請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81703完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉信宏(Hsin-Hung Yeh) | - |
| dc.contributor.author | Yun-Shan Tsai | en |
| dc.contributor.author | 蔡昀珊 | zh_TW |
| dc.date.accessioned | 2022-11-24T09:25:59Z | - |
| dc.date.available | 2022-11-24T09:25:59Z | - |
| dc.date.copyright | 2022-02-16 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2022-02-05 | - |
| dc.identifier.citation | 林煜恒、吳靜霞. 2018. 番茄中不同 Ty 基因組合對於番茄黃化捲葉泰國病毒種之抗病力研究. 臺中區農業改良場研究彙報. 139: 13-26. Abeysinghe JK, Lam KM, Ng DWK. 2019. Differential regulation and interaction of homoeologous WRKY 18 and WRKY 40 in Arabidopsis allotetraploids and biotic stress responses. The Plant Journal 97(2): 352-367. Al Abdallat AM, Al Debei HS, Asmar H, Misbeh S, Quraan A, Kvarnheden A. 2010. An efficient in vitro-inoculation method for tomato yellow leaf curl virus. Virology Journal 7(1): 84. Albensi BC. 2019. What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion? Frontiers in Cell and Developmental Biology 7(154). Ammara U, Mansoor S, Saeed M, Amin I, Briddon RW, Al-Sadi AM. 2015. RNA interference-based resistance in transgenic tomato plants against tomato yellow leaf curl virus-Oman (TYLCV-OM) and its associated betasatellite. Virology Journal 12: 38. Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I. 2009. Molecular dissection of tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theoretical and Applied Genetics 119(3): 519-530. Aoki K, Yano K, Suzuki A, Kawamura S, Sakurai N, Suda K, Kurabayashi A, Suzuki T, Tsugane T, Watanabe M, et al. 2010. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics 11(1): 210. Bacete L, Mélida H, Miedes E, Molina A. 2018. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. The Plant Journal 93(4): 614-636. Ben Saad R, Ben-Ramdhan W, Zouari N, Azaza J, Mieulet D, Guiderdoni E, Ellouz R, Hassairi A. 2012. Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses. Molecular Breeding 30(1): 521-533. Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60: 379-406. Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G. 2006. The NF-kappaB-mediated control of ROS and JNK signaling. Histology and Histopathology 21(1): 69-80. Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RG, Bai Y, Kormelink R. 2014. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proceedings of the National Academy of Sciences, USA 111(35): 12942-12947. Cao H, Bowling SA, Gordon AS, Dong X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6(11): 1583-1592. Chang EJ, Ha J, Kang SS, Lee ZH, Kim HH. 2011. AWP1 binds to tumor necrosis factor receptor-associated factor 2 (TRAF2) and is involved in TRAF2-mediated nuclear factor-kappaB signaling. The International Journal of Biochemistry Cell Biology 43(11): 1612-1620. Chang L, Chang HH, Chang JC, Lu HC, Wang TT, Hsu DW, Tzean Y, Cheng AP, Chiu YS, Yeh HH. 2018. Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity. PLoS Pathog 14(9): e1007288. Chang L, Chang HH, Chiu YS, Chang JC, Hsu DW, Tzean Y, Cheng AP, Lu HC, Yeh HH. 2019. Plant A20/AN1 proteins coordinate different immune responses including RNAi pathway for antiviral immunity. BioRxiv: 622696. Chang L, Tzean Y, Hsin KT, Lin CY, Wang CN, Yeh HH. 2022. Stress associated proteins coordinate the activation of comprehensive antiviral immunity in Phalaenopsis orchids. New Phytologist 233(1): 145-155. Chang S, Puryear J, Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11(2): 113-116. Chen J, Zhang J, Kong M, Freeman A, Chen H, Liu F. 2021. More stories to tell: NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1, a salicylic acid receptor. Plant, Cell Environment 44(6): 1716-1727. Chow CN, Lee TY, Hung YC, Li GZ, Tseng KC, Liu YH, Kuo PL, Zheng HQ, Chang WC. 2019. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants. Nucleic Acids Research 47(D1): D1155-d1163. Di X, Gomila J, Takken FLW. 2017. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. Molecular Plant Pathology 18(7): 1024-1035. Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW, O'Rourke K, Ward PA, Prochownik EV, Marks RM. 1990.Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. The Journal of Biological Chemistry 265(5): 2973-2978. Doherty HM, Selvendran RR, Bowles DJ. 1988. The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiological and Molecular Plant Pathology 33(3): 377-384. Eulgem T, Somssich IE. 2007. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology 10(4): 366-371. Eybishtz A, Peretz Y, Sade D, Gorovits R, Czosnek H. 2010. Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta 231(3): 537-548. Falcioni T, Ferrio JP, del Cueto AI, Giné J, Achón MÁ, Medina V. 2013. Effect of salicylic acid treatment on tomato plant physiology and tolerance to potato virus X infection. European Journal of Plant Pathology 138(2): 331-345. Gallant JC, Moore ID, Hutchinson MF, Gessler P. 1994. Estimating fractal dimension of profiles: a comparison of methods. Mathematical Geology 26(4): 455-481. Gill U, Scott JW, Shekasteband R, Ogundiwin E, Schuit C, Francis DM, Sim SC, Smith H, Hutton SF. 2019. Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against tomato yellow leaf curl virus and tomato mottle virus. Theoretical and Applied Genetics 132(5): 1543-1554. Giri J, Dansana PK, Kothari KS, Sharma G, Vij S, Tyagi AK. 2013. SAPs as novel regulators of abiotic stress response in plants. Bioessays 35(7): 639-648. Grant MR, Jones JD. 2009. Hormone (dis)harmony moulds plant health and disease. Science 324(5928): 750-752. Gu Y-Q, Yang C, Thara VK, Zhou J, Martin GB. 2000. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12(5): 771-785. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3): 307-321. Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. 2013. Geminiviruses: masters at redirecting and reprogramming plant processes. Nature Reviews Microbiology 11(11): 777-788. Hayter AJ. 1984. A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is conservative. The Annals of Statistics: 61-75. He X, Xie S, Xie P, Yao M, Liu W, Qin L, Liu Z, Zheng M, Liu H, Guan M, et al. 2019. Genome-wide identification of stress-associated proteins (SAP) with A20/AN1 zinc finger domains associated with abiotic stresses responses in Brassica napus. Environmental and Experimental Botany 165: 108-119. Herrera-Vásquez A, Salinas P, Holuigue L. 2015. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Frontiers in Plant Science 6: 171. Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology 58(4): 216-225. Horowitz R, Denholm I, Morin S 2007. Resistance to Insecticides in the TYLCV vector, Bemisia tabaci. Springer Netherlands, 305-325. Howe GA. 2004. Jasmonates as signals in the wound response. Journal of Plant Growth Regulation 23(3): 223-237. Hozain Md, Abdelmageed H, Lee J, Kang M, Fokar M, Allen RD, Holaday AS. 2012. Expression of AtSAP5 in cotton up-regulates putative stress-responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress. Journal of Plant Physiology 169(13): 1261-1270. Huang J, Teng L, Li L, Liu T, Li L, Chen D, Xu LG, Zhai Z, Shu HB. 2004. ZNF216 is an A20-like and IkappaB kinase gamma-interacting inhibitor of NFkappaB activation. The Journal of Biological Chemistry 279(16): 16847-16853. Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G. 2018. CRISPR for crop improvement: an update review. Frontiers in Plant Science 9: 985. Jin H, Choi SM, Kang MJ, Yun SH, Kwon DJ, Noh YS, Noh B. 2018. Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis. Nucleic Acids Research 46(22): 11712-11725. Jones JD, Dangl JL. 2006. The plant immune system. Nature 444(7117): 323-329. Journot-Catalino N, Somssich IE, Roby D, Kroj T. 2006. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18(11): 3289-3302. Kadirvel P, de la Peña R, Schafleitner R, Huang S, Geethanjali S, Kenyon L, Tsai W, Hanson P. 2013. Mapping of QTLs in tomato line FLA456 associated with resistance to a virus causing tomato yellow leaf curl disease. Euphytica 190(2): 297-308. Kang M, Fokar M, Abdelmageed H, Allen RD. 2011. