 1190-1194 (2016). 33. B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, 'GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,' Nano Lett. 17, 6345-6352 (2017). 34. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, 'Prospects for LED lighting,' Nature Photonics 3, 179-181 (2009). 35. E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, 'High-brightness polarized light-emitting diodes,' Light-Sci. Appl. 1, 7 (2012). 36. J. Heber, 'Nobel Prize 2014: Akasaki, Amano Nakamura,' Nature Physics 10, 791-791 (2014). 37. H. Riechert, 'Lighting the 21st century: Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura received the 2014 Nobel Prize in Physics for the development of the blue light-emitting diode,' Phys. Status Solidi A-Appl. Mat. 212, 893-896 (2015). 38. M. H. Chen, W. N. Chou, V. C. Su, C. H. Kuan, and H. Y. Lin, 'High-performance gallium nitride dielectric metalenses for imaging in the visible,' Scientific Reports 11, 8 (2021). 39. Y. Mohtashami, R. A. DeCrescent, L. K. Heki, P. P. Iyer, N. A. Butakov, M. S. Wong, A. Alhassan, W. J. Mitchell, S. Nakamura, S. P. DenBaars, and J. A. Schuller, 'Light-emitting metalenses and meta-axicons for focusing and beaming of spontaneous emission,' Nature Communications 12, 3591 (2021). 40. M. H. Chen, C. W. Yen, C. C. Guo, V. C. Su, C. H. Kuan, and H. Y. Lin, 'Polarization-insensitive GaN metalenses at visible wavelengths,' Scientific Reports 11(2021). 41. D. K. Rajan, J. Kreutzer, H. Valimaki, M. Pekkanen-Mattila, A. Ahola, A. Skogberg, K. Aalto-Setala, H. Ihalainen, P. Kallio, and J. Lekkala, 'A Portable Live-Cell Imaging System With an Invert-Upright-Convertible Architecture and a Mini-Bioreactor for Long-Term Simultaneous Cell Imaging, Chemical Sensing, and Electrophysiological Recording,' IEEE Access 6, 11063-11075 (2018). 42. Z. Bomzon, V. Kleiner, and E. Hasman, 'Pancharatnam-Berry phase in space-variant polarization-state manipulations with subwavelength gratings,' Opt. Lett. 26, 1424-1426 (2001). 43. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, 'Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,' Opt. Lett. 27, 1141-1143 (2002). 44. L. Huang, X. Chen, H. Muhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, 'Dispersionless phase discontinuities for controlling light propagation,' Nano Lett 12, 5750-5755 (2012). 45. L. Cong, N. Xu, W. Zhang, and R. Singh, 'Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry,' Advanced Optical Materials 3, 1176-1183 (2015). 46. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alu, 'Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency,' Adv Mater 27, 1195-1200 (2015). 47. D. L. Chen, J. J. Wang, Y. L. Qi, S. M. Wang, Q. Xue, and X. H. Sun, 'Polarization-insensitive dielectric metalenses with different numerical apertures and off-axis focusing characteristics,' J. Opt. Soc. Am. B-Opt. Phys. 37, 3588-3595 (2020). 