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity. Plant Molecular Biology 75(4-5): 451-466. Kang M, Lee S, Abdelmageed H, Reichert A, Lee HK, Fokar M, Mysore KS, Allen RD. 2017. Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway. Plant, Cell Environment 40(5): 702-716. Karimi M, Inzé D, Depicker A. 2002. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7(5): 193-195. Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20(4): 1160-1166. Klessig DF, Choi HW, Dempsey DA. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Molecular Plant–Microbe Interactions 31(9): 871-888. Kudo T, Kobayashi M, Terashima S, Katayama M, Ozaki S, Kanno M, Saito M, Yokoyama K, Ohyanagi H, Aoki K, et al. 2017. TOMATOMICS: A web database for integrated omics information in tomato. Plant and Cell Physiology 58(1): e8. Kuraku S, Zmasek CM, Nishimura O, Katoh K. 2013. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research41(W1): W22-W28. Lapidot M, Weil G, Cohen L, Segev L, Gaba V. 2007. Biolistic inoculation of plants with tomato yellow leaf curl virus DNA. Journal of Virological Methods 144(1-2): 143-148. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A. 2000. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289(5488): 2350-2354. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30(1): 325-327. Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49(W1): W293-W296. Levy D, Lapidot M. 2008. Effect of plant age at inoculation on expression of genetic resistance to tomato yellow leaf curl virus. Archives of Virology 153(1): 171-179. Li Y, Qin L, Zhao J, Muhammad T, Cao H, Li H, Zhang Y, Liang Y. 2017. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS One 12(2): e0172466. Liu S, Wang J, Jiang S, Wang H, Gao Y, Zhang H, Li D, Song F. 2019a. Tomato SlSAP3, a member of the stress-associated protein family, is a positive regulator of immunity against Pseudomonas syringae pv. tomatoDC3000. Molecular plant pathology 20(6): 815-830. Liu S, Yuan X, Wang Y, Wang H, Wang J, Shen Z, Gao Y, Cai J, Li D, Song F. 2019b. Tomato stress-associated protein 4 contributes positively to immunity against necrotrophic fungus Botrytis cinerea. Molecular Plant–Microbe Interactions 32(5): 566-582. Liu Y, Schiff M, Dinesh-Kumar SP. 2002. Virus-induced gene silencing in tomato. The Plant Journal 31(6): 777-786. Ma A, Malynn BA. 2012. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nature Reviews Immunology 12(11): 774-785. Ma X, Zhu Q, Chen Y, Liu Y-G. 2016. CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Molecular Plant 9(7): 961-974. Mabvakure B, Martin DP, Kraberger S, Cloete L, van Brunschot S, Geering ADW, Thomas JE, Bananej K, Lett JM, Lefeuvre P, et al. 2016. Ongoing geographical spread of tomato yellow leaf curl virus. Virology 498: 257-264. Makkouk K, Shehab S, Majdalani S. 1979. Tomato yellow leaf curl: incidence, yield and losses and transmission in Lebanon. Phytopathologische Zeitschrift 96(3): 263-267. Malamy J, Carr JP, Klessig DF, Raskin I. 1990. Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250(4983): 1002-1004. Martin-Rodriguez JA, Leon-Morcillo R, Vierheilig H, Ocampo JA, Ludwig-Muller J, Garcia-Garrido JM. 2011.Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytologist 190(1): 193-205. Matsukura C, Aoki K, Fukuda N, Mizoguchi T, Asamizu E, Saito T, Shibata D, Ezura H. 2008. Comprehensive resources for tomato functional genomics based on the miniature model tomato Micro-tom. Current Genomics 9(7): 436-443. Mei C, Qi M, Sheng G, Yang Y. 2006. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Molecular Plant–Microbe Interactions 19(10): 1127-1137. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5): 1530-1534. Mishina TE, Zeier J. 2007. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. The Plant journal 50(3): 500-513. Mukhopadhyay A, Vij S, Tyagi AK. 2004. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceedings of the National Academy of Sciences, USA101(16): 6309-6314. Ngou BPM, Ahn H-K, Ding P, Jones JDG. 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592(7852): 110-115. Nicaise V. 2014. Crop immunity against viruses: outcomes and future challenges. Frontiers in Plant Science 5: 660. Nonaka S, Arai C, Takayama M, Matsukura C, Ezura H. 2017. Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Scientific Reports 7(1): 1-14. Opipari AW, Jr., Boguski MS, Dixit VM. 1990. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. The Journal of Biological Chemistry 265(25): 14705-14708. Paul A, Kumar S. 2015. An A20/AN1-zinc-finger domain containing protein gene in tea is differentially expressed during winter dormancy and in response to abiotic stress and plant growth regulators. Plant Gene 1: 1-7. Penninckx IA, Thomma BP, Buchala A, Métraux J-P, Broekaert WF. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell10(12): 2103-2113. Picó B, Díez MJ, Nuez F. 1996. Viral diseases causing the greatest economic losses to the tomato crop. II. The tomato yellow leaf curl virus—a review. Scientia Horticulturae 67(3-4): 151-196. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC. 2009. Networking by small-molecule hormones in plant immunity. Nature Chemical Biology 5(5): 308-316. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28: 489-521. Polston JE, Anderson PK. 1997. The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere. Plant Disease 81(12): 1358-1369. Prasad A, Sharma N, Hari-Gowthem G, Muthamilarasan M, Prasad M. 2020. Tomato yellow leaf curl virus: impact, challenges, and management. Trends in Plant Science 25(9): 897-911. Ramesh SV, Mishra AK, Praveen S. 2007. Hairpin RNA-mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides 17(2): 251-257. Riemann M, Haga K, Shimizu T, Okada K, Ando S, Mochizuki S, Nishizawa Y, Yamanouchi U, Nick P, Yano M, et al. 2013. Identification of rice allene oxide cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. The Plant Journal 74(2): 226-238. Robert-Seilaniantz A, Grant M, Jones JD. 2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology 49: 317-343. Rojas MR, Macedo MA, Maliano MR, Soto-Aguilar M, Souza JO, Briddon RW, Kenyon L, Rivera Bustamante RF, Zerbini FM, Adkins S, et al. 2018. World management of Geminiviruses. Annual Review of Phytopathology 56(1): 637-677. Rushton PJ, Somssich IE, Ringler P, Shen QJ. 2010. WRKY transcription factors. Trends in Plant Science 15(5): 247-258. Ryu C-M, Anand A, Kang L, Mysore KS. 2004. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. The Plant Journal 40(2): 322-331. Schenke D, Cai D. 2020. Applications of CRISPR/Cas to improve crop disease resistance–beyond inactivation of susceptibility factors. Iscience: 101478. Schön M, Töller A, Diezel C, Roth C, Westphal L, Wiermer M, Somssich IE. 2013. Analyses of wrky18 wrky40plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Molecular Plant-Microbe Interactions 26(7): 758-767. Shew AM, Nalley LL, Snell HA, Nayga Jr RM, Dixon BL. 2018. CRISPR versus GMOs: Public acceptance and valuation. Global Food Security 19: 71-80. Solanke AU, Sharma MK, Tyagi AK, Sharma AK. 2009. Characterization and phylogenetic analysis of environmental stress-responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato. Molecular Genetics and Genomics 282(2): 153-164. Spoel SH, Johnson JS, Dong X. 2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences, USA 104(47): 18842-18847. Sun T, Busta L, Zhang Q, Ding P, Jetter R, Zhang Y. 2018. TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g). New Phytologist 217(1): 344-354. Sun YC, Pan LL, Ying FZ, Li P, Wang XW, Liu SS. 2017. Jasmonic acid-related resistance in tomato mediates interactions between whitefly and whitefly-transmitted virus. Scientific Reports 7(1): 566. Taheri P, Tarighi S. 2010. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology 167(3): 201-208. Thaler JS, Humphrey PT, Whiteman NK. 2012. Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science 17(5): 260-270. Tornero P, Gadea J, Conejero V, Vera P. 1997. Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Molecular Plant–Microbe Interactions 10(5): 624-634. Tsai W, Kenyon L, Hanson P, Shih SL, Jan FJ. 2013. Tomato leaf curl disease in Taiwan and breeding for resistance against it. Plant Pathology Bulletin 22(4): 327-337. Tsai W, Shih S, Kenyon L, Green S, Jan FJ. 2011. Temporal distribution and pathogenicity of the predominant tomato‐infecting begomoviruses in Taiwan. Plant Pathology 60(4): 787-799. Tsai WA, Weng SH, Chen MC, Lin JS, Tsai WS. 2019. Priming of plant resistance to heat stress and tomato yellow leaf curl Thailand virus with plant-derived materials. Frontiers in Plant Science 10: 906. Tyagi H, Jha S, Sharma M, Giri J, Tyagi AK. 2014. Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Plant Science 225: 68-76. Tzean Y, Chang HH, Tu TC, Hou BH, Chen HM, Chiu YS, Chou WY, Chang L, Yeh HH. 2020. Engineering plant resistance to tomato yellow leaf curl Thailand virus using a phloem-specific promoter expressing hairpin RNA. Molecular Plant–Microbe Interactions 33(1): 87-97. Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RG, Scott JW, Edwards JD, Bai Y. 2013. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA–dependent RNA polymerases. PLoS Genetics 9(3): e1003399. Verstrepen L, Verhelst K, van Loo G, Carpentier I, Ley SC, Beyaert R. 2010. Expression, biological activities and mechanisms of action of A20 (TNFAIP3). Biochemical Pharmacology 80(12): 2009-2020. Vij S, Tyagi AK. 2006. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Molecular Genetics and Genomics276(6): 565-575. Vij S, Tyagi AK. 2008. A20/AN1 zinc-finger domain-containing proteins in plants and animals represent common elements in stress response. Functional Integrative Genomics 8(3): 301-307. Vlot AC, Dempsey DMA, Klessig DF. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology 47: 177-206. Waltz E. 2021. GABA-enriched tomato is first CRISPR-edited food to enter market. Nature Biotechnology. Weng SH, Tsai WS, Kenyon L, Tsai CW. 2015. Different transmission efficiencies may drive displacement of tomato begomoviruses in the fields in Taiwan. Annals of Applied Biology 166(2): 321-330. Wu HY, Liu KH, Wang YC, Wu JF, Chiu WL, Chen CY, Wu SH, Sheen J, Lai EM. 2014. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10(1): 19. Yamaguchi H, Ohnishi J, Saito A, Ohyama A, Nunome T, Miyatake K, Fukuoka H. 2018. An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 Begomovirus resistance locus of tomato. Theoretical and Applied Genetics 131(6): 1345-1362. Yan Z, Wolters AA, Navas-Castillo J, Bai Y. 2021. The global dimension of tomato yellow leaf curl disease: current status and breeding perspectives. Microorganisms 9(4). Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou J-M, He SY, Xin X-F. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592(7852): 105-109. Zhang ZL, Xie Z, Zou X, Casaretto J, Ho TH, Shen QJ. 2004. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiology 134(4): 1500-1513. Zharkikh A. 1994. Estimation of evolutionary distances between nucleotide sequences. Journal of Molecular Evolution 39(3): 315-329. Zhu F, Xi DH, Yuan S, Xu F, Zhang DW, Lin HH. 2014. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Molecular Plant–Microbe Interactions27(6): 567-577. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/81703 | - |