48. X. F. Zang, W. W. Xu, M. Gu, B. S. Yao, L. Chen, Y. Peng, J. Y. Xie, A. V. Balakin, A. P. Shkurinov, Y. M. Zhu, and S. L. Zhuang, 'Polarization-Insensitive Metalens with Extended Focal Depth and Longitudinal High-Tolerance Imaging,' Advanced Optical Materials 8, 9 (2020). 49. Q. B. Fan, M. Z. Liu, C. Yang, L. Yu, F. Yan, and T. Xu, 'A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging,' Applied Physics Letters 113, 4 (2018). 50. M. Khorasaninejad, A. Y. Zhuit, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, and F. Capasso, 'Polarization-Insensitive Metalenses at Visible Wavelengths,' Nano Lett. 16, 7229-7234 (2016). 51. J. Kim, S. Choudbury, C. DeVault, Y. Zhao, A. V. Kildishev, V. M. Shalaev, A. Alu, and A. Boltasseva, 'Controlling the Polarization State of Light with Plasmonic Metal Oxide Metasurface,' Acs Nano 10, 9326-9333 (2016). 52. Z. C. Liu, Z. C. Li, Z. Liu, H. Cheng, W. W. Liu, C. C. Tang, C. Z. Gu, J. J. Li, H. T. Chen, S. Q. Chen, and J. G. Tian, 'Single-Layer Plasmonic Metasurface Half-Wave Plates with Wavelength-Independent Polarization Conversion Angle,' Acs Photonics 4, 2061-2069 (2017). 53. P. C. Wu, W. Y. Tsai, W. T. Chen, Y. W. Huang, T. Y. Chen, J. W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, 'Versatile Polarization Generation with an Aluminum Plasmonic Metasurface,' Nano Lett. 17, 445-452 (2017). 54. F. Y. Yue, D. D. Wen, C. M. Zhang, B. D. Gerardot, W. Wang, S. Zhang, and X. Z. Chen, 'Multichannel Polarization-Controllable Superpositions of Orbital Angular Momentum States,' Adv. Mater. 29, 8 (2017). 55. J. P. Hu, X. N. Zhao, Y. Lin, A. J. Zhu, X. J. Zhu, P. J. Guo, B. Cao, and C. H. Wang, 'All-dielectric metasurface circular dichroism waveplate,' Scientific Reports 7, 9 (2017). 56. G. Z. Liang, Y. Q. Zeng, X. N. Hu, H. Yu, H. K. Liang, Y. Zhang, L. H. Li, A. G. Davies, E. H. Linfield, and Q. J. Wang, 'Monolithic Semiconductor Lasers with Dynamically Tunable Linear-to-Circular Polarization,' Acs Photonics 4, 517-524 (2017). 57. J. Park, J. H. Kang, S. J. Kim, X. G. Liu, and M. L. Brongersma, 'Dynamic Reflection Phase and Polarization Control in Metasurfaces,' Nano Lett. 17, 407-413 (2017). 58. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, 'Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface,' Light-Sci. Appl. 3, 4 (2014). 59. Y. M. Yang, W. Y. Wang, P. Moitra, Kravchenko, II, D. P. Briggs, and J. Valentine, 'Dielectric Meta-Reflectarray for Broadband Linear Polarization Conversion and Optical Vortex Generation,' Nano Lett. 14, 1394-1399 (2014). 60. X. Ma, M. Pu, X. Li, C. Huang, Y. Wang, W. Pan, B. Zhao, J. Cui, C. Wang, Z. Zhao, and X. Luo, 'A planar chiral meta-surface for optical vortex generation and focusing,' Sci Rep 5, 10365 (2015). 61. M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, 'Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,' Adv. Mater. 28, 2533-2539 (2016). 62. B. R. Lu, J. A. Deng, Q. Li, S. C. Zhang, J. Zhou, L. Zhou, and Y. F. Chen, 'Reconstructing a plasmonic metasurface for a broadband high-efficiency optical vortex in the visible frequency,' Nanoscale 10, 12378-12385 (2018). 