| dc.description.abstract | 番茄黃化捲葉泰國病毒 (tomato yellow leaf curl Thailand virus, TYLCTHV) 對於臺灣番茄 (Solanum lycopersicum) 產業造成嚴重損害。前人研究指出雙子葉植物和單子葉植物中的逆境相關蛋白 (stress associated proteins, SAPs) 在水楊酸 (salicylic acid, SA) 所調控的抗病毒免疫途徑中扮演重要角色,為了探討番茄SAP是否具有相似的抗病毒免疫能力,本實驗目為在番茄中找出參與對抗TYLCTHV之SAPs。在模式番茄 (S. lycopersicum cv. Micro-Tom) 中進行親緣演化樹分析,確認出七個SAP基因,即SlSAP4-LIKE、SlSAP5、SlSAP5-LIKE、SlSAP8、SlSAP8-LIKE、SlSAP11和SlSAP12;其中,水楊酸可以誘導SlSAP4-LIKE、SlSAP5、SlSAP8-LIKE和SlSAP12等基因的表現量。再者,TYLCTHV的感染則可誘導SlSAP5、SlSAP8、SlSAP8-LIKE和SlSAP12的基因表現量。此外,在番茄植株中短暫過表現番茄SAP試驗發現水楊酸調控免疫相關基因受到SlSAP4-LIKE、SlSAP5、SlSAP8-LIKE和SlSAP12所調控;茉莉酸相關基因則受SlSAP8之調控;乙烯相關基因受到SlSAP8和SlSAP11的調控。另一方面,在TYLCYHV感染番茄系統中短暫過表現番茄SAP指出,SlSAP4-LIKE、SlSAP5、SlSAP8、SlSAP8-LIKE和SlSAP12可參與抗病毒免疫反應,其中,SlSAP5、SlSAP8和SlSAP8-LIKE對於減少TYLCTHV的積累有較佳的影響。此外,在in silico 啟動子分析顯示,在SlSAP5啟動子區域具有一個水楊酸反應相關的TGACG序列模體 (motif),且SlSAP8和SlSAP8-LIKE啟動子區域則各發現一個與水楊酸反應相關的W-box序列模體。研究結果為利用SAP基因開發抗TYLCTHV策略奠定重要基礎。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2022-11-24T09:25:59Z (GMT). No. of bitstreams: 1
U0001-2101202210373100.pdf: 10260166 bytes, checksum: de1e3541ce71c83f2ee2a8a55c29daa6 (MD5) Previous issue date: 2022 | en |
| dc.description.tableofcontents | Acknowledgments I 中文摘要 II Abstract III Contents V Contents of table VII Contents of figure VIII Chapter 1. Introduction 1 1.1 Tomato yellow leaf curl Thailand virus 1 1.2 Plant innate immunity 3 1.3 Stress associated protein (SAP) 6 Chapter 2. Materials and Methods 11 2.1 Plant materials and growth conditions 11 2.2 Phylogenetic analysis 11 2.3 Sodium salicylate treatment 13 2.4 Agroinfiltration 13 2.5 TYLCTHV inoculation 14 2.6 Construction of SlSAPs overexpression vector 15 2.7 Transient overexpression under TYLCTHV assay 15 2.8 RNA isolation and real-time quantitative reverse transcription PCR (RT-qPCR) detection 16 2.9 DNA isolation and qPCR 17 2.10 In silico promoter analysis 18 2.11 Statistical analysis 18 Chapter 3. Results 19 3.1 Sequences of stress associated proteins (SAPs) in Solanum lycopersicum cv. Micro-Tom 19 3.2 Phylogenic analysis of stress associated proteins (SAPs) 19 3.3 Sodium salicylate treatment induces expression of SlPR1 20 3.4 The SA treatment induces expression of SlSAP4-LIKE, SlSAP5, SlSAP8-LIKE and SlSAP12 21 3.5 Establishment of an effective TYLCTHV inoculation method 21 3.6 SlSAP5, SlSAP8, SlSAP8-LIKE and SlSAP12 are induced by TYLCTHV at 7 dpi 22 3.7 SlSAPs are involved in the expression of SA-related, JA-related or ET-related defense responsive genes 23 3.8 Transient overexpression of SlSAP4-LIKE, SlSAP5, SlSAP8, SlSAP8-LIKE and SlSAP12 in TYLCTHV-infected S. lycopersicum decreased TYLCTHV accumulation 24 3.9 In silico promoter analysis of SlSAP5, SlSAP8 and SlSAP8-LIKE 25 Chapter 4. Discussion 27 4.1 Identification of tomato SAP(s) involved in SA-mediated plant immunity 27 4.2 An effective TYLCTHV agro-inoculation method through rachis-injection 30 4.3 In silico promoter assay of tomato SAPs involved in accumulation of TYLCTHV 31 4.4 Continuations of the project 33 References 36 Tables 46 Figures 59 Appendix 74 | - |
| dc.language.iso | en | - |
| dc.subject | 逆境相關蛋白 | zh_TW |
| dc.subject | 番茄 | zh_TW |
| dc.subject | 植物免疫 | zh_TW |
| dc.subject | 番茄黃化捲葉泰國病毒 | zh_TW |
| dc.subject | 水楊酸 | zh_TW |
| dc.subject | plant immunity | en |
| dc.subject | stress associated protein (SAP) | en |
| dc.subject | salicylic acid | en |
| dc.subject | tomato yellow leaf curl Thailand virus (TYLCTHV) | en |
| dc.subject | tomato (Solanum lycopersicum) | en |
| dc.title | 鑑定逆境相關蛋白基因在番茄免疫途徑抗番茄黃化捲葉泰國病毒之研究 | zh_TW |
| dc.title | Identification of stress associated protein genes in tomato immunity against tomato yellow leaf curl Thailand virus | en |
| dc.date.schoolyear | 110-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 沈偉強(Wei-Chiang Shen) | - |
| dc.contributor.oralexamcommittee | 洪挺軒(Wu-Chun Tu),鍾嘉綾(Wen-be Hwang),林乃君 | - |
| dc.subject.keyword | 逆境相關蛋白,水楊酸,番茄黃化捲葉泰國病毒,番茄,植物免疫, | zh_TW |
| dc.subject.keyword | stress associated protein (SAP),salicylic acid,tomato yellow leaf curl Thailand virus (TYLCTHV),tomato (Solanum lycopersicum),plant immunity, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202200136 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2022-02-07 | - |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2101202210373100.pdf 未授權公開取用 | 10.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