63. H. Chung, D. Kim, A. Sawant, I. Lee, E. Choi, and J. Lee, 'Generation of E-band metasurface-based vortex beam with reduced divergence angle,' Scientific Reports 10, 8 (2020). 64. N. Jimenez, J. P. Groby, and V. Romero-Garcia, 'Spiral sound-diffusing metasurfaces based on holographic vortices,' Scientific Reports 11, 13 (2021). 65. J. Xie, H. Guo, S. Zhuang, and J. Hu, 'Polarization-controllable perfect vortex beam by a dielectric metasurface,' Optics Express 29, 3081-3089 (2021). 66. L. Zhang, J. Guo, and T. Y. Ding, 'Ultrathin dual-mode vortex beam generator based on anisotropic coding metasurface,' Scientific Reports 11, 8 (2021). 67. S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. B. Xu, C. H. Kuan, T. Li, S. N. Zhu, and D. P. Tsai, 'Broadband achromatic optical metasurface devices,' Nature Communications 8, 9 (2017). 68. W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. J. Shi, E. Lee, and F. Capasso, 'A broadband achromatic metalens for focusing and imaging in the visible,' Nature Nanotechnology 13, 220-226 (2018). 69. S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. L. Wang, S. N. Zhu, and D. P. Tsai, 'A broadband achromatic metalens in the visible,' Nature Nanotechnology 13, 227-232 (2018). 70. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, 'Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,' Optica 3, 628 (2016). 71. J. Hu, C. H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, 'Plasmonic Lattice Lenses for Multiwavelength Achromatic Focusing,' ACS Nano 10, 10275-10282 (2016). 72. O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, 'Composite functional metasurfaces for multispectral achromatic optics,' Nat Commun 8, 14992 (2017). 73. M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, 'Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion,' Nano Lett 17, 1819-1824 (2017). 74. S. Shrestha, A. C. Overvig, M. Lu, A. Stein, and N. F. Yu, 'Broadband achromatic dielectric metalenses,' Light-Sci. Appl. 7, 11 (2018). 75. W. T. Chen, A. Y. Zhu, J. Sisler, Z. Bharwani, and F. Capasso, 'A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures,' Nature Communications 10, 7 (2019). 76. Z. B. Fan, H. Y. Qiu, H. L. Zhang, X. N. Pang, L. D. Zhou, L. Liu, H. Ren, Q. H. Wang, and J. W. Dong, 'A broadband achromatic metalens array for integral imaging in the visible,' Light-Sci. Appl. 8, 10 (2019).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81727-
dc.description.abstract超穎透鏡是超穎表面開發中最重要的應用之一。目前各式各樣的材料已被應用於製作超穎透鏡,使其在某些特定頻帶中達到高效率與低製造成本的需求。在這些材料中,考量材料的各項優點,尤其是在半導體製造的量產能力,寬能隙氮化鎵屬最具潛力的材料之一。在本論文中,氮化鎵被選為製造在可見光波段工作的高性能超穎透鏡的關鍵材料,而其超穎透鏡的設計原理乃基於幾何相位或傳播相位之概念。 幾何相位設計原理亦稱為 Pancharatnam-Berry (PB) 相位法。基於 PB 相位概念設計的超穎透鏡需要圓偏振平面波作為入射光。如實驗結果所示,在 405、532 與 633 奈米之可見光波長下,依PB 相位法設計的氮化鎵超穎透鏡,其繞射極限聚焦效率分別高達 79%、84% 和 89%。另一方面,以傳播相位設計之超穎透鏡具偏振方向不敏感之特性,得以聚焦任意線性偏振方向之入射光。在此研究中,更進一步提出新開發的高效能六邊形共振元件,搭配精心挑選之次波長周期,以構建具偏振方向不敏感之高性能超穎透鏡。經實驗證明這些具偏振方向不敏感的超穎透鏡在 405、532 與 633奈米之三個不同波長下,其繞射極限聚焦效率分別為 93%、86% 和 92%。 有關超穎透鏡的成像能力,我們選擇美國空軍於1951年所制定符合美國空軍定義的分辨率測試軍用標準的分辨率測試圖(1951 USAF)作為驗證,惟目前市售的 1951 美國空軍分辨率測試圖,其最小線寬為2.19 微米。為了補足市售分辨率測試圖的不足,我們選擇自製 1951 USAF 分辨率測試圖,以利驗證超穎透鏡得以識別更小線寬之能力。依據成像實驗結果顯示,以405 奈米為波長所設計的PB相位法以及具偏振方向不敏感的氮化鎵超穎透鏡皆能實現極高的分辨率,得以分辨自製之分辨率測試圖中奈米等級之線寬,而我們可以觀察到的最小線寬為 870 奈米。這些非凡的實驗結果來自於我們在設計方面的成功,以及製程上成功製作以接近垂直側壁的高深寬比氮化鎵奈米共振器所組成的超穎透鏡。 在實際應用方面,本論文提出一個開創性的概念,即透過超穎透鏡檢測發光二極體的圖案化藍寶石基板。為了實施概念驗證,分別選擇不具有磊晶層以及具有磊晶層的市售圖案化藍寶石基板作為待檢測物,以執行超穎透鏡的檢測能力。透過適當選擇所需波長所設計的超穎透鏡,可以在圖中清楚地觀察到圖案化藍寶石基板中結構的頂點。以數值孔徑為 0.3 的超薄輕量超穎透鏡所拍攝的圖案化藍寶石基板成像,其品質與以數值孔徑為 0.4 的物鏡所拍攝之成像相當。 本研究為以寬能隙氮化鎵製作的超穎表面之應用展現了一道曙光。預計在不久的將來,超薄氮化鎵超穎透鏡將取代厚重的光學元件,成為未來光學的主流。zh_TW
dc.description.provenanceMade available in DSpace on 2022-11-24T09:26:22Z (GMT). No. of bitstreams: 1
U0001-0812202112501400.pdf: 6387141 bytes, checksum: 8439a8c4cd4cc450f59ea81885bc3096 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書 i 誌 謝…… ii 中文摘要…. iii ABSTRACT v CONTENTS viii LIST OF FIGURES x LIST OF TABLES xix Chapter 1 Introduction to Metasurfaces 1 1.1 Overview 1 1.2 Plasmonic Metasurfaces 8 1.3 Dielectric Metasurfaces and Metalenses 10 1.4 Motivation 13 1.5 Dissertation Organization 16 Chapter 2 GaN Metalens Fabrication and Experimental Setup 18 2.1 Overview 18 2.2 GaN Metalens Fabrication Processes and Inspection Equipment 19 2.3 A Commercially Available 1951 USAF Resolution Test Chart 21 2.4 The Fabrication for the 1951 USAF with smaller features 24 Chapter 3 The Pancharatnam-Berry (PB) Phase GaN Metalenses 26 3.1 The Concept of the PB Phase Method 26 3.2 The Phase Profiles of the PB Metalenses 29 3.3 The Fabricated PB Metalenses 33 3.4 The Diffraction-limited Focal Spot and Efficiency Measurements 37 3.5 Commercially Available and Homemade 1951 USAF Measurements 42 3.6 Summary of the PB Metalenses 47 Chapter 4 The Polarization-Insensitive (PI) GaN Metalenses 48 4.1 The Symmetric Resonators for PI Metalenses 48 4.2 The Highly Efficient Hexagon-Resonated Elements (HREs) 51 4.3 The Fabricated PI Metalenses 57 4.4 The Diffraction-limited Focusing Performance of the PI Metalenses 60 4.5 1951 USAF Imaging Capability of the PI Metalenses 67 4.6 Imaging Capability on a Commercialized Patterned Substrate 72 4.7 Summary of the PI Metalenses 77 Chapter 5 Conclusions and Future Prospects 79 5.1 Conclusions 79 5.2 Future Prospects on Metalenses 82 REFERENCES 86
dc.language.isoen
dc.subject超穎透鏡zh_TW
dc.subjectmeta-lensesen
dc.title可見光氮化鎵超穎透鏡之研究zh_TW
dc.titleInvestigation of GaN Metalenses at Visible Wavelengthsen
dc.date.schoolyear110-1
dc.description.degree博士
dc.contributor.oralexamcommittee蘇炎坤(Hsin-Tsai Liu),洪瑞華(Chih-Yang Tseng),黃定洧,吳肇欣
dc.subject.keyword超穎透鏡,zh_TW
dc.subject.keywordmeta-lenses,en
dc.relation.page90
dc.identifier.doi10.6342/NTU202104522
dc.rights.note未授權
dc.date.accepted2021-12-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0812202112501400.pdf
  未授權公開取用
6.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved